
1

Lecture Material

Exceptions



2

Grouping of Exceptions

Often, exceptions fall naturally into families. This 
implies that inheritance can be useful to structure 
exceptions and to help exception handling.

class Matherr{ };
class Overflow: public Matherr{ };
class Underflow: public Matherr{ };
class Zerodivide: public Matherr{ };
// ...

void f()
{
try {

// ...
}
catch (Overflow) {

// handle Overflow or anything derived from Overflow
}
catch (Matherr) {

// handle any Matherr that is not Overflow
}

}



3

Grouping of Exceptions
Organizing exceptions into hierarchies can be important 
for robustness of code.

Without exception grouping
 A programmer can easily forget to add an exception to the list.
 If a new exception to the math library were added, every piece 

of code that tried to handle every math exception would have to 
be modified.

void g()
{
try {

// ...
}
catch (Overflow) { /* ... */ }
catch (Underflow) { /* ... */ }
catch (Zerodivide) { /* ... */ }

}



4

Derived Exceptions
In other words, an exception is typically caught by a handler for its base class rather than 
by a handler for its exact class.
The semantics for catching and naming an exception are identical to those of a function 
accepting an argument.
The formal argument is initialized with the argument value.

When the Matherr handler is entered, m is a Matherr object – even if the call to g() threw 
Int_overflow. The extra information found in an Int_overflow is inaccessible.

class Matherr {
// ...
virtual void debug_print() const { cerr << "Math error"; }

};
class Int_overflow: public Matherr {
const char* op;
int a1, a2;

public:
Int_overflow(const char* p, int a, int b) { op = p; a1 = a; a2 = b; }
virtual void debug_print() const { cerr << op <<´(´<< a1 <<´,´<< a2 <<´)´;}
// ...

};
void f()
{
try {

g() ;
}
catch (Matherr m) {

// ...
}

}



5

Derived Exceptions

Pointers or references can be used to avoid losing 
information permanently.

Int_overflow::debug_print() will be invoked.

int add(int x, int y)
{
if ( (x>0 && y>0 && x>INT_MAX-y)

|| (x<0 && y<0 && x<INT_MIN-y) )
throw Int_overflow("+",x,y) ;

return x+y; // x+y will not overflow
}
void f()
{
try {

int i1 = add(1,2) ;
int i2 = add(INT_MAX,-2);
int i3 = add(INT_MAX,2) ; // here we go!

}
catch (Matherr& m) {

// ...
m.debug_print() ;

}
}



6

Composite Exceptions
Not every grouping of exceptions is a tree structure. Often, an 
exception belongs to two groups, e.g.:

Such a Netfile_err can be caught by functions dealing with 
network exceptions, and also by functions dealing with file 
system exceptions:

class Netfile_err : public Network_err, public File_system_err{ /* ...*/ };

void f()
{
try {

// something
}
catch(Network_err& e) {

// ...
}

}

void g()
{
try {

// something else
}
catch(File_system_err& e) {

// ...
}

}



7

Standard Exceptions
The library exceptions are part of a class hierarchy rooted in 
the standard library exception class exception presented in 
<exception>:

class exception {
public:

exception() throw() ;
exception(const exception&) throw() ;
exception& operator=(const exception&) throw() ;
virtual ~exception() throw() ;
virtual const char* what() const throw() ;

private:
// ...

};

length_error

logic_error

domain_error

runtime_error

exception

out_of_range

invalid_argument

bad_alloc

bad_exception
ios_base::failure

bad_cast

bad_typeid

range_error

overflow_error

underflow_error

future_error

regex_error
filesystem::filesystem_error

bad_weak_ptr



8

Standard Exceptions
Logic errors are errors that in principle could be caught either before the program 
starts executing or by tests of arguments to functions and constructors.
Runtime errors are all other errors.
The standard library exception classes define the required virtual functions 
appropriately.

exception operations do not themselves throw exceptions. In particular, this 
implies that throwing a standard library exception doesn’t cause a bad_alloc 
exception. The exception-handling mechanism keeps a bit of memory to itself for 
holding exceptions (possibly on the stack).

void f()
try {
// use standard library

}
catch (exception& e) {
cout<< "standard library exception" << e.what() << ´\n´; // well, maybe
// ...

}
catch (...) {
cout << "other exception\n";
// ...

}



9

Catching Exceptions
Consider the example:

The handler is invoked:
1. If H is the same type as E.

2. If H is an unambiguous public base of E.

3. If H and E are pointer types and [1] or [2] holds for the types to which they refer.

4. If H is a reference and [1] or [2] holds for the type to which H refers.

An exception is copied when it is thrown, so the handler gets hold of a copy of 
the original exception. 
An exception may be copied several times before it is caught.
We cannot throw an exception that cannot be copied.
The implementation may apply a wide variety of strategies for storing and 
transmitting exceptions. It is guaranteed, however, that there is sufficient 
memory to allow new to throw the standard out of memory exception, bad_alloc.

void f()
{
try {

throw E() ;
}
catch(H) {

// when do we get here?
}

}



10

Having caught an exception, it is common for a handler to decide that it can’t 
completely handle the error.
In that case, the handler typically does what can be done locally and then throws 
the exception again.
The recovery action can be distributed over several handlers.

A rethrow is indicated by a throw without an operand.

If a rethrow is attempted when there is no exception to re-throw, terminate() will 
be called.

The exception rethrown is the original exception caught and not just the part of it 
that was accessible as a Matherr.

Re-Throw

void h()
{
try {

// code that might throw Math errors
}
catch (Matherr) {

if (can_handle_it_completely) {
// handle the Matherr
return;

}
else {

// do what can be done here
throw; // rethrow the exception

}
}

}



11

Catch Every Exception

As for functions, where the ellipsis ... 
indicates "any argument", catch(...) means 
"catch any exception", e.g.:

void m()
{
try {

// something
}
catch (...) { // handle every exception

// cleanup
throw;

}
}



12

Order of Handlers
Because a derived exception can be caught by handlers for 
more than one exception type, the order in which the 
handlers are written in a try statement is significant. The 
handlers are tried in order. For example:

void f()
{
try {

// ...
}
catch (std::ios_base::failure) {

// handle any stream io error
}
catch (std::exception& e) {

// handle any standard library exception
}
catch (...) {

//  handle any other exception
}

}



13

Order of Handlers
Because the compiler knows the class hierarchy, it can 
catch many logical mistakes. For example:

Here, the exception will never be considered. Even if we 
removed the "catchall" handler, bad_cast wouldn’t be 
considered because it is derived from exception.

void g()
{
try {

// ...
}
catch (...) {

// handle every exception
}
catch (std::exception& e) {

// handle any standard library exception
}
catch (std::bad_cast) {

// handle dynamic_cast failure
}

}



14

Exceptions in Destructors
From the point of view of exception handling, a destructor 
can be called in one of two ways:
 Normal call: As the result of a normal exit from a 

scope, a delete, etc.
 Call during exception handling: During stack 

unwinding, the exception-handling mechanism exits a 
scope containing an object with a destructor.

In the latter case, an exception may not escape from the 
destructor itself. If it does, it is considered a failure of the 
exception-handling mechanism and std::terminate() is 
called.



15

Exceptions in Destructors
If a destructor calls functions that may throw exceptions, it can protect 
itself. For example:

The standard library function uncaught_exception() returns true if an 
exception has been thrown but hasn’t yet been caught. This allows the 
programmer to specify different actions in a destructor depending on 
whether an object is destroyed normally or as part of stack unwinding.

X::~X()
try {
f() ; // might throw

}
catch (...) {

// do something
}



16

Exceptions That Are Not Errors
One might think of the exception-handling mechanisms as simply another 
control structure, e.g.:

Exception handling is a less structured mechanism than local control 
structures such as if and for and is often less efficient when an exception 
is actually thrown.
Exceptions should be used only where the more traditional control 
structures are inelegant or impossible to use.

void f(Queue<X>& q)
{
try {

for (;;) {
X m = q.get() ; // throws ‘Empty’ if queue is empty
// ...

}
}
catch (Queue<X>::Empty) {

return;
}

}



17

Exceptions That Are Not Errors
Using exceptions as alternate returns can be an elegant technique for 
terminating search functions – especially highly recursive search 
functions such as a lookup in a tree.

Such use of exceptions can easily be overused and lead to obscure code.
Whenever reasonable, one should stick to the "exception handling is error 
handling" view.

void fnd(Tree* p, const string& s)
{
if (s == p->str) throw p; // found s
if (p->left) fnd(p->left,s) ;
if (p->right) fnd(p->right,s) ;

}
Tree* find(Tree* p, const string& s)
{
try {

fnd(p,s) ;
}
catch (Tree* q) { // q–>str==s

return q;
}
return 0;

}



18

noexcept Functions
Some functions don’t throw exceptions and some really shouldn’t. 
To indicate that, we can declare such a function noexcept:

Now no exception will come out of compute(). But we can try:

If an exception is thrown inside compute() and not handled 
internally, the program terminates. It terminates unconditionally by 
invoking std::terminate(). It does not invoke destructors from 
calling functions. 
 It is implementation-defined whether destructors from scopes 

between the throw and the noexcept (e.g., for s in compute()) are 
invoked.

All destructors are implicitly noexcept.

double compute(double) noexcept;  // may not throw an exception

double compute(double x) noexcept
{
     string s = "A string";
     vector<double> tmp(10);
     // throw an exception here
}



19

The noexcept Operator
It is possible to declare a function to be conditionally noexcept:

The noexcept(Is_pod<T>()) means that my_fct may not throw if the 
predicate Is_pod<T>() is true but may throw if it is false.
The predicate in a noexcept() specification must be a constant 
expression. Plain noexcept means noexcept(true).
The noexcept() operator takes an expression as its argument and 
returns true if the compiler “knows” that it cannot throw and false 
otherwise.

The operand of noexcept() is not evaluated, so in the example we do 
not get a run-time error if we pass call_f() with an empty vector.

template<typename T> 
void my_fct(T& x) noexcept(Is_pod<T>());

template<typename T>
void call_f(vector<T>& v) noexcept(noexcept(f(v[0]))
{
     for (auto x : v)
           f(x);
}



20

Exception Specifications - Deprecated

It is possible to specify the set of exceptions that 
might be thrown as part of the function 
declaration. For example:

This specifies that f() may throw only exceptions 
x2, x3, and exceptions derived from these types, 
but no others.
If f() tries to throw some other exception, the 
attempt will be transformed into a call of 
std::unexpected(). The default meaning of 
unexpected() is std::terminate(), which in turn 
normally calls abort().
throw() specification is equivalent to noexcept.

void f(int a) throw (x2, x3) ;



21

Uncaught Exceptions
If an exception is thrown but not caught, the function 
std::terminate() will be called.
The terminate() function will also be called when the exception-
handling mechanism finds the stack corrupted and when a 
destructor called during stack unwinding caused by an exception 
tries to exit using an exception.
The response to an uncaught exception is determined by an 
_uncaught_handler set by std::set_terminate() from <exception>:

The return value is the previous function given to set_terminate().
By default, terminate() will call abort().
An _uncaught_handler is assumed not to return to its caller. If it 
tries to, terminate() will call abort().

typedef void(*terminate_handler)() ;
terminate_handler set_terminate(terminate_handler) ;



22

Uncaught Exceptions
It is implementation-defined whether destructors are invoked when 
a program is terminated because of an uncaught exception.
If you want to ensure cleanup when an uncaught exception happens, 
you can add a catchall handler to main() in addition to handlers for 
exceptions you really care about.

This will catch every exception, except those thrown by 
construction and destruction of global variables. There is no way of 
catching exceptions thrown during initialization of global variables.

int main()
try {
// ...

}
catch (std::range_error)
{
cerr << "range error: Not again!\n";

}
catch (std::bad_alloc)
{
cerr << "new ran out of memory\n";

}
catch (...) {
// ...

}



23

operator new and Exceptions
There are versions of operator new, which do not throw exceptions 
when they are out of memory, but return 0 instead. They accept an 
additional argument nothrow.
class bad_alloc : public exception{ /* ... */ };
struct nothrow_t {};
extern const nothrow_t nothrow; // indicator for allocation that 
                                // doesn’t throw exceptions
typedef void (*new_handler)() ;
new_handler set_new_handler(new_handler new_p) noexcept ;
void* operator new(size_t);
void operator delete(void*) noexcept ;
void* operator new(size_t, const nothrow_t&) noexcept ;
void operator delete(void*, const nothrow_t&) noexcept ;
void* operator new[](size_t) ;
void operator delete[](void*) noexcept ;
void* operator new[](size_t, const nothrow_t&) noexcept ;
void operator delete[](void*, const nothrow_t&) noexcept ;
void* operator new (size_t, void* p) noexcept { return p; } // placement
void operator delete (void* p, void*) noexcept { }
void* operator new[](size_t, void* p) noexcept { return p; }
void operator delete[](void* p, void*) noexcept { }

void f()
{
int* p = new int[100000] ; // may throw bad_alloc
if (int* q = new(nothrow) int[100000]) { // will not throw exception

// allocation succeeded
}
else {

// allocation failed
}

}



24

Exception Guarantees
The C++ standard library provides one of the following 
guarantees for every library operation:
 The basic guarantee for all operations: The basic invariants of all 

objects are maintained, and no resources, such as memory, are leaked.
 In particular, the basic invariants of every built-in and standard-library 

type guarantee that you can destroy an object or assign to it after every 
standard-library operation

 The strong guarantee for key operations: in addition to providing the 
basic guarantee, either the operation succeeds, or it has no effect. This 
guarantee is provided for key operations, such as push_back(), single-
element insert() on a list, and uninitialized_copy()

 The nothrow guarantee for some operations: in addition to providing 
the basic guarantee, some operations are guaranteed not to throw an 
exception. This guarantee is provided for a few simple operations, 
such as swap() of two containers and pop_back().



25

Exception Guarantees

Both the basic guarantee and the strong guarantee 
are provided on the condition that 
 user-supplied operations (such as assignments and swap() 

functions) do not leave container elements in invalid states
 user-supplied operations do not leak resources, and
 destructors do not throw exceptions

Violating a standard-library requirement, such as 
having a destructor exit by throwing an exception, 
is logically equivalent to violating a fundamental 
language rule, such as dereferencing a null pointer. 
The practical effects are also equivalent and often 
disastrous.



26

Catching Exceptions from Other Threads
The exceptions thrown in other threads cannot be caught in the 
main thread
If you want to get the result of operations in other threads you can 
use futures.

include <iostream>
#include <string>
#include <thread>
#include <future>
#include <exception>

std::string fun() {
 std::this_thread::sleep_for (std::chrono::seconds(5));
 throw std::runtime_error("Exception from future");
 return std::string ("Hello from future!");
}

int main(int argc, const char * argv[])
{
 std::future<std::string> fut = std::async(&fun);

 // asynchronously: starts now or later
 try {
  std::string str = fut.get(); // but will be finished here
  std::cout << str << std::endl;
 } catch(std::exception& ex) {
  std::cout << ex.what() << std::endl;
 }
 return 0;
}


	Dzisiejszy wykład
	Grupowanie wyjątków
	Slide 3
	Wyjątki dziedziczone
	Slide 5
	Złożone wyjątki
	Standardowe wyjątki
	Slide 8
	Wyłapywanie wyjątków
	Ponowne zgłoszenie wyjątku
	Wyłap każdy wyjątek
	Kolejność procedur obsługi wyjątków
	Slide 13
	Wyjątki w destruktorach
	Slide 15
	Wyjątki, które nie są błędami
	Slide 17
	Slide 18
	Slide 19
	Specyfikacje wyjątków
	Niewyłapane wyjątki
	Slide 22
	Operator new i wyjątki
	Slide 24
	Slide 25
	Slide 26

