
Effective Java 
Programming

efficient software 
development



Structure

efficient software development
○ what is efficiency?
○ development process
○ profiling during development
○ what determines the performance of applications in 

Java



Motto

"More computing sins are committed in the 
name of efficiency (without necessarily 
achieving it) than for any other single reason 
- including blind stupidity"

 
William Allan Wulf



What is efficiency?

● speed = efficiency?
● what influences the performance evaluation:

○ performance
○ memory requirements (RAM footprint)
○ run time
○ scalability
○ subjective perception of performance

● different priorities on client and server side



Computational performance

● this "performance" to most users
● key aspects:

○ choice of algorithm
○ choice of data structures
○ number of instructions to perform

● truly high-performing application needs to 
take other factors besides calculations into 
account



Memory requirements

● amount of memory consumed can 
significantly affect performance

● important factors
○ whether the application forces the OS to paging 

(drastic drop in performance)
○ amount of memory in target environment
○ efficient absorption of resources (your application is 

not alone)



Program start time

● affect the subjective assessment of 
performance

● most significant for client applications
○ packaging (JAR applets)
○ architecture with lazy loading plugins (eg Eclipse)
○ control class loading

● differences in the modes of the virtual 
machine
○ client - quick start
○ server - code optimization



Scalability

● determines how the system works when 
stressed

● in a poorly scalable system as the load 
increases, performance decreases 
dramatically

● truly scalable systems are more resistant to 
increased load
○ eg text editor when opening 5 or 5000 pages

● performance should be measured at the 
planned load of the system

● scalability examples



Subjective performance impression

● users do not measure time with a stopwatch 
- they feel

● more important is how fast a program seems 
to be rather then it actually is

● critically important to GUI
● reaction time and response time
● reduction of response time

○ screens
○ change the cursor

● tricks
○ progress bars
○ rapidly changing subtitles



Efficient software development 
process

● work on productivity is not limited to a single 
step

● must be part of the whole production plan
● can not be confined only to the coding
● decent analysis and design are the key
● without a good analysis you do not create a 

good design
● without good design you will not achieve 

good performance
● code optimizations alone are not enough



Efficient software development 
process

● basic OOSD process has four main phases:
○ analysis
○ designing
○ coding 
○ testing

● capacity planning requires one more:
○ profiling

● for use in any OOSD process 



Analysis

● defines what and how the system is doing
● abstracts from low-level issues as:

○ programming language, syntax
○ data Structures
○ classes, methods

● It includes:
○ requirements analysis
○ definition of system boundaries
○ creation of a use case model

 
 



Analysis vs. performance

● system requirements that affect 
performance:
○ minimum configuration (RAM, CPU)
○ recommended configuration (RAM, CPU)
○ link speed (network)
○ other applications running on the system

● performance requirements:
○ response times at a given load
○ boot-time
○ reaction time
○ specific (ie, the number of frames per second during 

teleconference)



Analysis vs. performance

● system boundaries
○ knowledge of what the system will not do can open 

many possibilities of optimization
● use case model

○ defines the prototypes that should be created to 
measure performance

● omission of performance in the analysis 
phase
○ how do you know that the system is fast enough?



Designing

● object-oriented design has a number of 
factors affecting the quality of the solutions

● encapsulation is critical in terms of 
performance
○ worsens performance (stack grows), but ...
○ facilitates testing of many algorithms, the choice of 

the best and the amendment of the existing ones
○ improves maintenance



Coding

● code has an obvious impact on performance
● very similar codes can often have huge 

differences in performance
● many attempts to optimize the code are bad

○ for the compiler
○ not where it is needed



Testing

● checks whether the system meets the quality 
and performance requirements

● performance testing is based on:
○ checking whether the requirements are met
○ comparing alternative solutions

● tests can be performed on individual 
modules
○ quickly determine the limits of performance
○ system will not run faster than its parts



Profiling

● often the system does not meet performance 
requirements

● you should make changes
● a common mistake is to focus on 

performance irrelevant parts 
● reason - poor conditions
● solution - profiling



Profiling

● where are the bottlenecks in your 
application?

● profiling is to identify the components 
consuming the most resources

● specialized tools are designed for this task
● allows you to identify parts of the system 

needing most changes
● know what changes will bring the greatest 

benefits



What determines efficiency in Java

● The overall performance of applications in 
Java depends on:
○ application project
○ execution speed of Java code
○ speed of the native libraries
○ speed of hardware and operating system

● JVM is responsible only for execution speed 
and has code optimization mechanisms 
○ JIT (Just In Time) - compilation of code before 

executing
○ HotSpot - continuous code compilation at runtime

● You can not speed up native calls
○ I/O, graphic generation, GUI, DB



Conclusions

● what affects the evaluation of performance?
● how to make the system appear to be 

faster?
● in which the phases of software 

development performance should be taken 
into account?

● what is the relationship between analysis 
and performance?

● what are the advantages of profiling?


