Computer Architecture 10

Residue Number Systems

A Puzzle

What number has the reminders 2, 3 and 2 when divided by the numbers 7, 5 and 3?

x mod 7 = 2 x mod 5 = 3 x mod 3 = 2 x = ???

Chinese mathematician Sun Tzu - third-century AD (not the famous military strategist Sun Tzu)

Chinese Remainder Theorem

There exists an integer x solving the system of equations:

 $x \mod m_1 = x_1$

 $x \mod m_n = x_n$

where numbers $m_1 \dots m_n$ are relatively prime.

Residue Representation

Convert X-value into RNS representation:

 find a set of numbers (i.e. moduli), which are all relatively prime to each other (greatest common divisor is 1):

$$m_{k-1}, m_{k-2}, \dots, m_1, m_0$$

 $m_{k-1} > m_{k-2} > \dots > m_1 > m_0$
e.g. 7, 5, 3

compute a set of residues with respect to moduli:

$$x_{k-1}, x_{k-2}, \dots, x_1, x_0$$
 where $x_i = X \mod m_i = \langle x \rangle_{m_i}$
e.g. (X=12) \rightarrow 5, 2, 0

• residue list is treated as a k-digit RNS number: $X = (x_{k-1} | x_{k-2} | ... | x_1 | x_0)_{RNS(m_{k-1} | m_{k-2} | ... m_1 | m_0)}$ e.g. (5|2|0)_{RNS(7|5|3)}

RNS Examples

- 5 = (5|5|0|2)_{RNS}
- $0 = (0|0|0|0)_{RNS}$

123				
moduli	8	7	5	3
residues	3	4	3	0
5				
moduli	8	7	5	3
residues	5	5	0	2
0				
moduli	8	7	5	3
residues	0	0	0	0

Congruency Relation

Two integers a and b are said to be congruent modulo n, if their difference (a-b) is an integer multiple of n.

 $a \equiv b \pmod{n}$

$$>$$
 X \equiv x (mod m) \rightarrow x = X $-$ km

e.g.

$$13 \equiv 3 \pmod{5} \rightarrow 3 = 13 - 2*5$$

 $13 \equiv 8 \pmod{5} \rightarrow 8 = 13 - 1*5$
 $13 \equiv 13 \pmod{5} \rightarrow 13 = 13 - 0*5$

Operations on Congruent Numbers

For congruencies $A_i \equiv a_i$ (with modulus n):

∑A_i ≡ ∑a_i A A $\mathbf{A}_{\mathbf{i}} - \mathbf{A}_{\mathbf{i}} \equiv \mathbf{a}_{\mathbf{i}} - \mathbf{a}_{\mathbf{i}}$ ► □ A_i ≡ □ a_i S d $A^{s}_{i} \equiv a^{s}_{i}$ n v·A_i ≡ v·a_i

modulus = 5				
\1 ≡ a1	<mark>13</mark>	3		
\2 ≡ a2	9	4		
sum	22	7 (2)		
liff.	4	-1 (4)		
nult.	117	12 (2)		

(except division)

Operations on RNS Numbers

Operation (+,-,*,^) on RNS numbers is performed on all corresponding residues, totally in parallel

Operation on residues at i-positions is performed modulo m_i

The resulting RNS number uniquely identifies the result of operation (within the dynamic range)

Example of RNS Operations

All operations are performed in parallel on corresponding residues (modulo m_i)

RNS (8|7|5|3)

A	21	(5 0 1 0)
В	8	(0 1 3 2)

A+B	29	(5 1 4 2)
A-B	13	(5 6 3 1)
A*B	168	(0 0 3 0)
A^2	441	(1 0 1 0)
B^3	512	(0 1 2 2)
3*A	63	(7 0 3 0)

Representation Range

► RNS numbers may uniquely identify M numbers, where M = $(m_{k-1}^* ...^* m_1^* m_0) = \prod m_i$

e.g. $RNS(8|7|5|3) \rightarrow 8*7*5*3 = 840$ unique combinations

M is called a dynamic range for a given RNS

The range can cover any interval of M-consecutive numbers

> e.g. for M=840 0..839, -420..419, etc. $(0|0|0|0)_{RNS} = 0 \text{ or } 840 \text{ or } 1680 \dots$ $(7|6|4|2)_{RNS} = 839 \text{ or } -1$

Negative RNS Numbers

Negative numbers can be represented using a complement system (with M-complement)

Residues of -x are equal to residues of M-x

 $(-x) \mod m_i = (M-x) \mod m_i$

Residues of -x are m_i-complements of x

$$x = (x_{k-1} | ... | x_0) \rightarrow -x = (m_{k-1} - x_{k-1} | ... | m_0 - x_0)$$

Take RNS representation of positive number

Negative RNS - Examples

- $x = 21 = (5|0|1|0)_{RNS}$ (RNS(8|7|5|3))
- Calculate m_i-complements of all residues

$$(8-5 | 7-0 | 5-1 | 3-0)_{RNS} = (3 | 0 | 4 | 0)_{RNS} = -21$$

$$0 = (0|0|0|0|)_{RNS} \rightarrow -0 = (0|0|0|0)_{RNS}$$

$$1 = (1|1|1|1)_{RNS} \rightarrow -1 = (7|6|4|2)_{RNS}$$

$$419 = (3|6|4|2)_{RNS} \rightarrow -419 = (5|1|1|1)_{RNS}$$

Difficult RNS Operations

- Speed of addition and multiplication in RNS is counterbalanced by difficulty of other important arithmetical operations:
 - division
 - sign test
 - magnitude comparison
 - overflow detection

Applications of RNS are limited to fields with predominant use of addition and multiplication within the known range (FFT, DSP)

Efficiency of RNS Representation

Residues are kept internally as separate binary numbers (bit-fields)

e.g. 5 = $(5|5|0|2)_{RNS(8|7|5|3)} \rightarrow 10110100010$ (11-bits)

How many bits are needed for M-different representations (in NBC)?

 $\log_2 M \rightarrow \log_2 840 = 9.714$ bits

- Repr. efficiency is the ratio possible RNS representations related to NBC with the same bit-field length n
 - Eff = M(n) / $2^n \rightarrow 840/2048 = 41\%$

RNS Arithmetical Unit

Fast Arithmetics with LUT

Small size of operands permits the lookuptable implementation of residue arithm.units

e.g. 4-operations on 4-bits operands \rightarrow 4 * (2⁴ * 2⁴) = 4*256 = 1024 4bit words (512B)

Choosing the RNS Moduli

- Moduli set $(m_{k-1}...m_0)$ affects both
 - representation efficiency
 - complexity of arithmetical units
- For the chosen range M:
 - find the moduli: primes (or semi-primes) with product ≥ M
 - roughly equal bit-size of moduli should be favored (not an easy task)
 - moduli 2ⁿ an 2ⁿ-1 simplify arithmetic units

e.g. M=65535 \rightarrow RNS(13|11|9|7|5|2), $\prod m_1 = 90090$, 20 bits :-(

Choosing the Moduli - Example

 $M = 100\ 000\ (17\ bits\ in\ NBC)$ Select consecutive primes $RNS(17|13|11|7|5|3|2) \rightarrow \prod = 510510, 23 \text{ bits}$ Remove primes to scale the result $RNS(17|13|11|7|3|2) \rightarrow \prod = 102102, 20$ bits Combine primes – equalize moduli length $RNS(26|21|17|11) \rightarrow \prod = 102102, 19 \text{ bits}$ Use powers of small primes $RNS(15|13|11|2^3|7) \rightarrow \prod = 102102, 18 \text{ bits, max 4-bit field}$ Favor 2ⁿ an 2ⁿ-1moduli $RNS(2^{5}|2^{5}-1|2^{4}-1|2^{3}-1) \rightarrow \prod = 104160, 17 \text{ bits, eff} \approx 100\%$

Conversion to RNS

Calculate the residues $m_{k-1} \dots m_0$:

- From decimal requires division
- From binary requires addition of precomputed values from lookup table and simple division

Binary to RNS - Example

► 164: $10100100_{NBC} \rightarrow RNS(8|7|5|3)$? $10100100_{NBC} \mod 8 = 100_{NBC} = 4$ (trivial) $10100100_{NRC} \mod 7 = (2+4+4) \mod 7 = 3$ Final division uses small numbers $10100100_{NBC} \mod 5 = (3+2+4) \mod 5 = 4$ and can also be implemented with LUT $10100100_{NRC} \mod 3 = (2+2+1) \mod 3 = 2$ 2^k mod ... ▶ 164: $10100100_{NBC} \rightarrow (4|3|4|2)$ 2^k k Lookup table with precomputed partial residues for RNS with moduli (8|7|5|3)

Conversion from RNS

- Any RNS has associated mixed-radix system (MRS) RNS(m_{k-1}|...|m₀) = MRS(w_{k-1}|...|w₀)
- Conversion from RNS to any positional system is possible if the weights w_{k-1}...w₀ are known
- Any RNS number $(x_{k-1}|...|x_0)$ can be expressed as
 - $x_{k-1}(1|0|...|0) + x_{k-2}(0|1|...|0) + ... + x_1(0|...|1|0) + x_0(0|...|0|1)$
- The weights $w_{k-1} \dots w_0$ are equal to RNS numbers (1|0|...|0), (0|1|...|0) ... (0|...|1|0), (0|...|0|1)

Conversion from RNS

Values of weights for the given RNS can be precomputed and used as constants

$$w_{k-1} = (1|0|...|0)_{RNS}, ... w_0 = (0|...|0|1)_{RNS}$$

All conversions are done modulo M.

```
e.g. for RNS(8|7|5|3)

(1|0|0|0)_{RNS} = 105

(0|1|0|0)_{RNS} = 120

(0|0|1|0)_{RNS} = 336

(0|0|0|1)_{RNS} = 280

(3|2|4|2)_{RNS} = (3*105+2*120+4*336+2*280) \mod 840 =

(2459) \mod 840 = 779
```

Conversion from RNS

► How to calculate (1|0|...|0)_{RNS} ...(0|...|0|1)_{RNS}?

e.g. (1|0|...|0)_{RNS} means the number that is dividable by moduli m_{k-2}...m₀

Selection of n is easy due to very limited range [1,...,m-1]