

Serial Communication Buses

Serial Communication

- Sending data one bit at one time, sequentially
- Serial vs parallel communication
 - © cable cost (or PCB space), synchronization, distance !
 - Speed ?
- Improved serial communication technology allows for transfer at higher speeds and is dominating the modern digital technology:
 - SS232, RS-485, I2C, SPI, 1-Wire, USB, FireWire, Ethernet, Fibre Channel, MIDI, Serial Attached SCSI, Serial ATA, PCI Express, etc.

RS232, EIA232

- The Electronic Industries Alliance (EIA) standard RS-232-C (1969)
 - Sefinition of physical layer (electrical signal characteristics: voltage levels, signaling rate, timing, short-circuit behavior, cable length, etc.)
 - © 25 or (more often) 9-pin connector
 - serial transmission (bit-by-bit)
 - Saynchronous operation (no clock signal)
 - struly bi-directional transfer (full-duplex)
 - Intervention of the second second
 - many protocols use RS232 (e.g. Modbus)

Voltage Levels

RS-232 standard convert TTL/CMOS-level signals into bipolar voltage levels to improve noise immunity and support long cable lengths

TTL/CMOS (UART)	\rightarrow	RS232:
0V = logic zero	\rightarrow	+3V+12V (SPACE)
+5V (+3.3V) = logic one	\rightarrow	-3V12V (MARK)

- Some equipment ignores the negative level and accepts a zero voltage level as the "MARK" state
- Solution States Sta

9

Data frame

Complete one-byte frame consists of: start-bit (SPACE), data bits (7, 8), stop-bits (MARK) e.g. 9600-8N1 or 19200-7E1

Data Rates

Pure EIA RS-232C standard permits data rates up to 19200 bps and cable lengths up to 400 meters (but not both)

- Data rates as high as 256kbps (over less than 2 m) are possible
- Universal Asynchronous
 600 400 1216
 Receiver/Transmitter (UART) component responsible for fast communication via RS-232
- Common 16550 UART incorporates a 16-byte FIFO and is mandatory for communications at speeds above 9600 bps

DTE and DCE

The RS-232 defines two classes of devices:

male chauvinism?

- Se data terminal equipment (DTE) computer (male)
- Se data communication equipment (DCE) modem (female)

Computer	Telenhone	Signal Name		Pin Nu	mber	Direction
Male DB25	Eemale DB25			25-pin	9-pin	
		transmitted data	TD	2	3	DTE 🕨 DCE
	toutace	received data	RD	3	2	DTE DCE
	Cable 🖵 \ Modem	request to send	RTS	4	7	DTE DCE
		dear to send	CTS	5	8	DTE DCE
		data terminal ready	DTR	20	4	DTE 🕨 DCE
DIE	DCE	data set ready	DSR	6	6	DTE DCE
Data Terminal	Data Groutterminating	data carrier detect	DCD	8	1	DTE DCE
Equipment	Equipment	ring indicator	RI	22	9	DTE DCE
		signal ground	GND	7	5	

- Se.g. TD is output line on DTE, but input line on DCE
- Istinction between DTE&DCE allows to avoid confusion

Signals

- Complete RS232 standard define a lot of signals and is fairly complex
- Many communications options exist, but only very few are used in practice

```
CTS
       Clear To Send [DCE --> DTE]
       Data Carrier Detected (Tone from a modem) [DCE --> DTE]
DCD
DCE
       Data Communications Equipment eq. modem
DSR
       Data Set Ready [DCE --> DTE]
DSRS
       Data Signal Rate Selector [DCE --> DTE] (Not common)
DTE
       Data Terminal Equipment eq. computer, printer
DTR
       Data Terminal Ready [DTE --> DCE]
FG
       Frame Ground (screen or chassis)
NC
       No Connection
RCk
       Receiver (external) Clock input
RI
       Ring Indicator (ringing tone detected)
RTS
       Request To Send [DTE --> DCE]
       Received Data [DCE --> DTE]
RxD
SG
       Signal Ground
SCTS
       Secondary Clear To Send [DCE --> DTE]
SDCD
       Secondary Data Carrier Detected (Tone)[DCE -> DTE]
SRTS
       Secondary Ready To Send [DTE --> DCE]
SRxD
       Secondary Received Data [DCE --> DTE]
STxD
       Secondary Transmitted Data [DTE --> DTE]
TxD
       Transmitted Data [DTE --> DTE]
```


Architektura komputerów, Informatyka, sem.III

Handshaking

- Hardware handshaking
 - © RTS/CTS
 - DTE asserts the "request to send" (RTS) signal when it is ready to receive data and deasserts it when it cannot accept data; a DCE asserts "clear to send" (CTS) when it is ready to receive data
 - © DTR/DTE
 - DTE asserts the "data terminal ready" (DTR) signal, and DCE asserts the "data set ready" (DSR) signal

Software handshaking

- © XON/XOFF
 - requires that the receiver send a character (Control-S, ASCII 19) to halt data transfer and another character (Control-Q, ASCII 17) to resume transfer

Interface

Sub-D 25, Sub-D 9, RJ45 and others

- \bigcirc DTE ↔ DCE Straight connection
- Solution State State
- DTE Loopback wiring

Various DB25 to DB9 adapters

Null-modem Wirings

Connector 1	Connector 2	Function	
2	3	Rx ← Tx	
3	2	Tx → Rx	
5	5	Signal ground	

Null modem with loop back handshaking

Connector 1	Connector 2	Function		
2	3	Rx ← Tx		
3	2	Tx → Rx		
5	5	Signal ground		
1 + 4 + 6	-	DTR → CD + DSR		
-	1 + 4 + 6	DTR → CD + DSR		
7 + 8	-	RTS → CTS		
-	7 + 8	RTS → CTS		

Null modem with full handshaking

Connector 1	Connector 2	Function
2	3	Rx ← Tx
3	2	Tx → Rx
4	6	DTR → DSR
5	5	Signal ground
6	4	DSR 🔶 DTR
7	8	RTS → CTS
8	7	CTS 🔶 RTS

RS232 loopback test plug for terminal emulation software

DB9	DB25	Function		
1 + 4 + 6	6 + 8 + 20	DTR → CD + DSR		
2 + 3	2 + 3	Tx → Rx		
7 + 8	4 + 5	RTS → CTS		

Weaknesses

- Common ground
- Requirement for positive and negative supplies
- Low transfer rate
- Point-to-point only communication
 - Asymmetrical definitions of DTE and DCE
- Many unnecessary communication options
- Somethod for sending power to a device
 - Large recommended connector

Strengths

- RS-232 is being superseded by USB for local communications but ...
 - USB is more complex (physical layer + protocol + driver) and has no direct analog to the terminal programs for 'raw' communication
 - Lots of communication protocols can be easily implemented over RS232 (by software or hardware)
 - Simplicity makes it good for industrial applications where speed is not critical but distance is long
 - Solution State State
 - Lot od cheap RS232<->USB converters

RS232 Forever ...

PCI-Express Card with 1 RS232C Port

Related Standards

- © RS-485
 - © a two-wire differential signaling (U+, U-)

half-duplex

- Semistive multipoint serial connection (inexpensive local networks)
- Speeds up to 35 Mbit/s (10 m) and 100 kbit/s (1200 m)

Differential Signaling

- Tolerance of ground offsets
- Suitability for use with low-voltage electronics
- Resistance to electromagnetic interference
- SS-485, PCI Express, USB, ...

USB

- Universal Serial Bus (USB) was intended to help retire all legacy varieties of serial and parallel ports (1995)
 - single standardized interface socket
 - plug-and-play + hot swapping
 - \odot providing power to devices (2.5 4.5 15W)
 - Illowing many standard devices to be used without requiring manufacturer specific
- No direct access to physical layer
- Complex software+hardware
 - Serror correction, protocols, device classes, etc.

USB Bus Topology

- USB system: host+interconnect+devices
- USB always connects devices with host (master-slave)
- Interconnect topology is a tiered star

Speed

- Several data rates:
 - © USB 1.x low-speed 1.5 Mb/s
 - © USB 1.x full-speed 12 Mb/s
 - Solution Science S
 - USB 3.0 Super-Speed
 - 4.8 Gbit/s (600 MB/s)
 - Full-duplex with additional twisted pair (10 pins in total)
 - USB 3.1 SuperSpeed+ 10 Gbit/s
- Solution The actual throughput attained with real devices is about $\frac{2}{3}$ of the maximum theoretical bulk data transfer rate

Electrical Interface (1.x, 2.0)

- Four-wire cable, differential signaling, half-duplex,
 - Twisted pair data cable with $90\Omega \pm 15\%$ impedance

- 0.0–0.3V Low and 2.8–3.6V High (Low/Full Speed)
- ±400mV in High Speed (+ protocol to negotiate HS)
- Clock tolerance:
 - Section Section Section Section 5 ≤ 480.00 Mbit/s ±0.05%
 - © 12.000 Mbit/s ±0.25%
 - Section 1.50 Mbit/s ±1.5%

Data Signaling (Low/Full)

- Data transmission is organized in packets
- NRZI (non-return-to-zero inverted) encoding

NRZI Encoding

- Sinary code in which "1s" and "0s" are represented with no other neutral or rest condition
- Not a self-synchronizing code, synchronization technique must be used to avoid bit slip
- "1" is represented by a transition
- "0" has no transition

٢

I²C - Inter-Integrated Circuit

- I²C (I-squared-C) Philips (NXP), early 80's (XX)
- communication between integrated circuits
- \odot only two wires (+ common ground) \rightarrow small PCB's
- Semulti-master/multi-slave, bidirectional, 8-bit
- In strict baud rate requirements (master sends the clock)
- Solution of the second seco
- simple hardware or (easy) software implementation

Highly-integrated TV set

Second Example of TV set architecture with I2C (historical)

DMCS

Characteristics

- Speed:
 - 100 kbps (standard mode) ٢
 - \$ 400 kbps (fast mode)
 - Solution 3.4 Mbps (high-speed mode)
- Two-wired bus (+ ground) ٢
 - serial data line (SDA)
 - serial clock line (SCL)
- Voltage levels ۲
 - not fixed, depends on supply level of voltage 9
 - HIGH \rightarrow 1 ٢

Bit Transfer

- Sit transfer is level triggered
 - SCL = 0 ↑ 1 → SDA = valid data
 - Some clock pulse per data bit
 - stable data during high clocks
 - Idata change during low clocks

Start and Stop

- SCL & SDA are high when idle
 - open-drain + pull-up resistor
- Start condition (S)
 - SDA 1↓0 transition when SCL = 1
- Stop condition (P)

SDA 0 \uparrow 1 transition when SCL = 1

Acknowledge

- Solution All transfers are initiated by master
- Slave must respond with acknowledge

Data Frame

- Start + Slave address + Direction Command
- Acknowledge from slave
- Solution \bigcirc Data (master \rightarrow slave or slave \rightarrow master) + Ack.
- Stop

Frame Formats

Master transmitter ۲

Addressing

- 7-bit addressing
 - © max. 112 slaves
 - 7 addresses reserved
 - e.g. broadcast, start-byte, 10-bit extension
- 10-bit addressing
 - I1110 prefix + 10 address bit (R/W in the middle)

1024 new addresses

Closing Remarks

- Elegance of I²C: simplicity & effectiveness
 - shared bus, reasonable speed, two wires (pins), hotplug
 - Ilexible timing: no strict baud rate, clock stretching
 - arbitration & collision detection in multi-master mode
- One of most common communication standard for microcontrollers & integrated circuits
- No licensing fees for I²C implementation, but required to obtain I²C slave addresses
- Limited Address Space:
 - devices with configurable address
 - higher bits indicate model, lower bits type

Derivatives

- System Management Bus (SMBus)
 - Iow-bandwidth devices on a PC motherboard
 - laptop's battery, temperature, fan, or voltage sensors, configuration data of DDR2, ...
- VESA Display Data Channel (DDC)
 - connection between monitor graphics card
 - with VGA, DVI, HDMI connectors
- Solution State State
 - Section Se

1-Wire®

- Registered trademark of Dallas Semiconductor Corp. (now Maxim-Dallas)
 - Signaling and power using 1 wire (+ ground)
 - Solution Low-speed (< 1 kbps)</p>
 - Long range (up tp 500m)
 - Low cost
 - Easy implementation

Typically used to communicate with small inexpensive devices such as digital thermometers and weather instruments

9

Available Devices

- Memory: EPROM, SRAM, EEPROM, ROM, NV
- Temperature Sensors and Switches
- I-Wire Interfaces
- A-to-D Converters
- Timekeeping and Real-Time Clocks
 - Battery Protectors, Selectors, and Monitors

Powering 1-Wire Devices

With external supply

DS18B20 - Programmable Resolution 1-Wire Digital Thermometer, -55° C to $+125^{\circ}$ C, $\pm 0.5^{\circ}$ C accuracy and user-definable nonvolatile alarm settings

Architektura komputerów, Informatyka, sem.III

Device Addressing

- There is always only one bus master
- Many slave devices can share the same bus
- Each device has a unique 64-bit serial number

	8-BIT CRC		48-BIT SERIAI	L NUMBER	8-BIT FAMIL	Y CODE (28h)
MSB		LSB	MSB	LSB	MSB	LSB

- There are broadcast commands and commands addressed to particular devices
- The bus also has an algorithm to recover the address of every device on the bus

Transaction Sequence

- Step 1. Initialization
 - Series set pulse
- Step 2. ROM Command (followed by any required data exchange)
 - Search, Read, Match, Skip, Alarm, ...
- Step 3. Function Command (followed by any required data exchange)
 - Sead, Write, ReadPowerSupply, ...

Initialization

- Reset pulse transmitted by the bus master followed by presence pulse(s) transmitted by the slave(s)
- The presence pulse lets the bus master know that slave devices are on the bus

Master Write Bit

- Write time slots are initiated by the master pulling the 1-Wire bus low
 - Write 0 time slot: after pulling the bus low, the bus master continues to hold the bus low for the time slot
 - Write 1 time slot: after pulling the bus low, the bus master releases the bus (pullup will pull the bus high)

Master Read Bit

- Slaves can only transmit data to the master after the master issues read-related commands
 - Solution After the master initiates the read time slot, the slave begins transmitting a 1 or 0 on bus
 - I is transmitted by leaving the bus high and 0 by pulling the bus low

SPI

Serial Peripheral Interface Bus (SPI) - Motorola

- Sour wire serial bus
- synchronous serial data link (clock signal)
- full duplex mode
- Second states are allowed with individual slave select (chip select)

SCLK — Serial Clock (output from master)
MOSI/SIMO — Master Output, Slave Input (output from master)
MISO/SOMI — Master Input, Slave Output (output from slave)
SS — Slave Select (active low; output from master)

Architektura komputerów, Informatyka, sem.III

Data Transmission

- During each SPI clock cycle, a full duplex data transmission occurs:
 - Ite master sends a bit on the MOSI line; the slave reads it from that same line (rising SCLK)
 - Ite slave sends a bit on the MISO line; the master reads it from that same line (falling SCLK)

Advantages

- Full duplex communication
- Very fast higher throughput than I²C
- Arbitrary choice of message size and content
- Extremely simple hardware interfacing
- No arbitration or associated failure modes
- No synchronization problems

Disadvantages

- more lines/pins than I²C
- No hardware flow control, no slave acknowledgment
- limited to a single slave
- short distances

