Effective Java
Programming

efficient file handling

Structure

e efficient file handling
O streams (input-output)
buffering streams
free access
buffers and channels (new input-output NIO)
memory mapped files
serialization

O O O O O

Streams - basics

direction: input or output

binary operations - InputStream,
OutputStream

low-level - work on the resource

O file, array of bits, socket, pipe ...

high level - additional functionality

O serialization, audio, caching ...

text operations - Reader, Writer
operations on the directory structure - File

Streams - example

e rewriting data from one file to another

String from = "SOURCE-PATH";
String to = "DESTINATION-PATH";
InputStream in = new FileInputStream (from);

OutputStream out = new FileOutputStream(to);
int data;
while ((data = in.read()) != -1) {

out.write (data);

}
in.close () ;
out.close () ;

input file FileInputStream |— | FileOutputStream output file

Streams - better example

. inefficient - byte by byte
. THERE IS NO DEFAULT CACHING
. a better solution?

. chain of streams with buffers
- ready, tested implementation

- a simple code

> re-usable

Streams - better example - code

String from = "SOURCE-PATH";

String to = "DESTINATION-PATH";

InputStream in = new FileInputStream(from);
OutputStream out = new FileOutputStream(to);

in = new BufferedInputStream(in)
out = new BufferedOutputStream(out) ;
int data;

while ((data = in.read()) !'= -1) {

out.write (data);

}

in.close();
out.close();

input file FilelnputStream FileOutputStream output file

BufferedlnputStream |~ BufferedOutputStream

Streams - better example- problems

. better, but still a large number of requests
. would do better to transfer data portions

©)

@)

buffers allow you to work on arrays
streams can also work on arrays

. then why use buffers?

(@) (@) (@) (@) (@)

you have influence on your code

sometimes you need to pass the stream somewhere
you do not know how it is used there

even if on arrays, they may be too short

creating a buffer you have impact on its size!

Streams - even better

String from = "SOURCE-PATH";

String to = "DESTINATION-PATH";

InputStream in = new FileInputStream(from);
OutputStream out = new FileOutputStream(to);
// efficient but DANGEROUS

byte[] buffer = new byte[in.available()];
in.read (buffer);

out.write (buffer);

in.close () ;

out.close() ;

Streams - even, even better

final static int BUFFER SIZE = 1024 * 1024;

/...
String from = "SOURCE-PATH";

String to = "DESTINATION-PATH";
InputStream in = new FileInputStream (from);

OutputStream out = new FileOutputStream(to);

byte[] buffer = new byte[BUFFER SIZE];

int read;

while ((read = in.read(buffer)) != -1) {
out.write (buffer, 0, read);

}

in.close () ;

out.close ()

Streams - can it be done better?

. previous solution is already secure

. efficiently moves data, but ...
- buffer is created for each call of the code
- heavy burden on the GC
- with multiple threads may run out of memory

. solution
- central buffer - static variable
- synchronized access to the buffer
« for the entire operation - efficient, but threads can
be starved
« for each iteration - no starvation, but less efficient

Streams - more, more...

final static int SIZE = 100 * 1024;
private static byte[] buffer = new byte[SIZE];
//

String from = "SOURCE-PATH";
String to = "DESTINATION-PATH";
InputStream in = new FileInputStream (from);

OutputStream out = new FileOutputStream(to);
int read;
synchronized (buffer) {
while ((read = in.read(buffer)) != -1) {
out.write (buffer, 0, read);
}
}

in.close () ;
out.close () ;

Streams - comparision

. Copying JPEG file - 370 KB:

Strategy | Time [ms]

Clean streams | 10 800

buffered streams | 130

own buffer | 33

central buffer | 22

ATTENTION!
No information about hardware and JVM - data must be taken qualitatively

Free access

files containing records of known size need not be read
through streams

» place of record in the file can be calculated based on
the order and size
« Yyou need a free file access

« RandomAccessFile
o Seek() - to indicate the position of the read / write
can move forward and backward
records can have different size
there must be a way to specify the beginning and size of the record
defined access method by constructor - read r, read and write rw
length() - length of the file
getFilePointer() - the current file position
reading / writing methods

o O O O O O o

Free access - example

String path = "SOME-PATH";
RandomAccessFile rf = new RandomAccessFile (path, "rw");

//write 10 numbers

for (int 1 = 0; 1 < 10; i++) {
rf.writeDouble (i * Math.PI);

}

//read 5-th number
rf.seek (4 * Double.SIZE / 8);
double result = rf.readDouble () ;

New input-output

. streams, even after optimization are slow

. Java 1.4 introduced a new |/O library
o java.nio.*

@)

@)

(@) (@) (@)

@)

significant increase in /O speed

buffers and channels - structure closer to the one
used by OS

channel - source/destination of the data

buffer - data transporter

no direct operations on the channel

all /0 to do on channel through buffer

. old library used "underneath” the new

©)

©)

O

already faster than previous implementations
additional layer slows
vOu can "qgo one level down" - getChannel()

FileChannel

channel supporting files

modes

O reading - taken from FilelnputStream or RandomAccessFile (r)
O writing - taken from FileOutputStream

O reading and writing - taken from RandomAccessFile (rw)
features

O read(ByteBuffer) - read record

O write(ByteBuffer) - write record

O position(long) - moving through the file

O position() - get the current position

O transferTo/From(..) - rewriting data between channels
overloaded functions for read and write

ByteBuffer

. creation

(@)

O

(@)

@) @) (@) @)

wrap(byte[]) - wraps existing array
allocate(int) - new buffer allocation
allocateDirect(int) - 'direct’ allocation
« Mmore associated with the OS - may be beyond
the heap!
« theoretically the fastest I/O
« Vvirtually dependent on OS
« longer time of creation and destruction - test
before you use!
flip() - preparing to write to the channel
clear() - preparing to read from the channel
put() - insert data
get() - retrieve data

New input-output - example

final static int BUFFER SIZE = 1024 * 1024;
/]
String from = "SOURCE-PATH";
String to = "DESTINATION-PATH";
FileChannel in = new FilelInputStream(from) .getChannel ()
FileChannel out = new FileInputStream(to).getChannel ();
ByteBuffer buffer = ByteBuffer.allocate (BUFFER SIZE);
while (in.read(buffer) !'= -1) {
buffer.flip();
out.write (buffer);
buffer.clear();
}
in.close();
out.close() ;

New l/O - better example

String from = "SOURCE-PATH";

String to = "DESTINATION-PATH";

FileChannel in = new FilelInputStream(from) .getChannel ()
FileChannel out = new FileInputStream(to).getChannel ()
in.transferTo (0, in.size (), out);

// or

// out.transferFrom(in, 0, in.size()):

in.close();

out.close();

Memory mapped files

most efficient form of work with large files
file treated as a very large array

"pretends” that the file is entirely in memory
map(mode, position, size)

O

O

O

FileChannel method creates the mapping
creates an object of class MappedByteBuffer
position and size allow you to map a specific part of
the file
you can map maximum 2GB!!!
FileChannel. MapMode - available mapping modes
« PRIVATE - private use (copy-on-write)
« READ ONLY
« READ WRITE

Memory mapped files - example

String file = "SOME-PATH";
int length = Ox8FFFFFF; // 128MB

MappedByteBuffer buf = new RandomAccessFile(file, "rw").
getChannel () .map (FileChannel.MapMode .READ WRITE, 0, length);

// write

for (int i = 0; 1 < length; i++) {
buf.put ((byte) 'x');

}

// read 6 chars from middle of file

for (int i = length / 2; i < length / 2 + 6; i++) {
System.out.print ((char) buf.get (1)),

}

Comparison

. write 4 000 000 numbers (int)

. read all

. free access reading and writing of 200
000 numbers

Operation Time [ms]
Old I/O with buffers MappedByteBuffer
write 560 120
read 800 70
free accees R/W 5320 20
ATTENTION:

Source: "Thinking in Java", Bruce Eckel

Serialization

. ObjectinputStream - write the object as a
stream of bits (serialization)

. ObjectOutputStream - reading the bit stream
and convert to object (deserialization)

. high-level streams - the need for the

source/destination
- can stream to / from a file

. or the web
- RMI
- EJB (RMI/ [IOP)

. performance problems in network
communication

Serialization - where do the
problems come from?

. The class must implement Serializable
- otherwise attempt to serialize ends with exception
- interface has no methods - is only a marker

. Serialization defines ObjectOutputStream
- ready and generic object write format
- must be able to save the object of any class
- hence the overhead and redundant information

Serialization - example

ObjectOutputStream out = new ObjectOutputStream(System.out);

Person person = new Person();
person.setFirstName ("Jan") ;
person.setLastName ("Kowalski") ;
person.setHeight (182);
person.setBirthday (new Date (70, 11, 10));

out.writeObject (person);

Serialization - result

. amount of data

- 3 + 8 characters - name
o one short number - height
- one long number - date

. 'clean" data: 11 + 2 + 8 = 21 bytes
. the result of serialization: 183 bytes!
. here, nearly nine times more! - trivial case...

S HANULIENOESINUL]

domain.Person{ds” IFAZOu IR I B hcicht LEEBESLi rthdayt BAMAIL.java,/util/Date ; LT[R

firstNametREBEEALjava/lang/String; LEEBER] 2 s tName g8~ B8 SR <o REARNEANEAT = r QA java . util. Dateh HeEIKY C &
[ETXINULINULMSSBSINULINULINULIACK <38 QAN U LIE TX NESSIANU LB S Balo 0y &1

Optimization of the protocol

e transient - specify which attributes are not persistent
O small profit - most must be persistent, often all
O still overgrown serialization format...
e You can change the default serialization format
e create your own reading and writing logic
« can not change the serialization/deserialization class
e changes only in the serialized class
O do not implement Serializable
O Instead you implement Externalizable
B readExternal (Objectinput in)
B writeExternal (ObjectOutput out)
e You can achieve much better performance at the level
of
O amount of data being written to disk

) nAaharArl, AARArATIARIAARIARAE AnA AfthhAar 1D

Externalization - example

public void writeExternal (ObjectOutput out) throws
IOException {

out.writeUTF (firstName) ;

out.writeUTF (lastName) ;

out.writeShort (height) ;

out.writeLong (birthday.getTime());
}

public void readExternal (ObjectInput in) throws IOException,
ClassNotFoundException {

firstName = in.readUTF () ;

lastName = in.readUTF () ;

height = in.readShort();

birthday = new Date(in.readLong())

Externalization - result

. 'clean" data: 11 + 2 + 8 = 21 bytes

. result of externalization: 60 bytes
- of which 35 is the header that identifies the class
and the end
- data takes only 25 bytes
« 21 (pure) + 2 * 2 bytes string length (writeUTF)

. comparison with serialization (excluding

headers)

- Skip header: 183 - 35 = 148 bytes

- results comparison: 148/25 = 5.92

- the trivial example of serialization six times worse

-1 RERERE s r REARelcdomain. ext . Person< | 8=
M DC4FFINULINULMSSREMINUL ETXMESANUL B S RS SANULE{NULINULINUL]A CK[oBR858

Conclusion

. What are differences between streams and
channels?

. How to map files into memory?

. How can serialization be optimized?

