
C++ Language Mapping Specification

New Edition: June 1999

 paid up,
fied ver-
pyright in
g con-

ire use
y be
at are
r protect

 an
ent does

iable for
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1998, Borland International
Copyright 1991, 1992, 1995, 1996 Digital Equipment Corporation
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996, 1997 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright 1998 Inprise Corporation
Copyright 1996, 1997 International Business Machines Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1996, 1997 Micro Focus Limited
Copyright 1991, 1992, 1995, 1996 NCR Corporation
Copyright 1995, 1996 Novell USG
Copyright 1991,1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1998 Telefónica Investigación y Desarrollo S.A. Unipersonal
Copyright 1996 Visual Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modi
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the co
the included material of any such copyright holder by reason of having used the specification set forth herein or havin
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo-
ing themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-
MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-
LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be l

 profi
 Object

ize devel
 to indi-

-graphic,
thout
s sub-
at
, Inc.
e

ers to
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss ofts,
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may author-
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means-
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--wi
permission of the copyright owner. RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government i
ject to restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause
DFARS 252.227.7013 OMGÆ and Object Management are registered trademarks of the Object Management Group
Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of th
Object Management Group, Inc. X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

vii
vii
ii

iii

viii

ix

-1
1-3
-3
-3
-3
-3
3
-4
1-4

1-5
-5

1-5

1-6
1-7
1-7
1-8
1-9
10
-10
11

-13
-14
-15

-15

-17

-17

-20

-21
-22
-26

-27

-30
-33
Preface .
0.1 About CORBA Language Mapping Specifications

0.1.1 Alignment with CORBA v

0.2 Definition of CORBA Compliance v

0.3 Acknowledgements .

0.4 References .

1. C++Language Mapping . 1
1.1 Preliminary Information .

1.1.1 Overview . 1
1.1.1.1 Key Design Decisions 1
1.1.1.2 Compliance . 1
1.1.1.3 C++ Implementation Requirements 1
1.1.1.4 C Data Layout Compatibility 1-
1.1.1.5 No Implementation Descriptions 1

1.1.2 Scoped Names .
1.1.3 C++ Type Size Requirements
1.1.4 CORBA Module . 1

1.2 Mapping for Modules .

1.3 Mapping for Interfaces .
1.3.1 Object Reference Types
1.3.2 Widening Object References
1.3.3 Object Reference Operations
1.3.4 Narrowing Object References
1.3.5 Nil Object Reference . 1-
1.3.6 Object Reference Out Parameter 1
1.3.7 Interface Mapping Example 1-

1.4 Mapping for Constants . 1
1.4.1 Wide Character and Wide String Constants . . . 1
1.4.2 Fixed Point Constants 1

1.5 Mapping for Basic Data Types . 1

1.6 Mapping for Enums . 1

1.7 Mapping for String Types . 1

1.8 Mapping for Wide String Types . 1

1.9 Mapping for Structured Types . 1
1.9.1 T_var Types . 1
1.9.2 T_out Types . 1

1.10 Mapping for Struct Types . 1

1.11 Mapping for Fixed Types . 1
1.11.1 Fixed T_var and T_out Types 1
C++ Language Mapping i

Contents

-33

1-39
-43

-44
45
-46

-46

-49

-50
50

-51
55

57
61
62
62
-63

64
-65
-65

-65
-66

-68
-68
-69
-71
3
-73
-74

74

-75
-76
78
80
82
-83
-83
-85
1.12 Mapping for Union Types . 1

1.13 Mapping for Sequence Types .
1.13.1 Sequence Example . 1
1.13.2 Using the “release” Constructor Parameter . . . 1
1.13.3 Additional Memory Management Functions . . 1-
1.13.4 Sequence T_var and T_out Types 1

1.14 Mapping For Array Types . 1

1.15 Mapping For Typedefs . 1

1.16 Mapping for the Any Type . 1
1.16.1 Handling Typed Values 1-
1.16.2 Insertion into any . 1
1.16.3 Extraction from any . 1-
1.16.4 Distinguishing boolean, octet, char, wchar,

bounded string, and bounded wstring 1-
1.16.5 Widening to Object . 1-
1.16.6 Widening to Abstract Interface 1-
1.16.7 Handling Untyped Values 1-
1.16.8 TypeCode Replacement 1
1.16.9 Any Constructors, Destructor,

Assignment Operator . 1-
1.16.10 The Any Class . 1
1.16.11 The Any_var Class . 1

1.17 Mapping for Valuetypes . 1
1.17.1 Valuetype Data Members 1
1.17.2 Constructors, Assignment Operators,

and Destructors . 1
1.17.3 Valuetype Operations . 1
1.17.4 Valuetype Example . 1
1.17.5 ValueBase and Reference Counting 1

1.17.5.1 CORBA Module Additions 1-7
1.17.6 Reference Counting Mix-in Classes 1
1.17.7 Value Boxes . 1

1.17.7.1 Parameter Passing for Underlying
Boxed Type . 1-

1.17.7.2 Basic Types, Enums, and Object
References . 1

1.17.7.3 Struct Types . 1
1.17.7.4 String and WString Types 1-
1.17.7.5 Union, Sequence, Fixed, and Any Types 1-
1.17.7.6 Array Types . 1-

1.17.8 Abstract Valuetypes . 1
1.17.9 Valuetype Inheritance 1
1.17.10 Valuetype Factories . 1
ii C++ Language Mapping

Contents

-85
-87
88
-90
-90
-90
-91

-92
-92
94

-94
98
99

-99

00

-100
-104

107

-108

108

09

110
11
11

11
11

-111
12

112
12
12

112
13
13
14
14

-114
116
117
18
1.17.10.1 ValueFactoryBase Class 1
1.17.10.2 ValueFactoryBase_var Class 1
1.17.10.3 Type-Specific Value Factories 1-
1.17.10.4 Unmarshaling Issues 1

1.17.11 Custom Marshaling . 1
1.17.12 Another Valuetype Example 1
1.17.13 Valuetype Members of Structs 1

1.18 Mapping for Abstract Interfaces . 1
1.18.1 Abstract Interface Base 1
1.18.2 Client Side Mapping . 1-

1.19 Mapping for Exception Types . 1
1.19.1 UnknownUserException 1-
1.19.2 Any Insertion and Extraction for Exceptions . . 1-

1.20 Mapping For Operations and Attributes 1

1.21 Implicit Arguments to Operations 1-1

1.22 Argument Passing Considerations 1
1.22.1 Operation Parameters and Signatures 1

1.23 Mapping of Pseudo Objects to C++ 1-

1.24 Usage . 1

1.25 Mapping Rules . 1-

1.26 Relation to the C PIDL Mapping . 1-1

1.27 Environment . 1-
1.27.1 Environment Interface 1-1
1.27.2 Environment C++ Class 1-1
1.27.3 Differences from C-PIDL 1-1
1.27.4 Memory Management 1-1

1.28 NamedValue . 1
1.28.1 NamedValue Interface 1-1
1.28.2 NamedValue C++ Class 1-
1.28.3 Differences from C-PIDL 1-1
1.28.4 Memory Management 1-1

1.29 NVList . 1-
1.29.1 NVList Interface . 1-1
1.29.2 NVList C++ Class . 1-1
1.29.3 Differences from C-PIDL 1-1
1.29.4 Memory Management 1-1

1.30 Request. 1
1.30.1 Request Interface . 1-
1.30.2 Request C++ Class . 1-
1.30.3 Differences from C-PIDL 1-1
C++ Language Mapping iii

Contents

18

-119
19

120
20
20

-120
121
121
22
22

-122
22
23

24
5

-126
26

127

-128

128
29
31
132

133
136
37
39

143
44

45
45
145

46

-147

147
47
48
1.30.4 Memory Management 1-1

1.31 Context . 1
1.31.1 Context Interface . 1-1
1.31.2 Context C++ Class . 1-
1.31.3 Differences from C-PIDL 1-1
1.31.4 Memory Management 1-1

1.32 TypeCode . 1
1.32.1 TypeCode Interface. 1-
1.32.2 TypeCode C++ Class . 1-
1.32.3 Differences from C-PIDL 1-1
1.32.4 Memory Management 1-1

1.33 ORB . 1
1.33.1 ORB Interface . 1-1
1.33.2 ORB C++ Class . 1-1
1.33.3 Differences from C-PIDL 1-1
1.33.4 Mapping of ORB Initialization Operations . . . 1-12

1.34 Object . 1
1.34.1 Object Interface . 1-1
1.34.2 Object C++ Class . 1-

1.35 Server-Side Mapping . 1

1.36 Implementing Interfaces . 1-
1.36.1 Mapping of PortableServer::Servant 1-1
1.36.2 Servant Reference Counting Mix-In 1-1
1.36.3 ServantBase_var Class 1-
1.36.4 Servant Memory Management Considerations . 1-
1.36.5 Skeleton Operations . 1-
1.36.6 Inheritance-Based Interface Implementation . . 1-1
1.36.7 Delegation-Based Interface Implementation . . 1-1

1.37 Implementing Operations . 1-
1.37.1 Skeleton Derivation From Object 1-1

1.38 Mapping of Dynamic Skeleton Interface to C++ 1-1
1.38.1 Mapping of ServerRequest to C++ 1-1
1.38.2 Handling Operation Parameters and Results . . 1-
1.38.3 Mapping of PortableServer Dynamic

Implementation Routine 1-1

1.39 PortableServer Functions . 1

1.40 Mapping for PortableServer::ServantManager 1-
1.40.1 Mapping for Cookie . 1-1
1.40.2 ServantManagers and AdapterActivators 1-1
iv C++ Language Mapping

Contents

48

48
49
49

50
150
51
55

156
156
157
57
158
158
159
160
60
61
61

-161
162
162
163
64
165

65
165
65

167
1.40.3 Server Side Mapping for Abstract Interfaces . . 1-1

1.41 C++ Definitions for CORBA . 1-1
1.41.1 Primitive Types. 1-1
1.41.2 String_var and String_out Class 1-1
1.41.3 WString_var and WString_out 1-1
1.41.4 Fixed Class . 1-
1.41.5 Any Class . 1-1
1.41.6 Any_var Class . 1-1
1.41.7 Exception Class . 1-
1.41.8 SystemException Class 1-
1.41.9 UserException Class . 1-
1.41.10 UnknownUserException Class 1-1
1.41.11 release and is_nil . 1-
1.41.12 Object Class .1 -
1.41.13 Environment Class . 1-
1.41.14 NamedValue Class . 1-
1.41.15 NVList Class . 1-1
1.41.16 ExceptionList Class . 1-1
1.41.17 ContextList Class . 1-1
1.41.18 Request Class . 1
1.41.19 Context Class . 1-
1.41.20 TypeCode Class . 1-
1.41.21 ORB Class . 1-
1.41.22 ORB Initialization . 1-1
1.41.23 General T_out Types . 1-

1.42 Alternative Mappings For C++ Dialects 1-1
1.42.1 Without Namespaces . 1-
1.42.2 Without Exception Handling 1-1

1.43 C++ Keywords . 1-
C++ Language Mapping v

Contents
vi C++ Language Mapping

Preface
tion

this
0.1 About CORBA Language Mapping Specifications

The CORBA Language Mapping specifications contain language mapping informa
for the following languages:

• Ada

• C

• C++

• COBOL

• IDL to Java

• Java to IDL

• Smalltalk

Each language is described in a separate stand-alone volume.

0.1.1 Alignment with CORBA

The following table lists each language mapping and the version of CORBA that
language mapping is aligned with.

Language Mapping Aligned with CORBA version

Ada CORBA 2.0

C CORBA 2.1

C++ CORBA 2.3

COBOL CORBA 2.1
 C++ Language Mapping June 1999 vii

ng is

hey
e,
ng

d

 by
0.2 Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mappi
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, t
must adhere to the CORBA specifications to be called CORBA-compliant. For instanc
if a vendor supports C++, their ORB must comply with the OMG IDL to C++ bindi
specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to the Common Object Request
Broker: Architecture and Specification, Interworking Architecture chapter.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core an
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBA specifications are divided into these volumes:

1. The Common Object Request Broker: Architecture and Specification, which
includes the following chapters:

• CORBA Core, as specified in Chapters 1-11

• CORBA Interoperability , as specified in Chapters 12-16

• CORBA Interworking , as specified in Chapters 17-21

2. The Language Mapping Specifications, which are organized into the following
stand-alone volumes:

• Mapping of OMG IDL to the Ada programming language

• Mapping of OMG IDL to the C programming language

• Mapping of OMG IDL to the C++ programming language

• Mapping of OMG IDL to the COBOL programming language

• Mapping of OMG IDL to the Java programming language

• Mapping of Java programming language to OMG/IDL

• Mapping of OMG IDL to the Smalltalk programming language

0.3 Acknowledgements

The following companies submitted parts of the specifications that were approved
the Object Management Group to become CORBA (including the Language Mapping
specifications):

IDL to Java CORBA 2.3

Java to IDL CORBA 2.3

Smalltalk CORBA 2.0

Language Mapping Aligned with CORBA version
viii C++ Language Mapping June 1999

rk

2,

C
• BNR Europe Ltd.

• Defense Information Systems Agency

• Expersoft Corporation

• FUJITSU LIMITED

• Genesis Development Corporation

• Gensym Corporation

• IBM Corporation

• ICL plc

• Inprise Corporation

• IONA Technologies Ltd.

• Digital Equipment Corporation

• Hewlett-Packard Company

• HyperDesk Corporation

• Micro Focus Limited

• MITRE Corporation

• NCR Corporation

• Novell USG

• Object Design, Inc.

• Objective Interface Systems, Inc.

• OC Systems, Inc.

• Open Group - Open Software Foundation

• Siemens Nixdorf Informationssysteme AG

• Sun Microsystems Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Telefónica Investigación y Desarrollo S.A. Unipersonal

• Visual Edge Software, Ltd.

In addition to the preceding contributors, the OMG would like to acknowledge Ma
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping specification.

0.4 References

The following list of references applies to CORBA and/or the Language Mapping
specifications:

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG T
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
C++ Language Mapping References June 1999 ix

o-

, S.

E

COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.

IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micr
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version)
(Martin) O’Donnell, June 1994.

RPC Runtime Support For I18N Characters — Functional Specification, OSF DC
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.
x C++ Language Mapping June 1999

C++Language Mapping 1
.3.

the

n)
Note – The C++ Language Mapping specification is aligned with CORBA version 2

The OMG documents used to update this chapter were ptc/98-09-03 and
ptc/99-03-04.

This chapter explains how OMG IDL constructs are mapped to the constructs of
C++ programming language. It provides mapping information for:

• Interfaces

• Constants

• Basic data types

• Enums

• Types (string, structure, struct, union, sequence, array, typedefs, any, exceptio

• Operations and attributes

• Arguments

Contents

This chapter contains the following sections.

Section Title Page

“Preliminary Information” 1-3

“Mapping for Modules” 1-5

“Mapping for Interfaces” 1-6

“Mapping for Constants” 1-13
 C++ Language Mapping June 1999 1-1

1

“Mapping for Basic Data Types” 1-15

“Mapping for Enums” 1-17

“Mapping for String Types” 1-17

“Mapping for Wide String Types” 1-20

“Mapping for Structured Types” 1-21

“Mapping for Struct Types” 1-27

“Mapping for Union Types” 1-33

“Mapping for Sequence Types” 1-39

“Mapping For Array Types” 1-46

“Mapping For Typedefs” 1-49

“Mapping for the Any Type” 1-50

“Mapping for Exception Types” 1-94

“Mapping For Operations and Attributes” 1-99

“Implicit Arguments to Operations” 1-99

“Argument Passing Considerations” 1-100

“Mapping of Pseudo Objects to C++” 1-107

“Usage” 1-108

“Mapping Rules” 1-108

“Relation to the C PIDL Mapping” 1-109

“Environment” 1-110

“NamedValue” 1-111

“NVList” 1-112

“Request” 1-114

“Context” 1-118

“TypeCode” 1-120

“ORB” 1-121

“Object” 1-125

“Server-Side Mapping” 1-127

“Implementing Interfaces” 1-127

“Implementing Operations” 1-142

“Mapping of DSI to C++” 1-144

“PortableServer Functions” 1-146

Section Title Page
1-2 C++ Language Mapping June 1999

1

ing a
for
is

 the

ping
nt
r

all the

g
e
o

ectly
1.1 Preliminary Information

1.1.1 Overview

1.1.1.1 Key Design Decisions

The design of the C++ mapping was driven by a number of considerations, includ
design that achieves reasonable performance, portability, efficiency, and usability
OMG IDL-to-C++ implementations. Several other considerations are outlined in th
section.

1.1.1.2 Compliance

The C++ mapping tries to avoid limiting the implementation freedoms of ORB
developers. For each OMG IDL and CORBA construct, the C++ mapping explains
syntax and semantics of using the construct from C++. A client or server program
conforms to this mapping (is CORBA-C++ compliant) if it uses the constructs as
described in the C++ mapping chapters. An implementation conforms to this map
if it correctly executes any conforming client or server program. A conforming clie
or server program is therefore portable across all conforming implementations. Fo
more information about CORBA compliance, refer to the Preface, “Definition of
CORBA Compliance” on page viii.

1.1.1.3 C++ Implementation Requirements

The mapping proposed here assumes that the target C++ environment supports
features described in The Annotated C++ Reference Manual (ARM) by Ellis and
Stroustrup as adopted by the ANSI/ISO C++ standardization committees, includin
exception handling. In addition, it assumes that the C++ environment supports th
namespace construct, but it does provide work-arounds for C++ compilers that d
not support namespace .

1.1.1.4 C Data Layout Compatibility

Some ORB vendors feel strongly that the C++ mapping should be able to work dir
with the CORBA C mapping. This mapping makes every attempt to ensure
compatibility between the C and C++ mappings, but it does not mandate such

“Mapping for PortableServer::ServantManager” 1-146

“C++ Definitions for CORBA” 1-147

“Alternative Mappings For C++ Dialects” 1-164

“C++ Keywords” 1-166

Section Title Page
C++ Language Mapping Preliminary Information June 1999 1-3

1

+
 use
.

 call

ible
ns,

,

d

e
compatibility. In addition to providing better interoperability and portability, the C+
call style solves the memory management problems seen by C programmers who
the C call style. Therefore, the OMG has adopted the C++ call style for OMG IDL
However, to provide continuity for earlier applications, an implementation might
choose to support the C call style as an option. If an implementation supports both
styles, it is recommended that the C call style be phased out.

Note that the mapping in the C Language Mapping chapter has been modified to
achieve compatibility between the C and C++ mappings.

1.1.1.5 No Implementation Descriptions

This mapping does not contain implementation descriptions. It avoids details that
would constrain implementations, but still allows clients to be fully source-compat
with any compliant implementation. Some examples show possible implementatio
but these are not required implementations.

1.1.2 Scoped Names

Scoped names in OMG IDL are specified by C++ scopes:

• OMG IDL modules are mapped to C++ namespaces.

• OMG IDL interfaces are mapped to C++ classes (as described in Section 1.3
“Mapping for Interfaces,” on page 1-6).

• All OMG IDL constructs scoped to an interface are accessed via C++ scope
names. For example, if a type mode were defined in interface printer , then the
type would be referred to as printer::mode .

These mappings allow the corresponding mechanisms in OMG IDL and C++ to b
used to build scoped names. For instance:

// IDL
module M
{

struct E {
long L;

};
};

is mapped into:

// C++
namespace M
{

struct E {
Long L;

};
}

and E can be referred outside of M as M::E . Alternatively, a C++ using statement
for namespace M can be used so that E can be referred to simply as E:
1-4 C++ Language Mapping June 1999

1

 an
ple,
d
IDL
r”
s

 on

-

).

ically

es

ope,
// C++
using namespace M;
E e;
e.L = 3;

Another alternative is to employ a using statement only for M::E :

// C++
using M::E;
E e;
e.L = 3;

To avoid C++ compilation problems, every use in OMG IDL of a C++ keyword as
identifier is mapped into the same name preceded by the prefix “_cxx_.” For exam
an IDL interface named “try” would be named “_cxx_try” when its name is mappe
into C++. For consistency, this rule also applies to identifiers that are derived from
identifiers. For example, an IDL interface “try” generates the names “_cxx_try_va
and “cxx_try_ptr,” that is, the IDL compiler behaves as if the interface were name
“cxx_try” and then applies the normal mapping rules.

The complete list of C++ keywords can be found in Section 1.43, “C++ Keywords,”
page 1-166.

1.1.3 C++ Type Size Requirements

The sizes of the C++ types used to represent OMG IDL types are implementation
dependent. That is, this mapping makes no requirements as to the sizeof(T) for
anything except basic types (see Section 1.5, “Mapping for Basic Data Types,” on
page 1-15) and string (see Section 1.7, “Mapping for String Types,” on page 1-17

1.1.4 CORBA Module

The mapping relies on some predefined types, classes, and functions that are log
defined in a module named CORBA . The module is automatically accessible from a
C++ compilation unit that includes a header file generated from an OMG IDL
specification. In the examples presented in this document, CORBA definitions are
referenced without explicit qualification for simplicity. In practice, fully scoped nam
or C++ using statements for the CORBA namespace would be required in the
application source. See The Common Object Request Broker: Application and
Specifications, Appendix A for standard OMG IDL tags.

1.2 Mapping for Modules

As shown in Section 1.1.2, “Scoped Names,” on page 1-4, a module defines a sc
and as such is mapped to a C++ namespace with the same name:

// IDL
module M
{

C++ Language Mapping Mapping for Modules June 1999 1-5

1

 do

s,

r

rated
// definitions
};

// C++
namespace M
{

// definitions
}

Because namespaces were only recently added to the C++ language, few C++
compilers currently support them. Alternative mappings for OMG IDL modules that
not require C++ namespaces are in Section 1.42, “Alternative Mappings For C++
Dialects,” on page 1-164.

1.3 Mapping for Interfaces

An interface is mapped to a C++ class that contains public definitions of the type
constants, operations, and exceptions defined in the interface.

A CORBA–C++–compliant program cannot

• create or hold an instance of an interface class, or

• use a pointer (A*) or a reference (A&) to an interface class.

The reason for these restrictions is to allow a wide variety of implementations. Fo
example, interface classes could not be implemented as abstract base classes if
programs were allowed to create or hold instances of them. In a sense, the gene
class is like a namespace that one cannot enter via a using statement. This example
shows the behavior of the mapping of an interface:

// IDL
interface A
{

struct S { short field; };
};

// C++
// Conformant uses
A::S s; // declare a struct variable
s.field = 3; // field access

// Non-conformant uses:
// one cannot declare an instance of an interface class...
A a;
// ...nor declare a pointer to an interface class...
A *p;
// ...nor declare a reference to an interface class.
void f(A &r);
1-6 C++ Language Mapping June 1999

1

f the

face

face

hen

 is not

e of

es
face
e
1.3.1 Object Reference Types

The use of an interface type in OMG IDL denotes an object reference. Because o
different ways an object reference can be used and the different possible
implementations in C++, an object reference maps to two C++ types. For an inter
A, these types are named A_var and A_ptr . For historical reasons, the type ARef is
defined as a synonym for A_ptr , but usage of the Ref names is not portable and is
thus deprecated. To facilitate template-based programming, typedefs for the A_ptr
and A_var types are also provided in the interface class (see Section 1.3.7, “Inter
Mapping Example,” on page 1-11). The typedef for A_ptr is named A::_ptr_type
and the typedef for A_var is named A::_var_type .

An operation can be performed on an object by using an arrow (“-> ”) on a reference
to the object. For example, if an interface defines an operation op with no parameters
and obj is a reference to the interface type, then a call would be written obj->op() .
The arrow operator is used to invoke operations on both the _ptr and _var object
reference types.

Client code frequently will use the object reference variable type (A_var) because a
variable will automatically release its object reference when it is deallocated or w
assigned a new object reference. The pointer type (A_ptr) provides a more primitive
object reference, which has similar semantics to a C++ pointer. Indeed, an
implementation may choose to define A_ptr as A* , but is not required to. Unlike C++
pointers, however, conversion to void* , arithmetic operations, and relational
operations, including test for equality, are all non-compliant. A compliant
implementation need not detect these incorrect uses because requiring detection
practical.

For many operations, mixing data of type A_var and A_ptr is possible without any
explicit operations or casts. However, one needs to be careful in doing so becaus
the implicit release performed when the variable is deallocated. For example, the
assignment statement in the code below will result in the object reference held byp to
be released at the end of the block containing the declaration of a.

// C++
A_var a;
A_ptr p = // ...somehow obtain an objref...
a = p;

1.3.2 Widening Object References

OMG IDL interface inheritance does not require that the corresponding C++ class
are related, though that is certainly one possible implementation. However, if inter
B inherits from interface A, the following implicit widening operations for B must b
supported by a compliant implementation:

• B_ptr to A_ptr

• B_ptr to Object_ptr

• B_var to A_ptr

• B_var to Object_ptr
C++ Language Mapping Mapping for Interfaces June 1999 1-7

1

.

 may

are

ll

ype

ge
Implicit widening from a B_var to A_var or Object_var is not supported; instead,
widening between _var types for object references requires a call to _duplicate
(described in Section 1.3.3, “Object Reference Operations,” on page 1-8).1 An attempt
to implicitly widen from one _var type to another must cause a compile-time error2
Assignment between two _var objects of the same type is supported, but widening
assignments are not and must cause a compile-time error. Widening assignments
be done using _duplicate . The same rules apply for object reference types that
nested in a complex type, such as a structure or sequence.

// C++
B_ptr bp = ...
A_ptr ap = bp; // implicit widening
Object_ptr objp = bp; // implicit widening
objp = ap; // implicit widening

B_var bv = bp; // bv assumes ownership of bp
ap = bv; // implicit widening, bv retains

// ownership of bp
obp = bv; // implicit widening, bv retains

// ownership of bp

A_var av = bv; // illegal, compile-time error
A_var av = B::_duplicate(bv);// av, bv both refer to bp
B_var bv2 = bv; // implicit _duplicate
A_var av2;
av2 = av; // implicit _duplicate

1.3.3 Object Reference Operations

Conceptually, the Object class in the CORBA module is the base interface type for a
CORBA objects; therefore, any object reference can be widened to the type
Object_ptr . As with other interfaces, the CORBA namespace also defines the t
Object_var .

CORBA defines three operations on any object reference: duplicate, release , and
is_nil . Note that these are operations on the object reference, not the object
implementation. Because the mapping does not require that object references to
themselves be C++ objects, the “-> ” syntax cannot be employed to express the usa
of these operations. Also, for convenience these operations are allowed to be
performed on a nil object reference.

1.When T_ptr is mapped to T* , it is impossible in C++ to provide implicit widening
between T_var types while also providing the necessary duplication semantics for
T_ptr types.

2. This can be achieved by deriving all T_var types for object references from a base _var
class, then making the assignment operator for _var private within each T_var type.
1-8 C++ Language Mapping June 1999

1

e so
,

r the

 as
ber

e
e

from
 an
The release and is_nil operations depend only on type Object , so they can be
expressed as regular functions within the CORBA namespace as follows:

// C++
void release(Object_ptr obj);
Boolean is_nil(Object_ptr obj);

The release operation indicates that the caller will no longer access the referenc
that associated resources may be deallocated. If the given object reference is nil
release does nothing. The is_nil operation returns TRUE if the object reference
contains the special value for a nil object reference as defined by the ORB. Neithe
release operation nor the is_nil operation may throw CORBA exceptions.

The duplicate operation returns a new object reference with the same static type
the given reference. The mapping for an interface therefore includes a static mem
function named _duplicate in the generated class. For example:

// IDL
interface A { };

// C++
class A
{

public:
static A_ptr _duplicate(A_ptr obj);

};

If the given object reference is nil, _duplicate will return a nil object reference.
The _duplicate operation can throw CORBA system exceptions.

1.3.4 Narrowing Object References

The mapping for an interface defines a static member function named _narrow that
returns a new object reference given an existing reference. Like _duplicate , the
_narrow function returns a nil object reference if the given reference is nil. Unlik
_duplicate , the parameter to _narrow is a reference of an object of any interfac
type (Object_ptr). If the actual (runtime) type of the parameter object can be
widened to the requested interface’s type, then _narrow will return a valid object
reference; otherwise, _narrow will return a nil object reference. For example,
suppose A, B, C, and D are interface types, and D inherits from C, which inherits
B, which in turn inherits from A. If an object reference to a C object is widened to
A_ptr variable called ap , then:

• A::_narrow(ap) returns a valid object reference

• B::_narrow(ap) returns a valid object reference

• C::_narrow(ap) returns a valid object reference

• D::_narrow(ap) returns a nil object reference
C++ Language Mapping Mapping for Interfaces June 1999 1-9

1

aces.
ort

 B,
 to a

h the

ing

nter.

 this
Narrowing to A, B, and C all succeed because the object supports all those interf
The D::_narrow returns a nil object reference because the object does not supp
the D interface.

For another example, suppose A, B, C, and D are interface types. C inherits from
and both B and D inherit from A. Now suppose that an object of type C is passed
function as an A. If the function calls B::_narrow or C::_narrow , a new object
reference will be returned. A call to D::_narrow will fail and return nil.

If successful, the _narrow function creates a new object reference and does not
consume the given object reference, so the caller is responsible for releasing bot
original and new references.

The _narrow operation can throw CORBA system exceptions.

1.3.5 Nil Object Reference

The mapping for an interface defines a static member function named _nil that
returns a nil object reference of that interface type. For each interface A, the follow
call is guaranteed to return TRUE:

// C++
Boolean true_result = is_nil(A::_nil());

A compliant application need not call release on the object reference returned from
the _nil function.

As described in Section 1.3.1, “Object Reference Types,” on page 1-7, object
references may not be compared using operator== ; therefore, is_nil is the only
compliant way an object reference can be checked to see if it is nil.

The _nil function may not throw any CORBA exceptions.

A compliant program cannot attempt to invoke an operation through a nil object
reference, since a valid C++ implementation of a nil object reference is a null poi

1.3.6 Object Reference Out Parameter

When a _var is passed as an out parameter, any previous value it refers to must be
implicitly released. To give C++ mapping implementations enough hooks to meet
requirement, each object reference type results in the generation of an _out type
which is used solely as the out parameter type. For example, interface A results in the
object reference type A_ptr , the helper type A_var , and the out parameter type
A_out . The general form for object reference _out types is shown below.
1-10 C++ Language Mapping June 1999

1

mber

usly-

he

g

s are
ple.
// C++
class A_out
{

public:
A_out(A_ptr& p) : ptr_(p) { ptr_ = A::_nil(); }
A_out(A_var& p) : ptr_(p.ptr_) {

release(ptr_); ptr_ = A::_nil();
}
A_out(A_out& a) : ptr_(a.ptr_) {}
A_out& operator=(A_out& a) {

ptr_ = a.ptr_; return *this;
}
A_out& operator=(const A_var& a) {

ptr_ = A::_duplicate(A_ptr(a)); return *this;
}
A_out& operator=(A_ptr p) { ptr_ = p; return *this; }
operator A_ptr&() { return ptr_; }
A_ptr& ptr() { return ptr_; }
A_ptr operator->() { return ptr_; }

private:
A_ptr& ptr_;

};

The first constructor binds the reference data member with the A_ptr& argument.
The second constructor binds the reference data member with the A_ptr object
reference held by the A_var argument, and then calls release() on the object
reference. The third constructor, the copy constructor, binds the reference data me
to the same A_ptr object reference bound to the data member of its argument.
Assignment from another A_out copies the A_ptr referenced by the argument
A_out to the data member. The overloaded assignment operator for A_ptr simply
assigns the A_ptr object reference argument to the data member. The overloaded
assignment operator for A_var duplicates the A_ptr held by the A_var before
assigning it to the data member. Note that assignment does not cause any previo
held object reference value to be released; in this regard, the A_out type behaves
exactly as an A_ptr . The A_ptr& conversion operator returns the data member. T
ptr() member function, which can be used to avoid having to rely on implicit
conversion, also returns the data member. The overloaded arrow operator (operator-
>()) returns the data member to allow operations to be invoked on the underlyin
object reference after it has been properly initialized by assignment.

1.3.7 Interface Mapping Example

The example below shows one possible mapping for an interface. Other mapping
also possible, but they must provide the same semantics and usage as this exam
C++ Language Mapping Mapping for Interfaces June 1999 1-11

1

// IDL
interface A
{

A op(in A arg1, out A arg2);
};

// C++
class A;
typedef A *A_ptr;
class A_var;
class A : public virtual Object
{

public:
typedef A_ptr _ptr_type;
typedef A_var _var_type;

static A_ptr _duplicate(A_ptr obj);
static A_ptr _narrow(Object_ptr obj);
static A_ptr _nil();

virtual A_ptr op(A_ptr arg1, A_out arg2) = 0;

protected:
A();
virtual ~A();

private:
A(const A&);
void operator=(const A&);

};

class A_var : public _var
{

public:
A_var() : ptr_(A::_nil()) {}
A_var(A_ptr p) : ptr_(p) {}
A_var(const A_var &a) : ptr_(A::_duplicate(A_ptr(a){}
~A_var() { free(); }

A_var &operator=(A_ptr p) {
reset(p); return *this;

}
A_var &operator=(const A_var& a) {

if (this != &a) {
free();
ptr_ = A::_duplicate(A_ptr(a));

}
return *this;

}
A_ptr in() const { return ptr_; }
A_ptr& inout() { return ptr_; }
1-12 C++ Language Mapping June 1999

1

ay
ple,
stant
scope
ilation
rence

A_ptr& out() {
reset(A::_nil());
return ptr_;

}
A_ptr _retn() {

// yield ownership of managed object reference
A_ptr val = ptr_;
ptr_ = A::_nil();
return val;

}

operator const A_ptr&() const { return ptr_; }
operator A_ptr&() { return ptr_; }
A_ptr operator->() const { return ptr_; }

protected:
A_ptr ptr_;
void free() { release(ptr_); }
void reset(A_ptr p) { free(); ptr_ = p; }

private:
// hidden assignment operators for var types
void operator=(const _var &);

};

The definition for the A_out type is the same as the one shown in Section 1.3.6,
“Object Reference Out Parameter,” on page 1-10.

1.4 Mapping for Constants

OMG IDL constants are mapped directly to a C++ constant definition that may or m
not define storage depending on the scope of the declaration. In the following exam
a top-level IDL constant maps to a file-scope C++ constant whereas a nested con
maps to a class-scope C++ constant. This inconsistency occurs because C++ file-
constants may not require storage (or the storage may be replicated in each comp
unit), while class-scope constants always take storage. As a side effect, this diffe
means that the generated C++ header file might not contain values for constants
defined in the OMG IDL file.

// IDL
const string name = "testing";

interface A
{

const float pi = 3.14159;
};
C++ Language Mapping Mapping for Constants June 1999 1-13

1

alue

r and

-
e
// C++
static const char *const name = "testing";

class A
{

public:
static const Float pi;

};

In certain situations, use of a constant in OMG IDL must generate the constant’s v
instead of the constant’s name.3 For example,

// IDL
interface A
{

const long n = 10;
typedef long V[n];

};

// C++
class A
{

public:
static const long n;
typedef long V[10];

};

1.4.1 Wide Character and Wide String Constants

The mappings for wide character and wide string constants is identical to characte
string constants, except that IDL literals are preceded by L in C++. For example, IDL
constant:

const wstring ws = “Hello World”;

would map to

static const WChar *const ws = L”Hello World”;

in C++.

3. A recent change made to the C++ language by the ANSI/ISO C++ standardization commit
tees allows static integer constants to be initialized within the class declaration, so for som
C++ compilers, the code generation issues described here may not be a problem.
1-14 C++ Language Mapping June 1999

1

re is

er

s
1.4.2 Fixed Point Constants

Because C++ does not have a native fixed point type, IDL fixed point literals are
mapped to C++ strings without the trailing 'd' or 'D' in order to guarantee that the
no loss of precision. For example:

// IDL
const fixed F = 123.456D;

// C++
const Fixed F = "123.456";

1.5 Mapping for Basic Data Types

The basic data types have the mappings shown in Table 1-14. Note that the mapping of
the OMG IDL boolean type defines only the values 1 (TRUE) and 0 (FALSE); oth
values produce undefined behavior.

4.This mapping assumes that CORBA::LongLong , CORBA::ULongLong , and
CORBA::LongDouble are mapped directly to native numeric C++ types (e.g.,
CORBA::LongLong to a 64-bit integer type) that support the required IDL semantics and
can be manipulated via built-in operators. An alternate mapping to C++ classes that provide
appropriate creation, conversion, and manipulation operators will be provided in a future
version of this specification.

Table 1-1 Basic Data Type Mappings

OMG IDL C++ C++ Out Type
short CORBA::Short CORBA::Short_out

long CORBA::Long CORBA::Long_out

long long CORBA::LongLong CORBA::LongLong_out

unsigned short CORBA::UShort CORBA::UShort_out

unsigned long CORBA::ULong CORBA::ULong_out

unsigned long long CORBA::ULongLong CORBA::ULongLong_out

float CORBA::Float CORBA::Float_out

double CORBA::Double CORBA::Double_out

long double CORBA::LongDouble CORBA::LongDouble_out

char CORBA::Char CORBA::Char_out

wchar CORBA::WChar CORBA::WChar_out

boolean CORBA::Boolean CORBA::Boolean_out

octet CORBA::Octet CORBA::Octet_out
C++ Language Mapping Mapping for Basic Data Types June 1999 1-15

1

n

, the
e

is
g.

+

ing.

ome
If

he
pe.

g
ro

be

y use
Each OMG IDL basic type is mapped to a typedef in the CORBA module. This is
because some types, such as short and long , may have different representations o
different platforms, and the CORBA definitions will reflect the appropriate
representation. For example, on a 64-bit machine where a long integer is 64 bits
definition of CORBA::Long would still refer to a 32-bit integer. Requirements for th
sizes of basic types are shown in The Common Object Request Broker: Architecture
and Specification, OMG IDL Syntax and Semantics chapter, Basic Types section.

Types boolean, char , and octet may all map to the same underlying C++ type. Th
means that these types may not be distinguishable for the purposes of overloadin

Type wchar maps to wchar_t in standard C++ environments or, for nonstandard C+
environments, may also map to one of the integer types. This means that wchar may
not be distinguishable from integer types for purposes of overloading.

All other mappings for basic types are distinguishable for the purposes of overload
That is, one can safely write overloaded C++ functions for Short , UShort , Long ,
ULong, LongLong , ULongLong , Float , Double , and LongDouble .

The _out types for the basic types are used to type out parameters within operation
signatures, as described in Section 1.22, “Argument Passing Considerations,” on
page 1-100. For the basic types, each _out type is a typedef to a reference to the
corresponding C++ type. For example, the Short_out is defined in the CORBA
namespace as follows:

// C++
typedef Short& Short_out;

The _out types for the basic types are provided for consistency with other out
parameter types.

Programmers concerned with portability should use the CORBA types. However, s
may feel that using these types with the CORBA qualification impairs readability.
the CORBA module is mapped to a namespace, a C++ using statement may help this
problem. On platforms where the C++ data type is guaranteed to be identical to t
OMG IDL data type, a compliant implementation may generate the native C++ ty

For the Boolean type, only the values 1 (representing TRUE) and 0 (representing
FALSE) are defined; other values produce undefined behavior. Since many existin
C++ software packages and libraries already provide their own preprocessor mac
definitions of TRUE and FALSE, this mapping does not require that such definitions
provided by a compliant implementation. Requiring definitions for TRUE and FALSE
could cause compilation problems for CORBA applications that make use of such
packages and libraries. Instead, we recommend that compliant applications simpl
the values 1 and 0 directly5.

5.Examples and descriptions in this specification still use TRUE and FALSE for purposes of
clarity.
1-16 C++ Language Mapping June 1999

1

SI

ly
 large
f the

is

tion

ed
nded
vent
the
ring
Alternatively, for those C++ compilers that support the bool type, the keywords true
and false may be used.

IDL type boolean may be mapped to C++ signed, unsigned, or plain char . This
mapping is legal for both classic and ANSI C++ environments. In addition, in an AN
C++ environment, IDL boolean can be mapped to C++ bool . Mappings to C++
types other than a character type or bool are illegal.

1.6 Mapping for Enums

An OMG IDL enum maps directly to the corresponding C++ type definition. The on
difference is that the generated C++ type may need an additional constant that is
enough to force the C++ compiler to use exactly 32 bits for values declared to be o
enumerated type.

// IDL
enum Color { red, green, blue };

// C++
enum Color { red, green, blue };

In addition, an _out type used to type out parameters within operation signatures is
generated for each enumerated type. For enum Color shown above, the Color_out
type is defined in the same scope as follows:

// C++
typedef Color& Color_out;

The _out types for enumerated types are generated for consistency with other out
parameter types.

1.7 Mapping for String Types

As in the C mapping, the OMG IDL string type, whether bounded or unbounded,
mapped to char* in C++. String data is NUL-terminated. In addition, the CORBA
module defines a class String_var that contains a char* value and automatically
frees the pointer when a String_var object is deallocated. When a String_var is
constructed or assigned from a char* , the char* is consumed and thus the string
data may no longer be accessed through it by the caller. Assignment or construc
from a const char* or from another String_var causes a copy. The
String_var class also provides operations to convert to and from char* values, as
well as subscripting operations to access characters within the string. The full
definition of the String_var interface is given in “String_var Class” on
page Section 1.41.2, “String_var and String_out Class,” on page 1-148.

C++ does not have a built-in type that would provide a “close match” for IDL-bound
strings. As a result, the programmer is responsible for enforcing the bound of bou
strings at run time. Implementations of the mapping are under no obligation to pre
assignment of a string value to a bounded string type if the string value exceeds
bound. Implementations may choose to (at run time) detect attempts to pass a st
C++ Language Mapping Mapping for Enums June 1999 1-17

1

tation

s,

er

g the
 to

ial
to

t
value that exceeds the bound as a parameter across an interface. If an implemen
chooses to detect this error, it must raise a BAD_PARAM system exception to signal
the error.

Because its mapping is char* , the OMG IDL string type is the only non-basic type
for which this mapping makes size requirements. For dynamic allocation of string
compliant programs must use the following functions from the CORBA namespace:

// C++
namespace CORBA {

char *string_alloc(ULong len);
char *string_dup(const char*);
void string_free(char *);
...

}

The string_alloc function dynamically allocates a string, or returns a null point
if it cannot perform the allocation. It allocates len+1 characters so that the resulting
string has enough space to hold a trailing NUL character. The string_dup function
dynamically allocates enough space to hold a copy of its string argument, includin
NUL character, copies its string argument into that memory, and returns a pointer
the new string. If allocation fails, a null pointer is returned. The string_free
function deallocates a string that was allocated with string_alloc or
string_dup . Passing a null pointer to string_free is acceptable and results in no
action being performed. These functions allow ORB implementations to use spec
memory management mechanisms for strings if necessary, without forcing them
replace global operator new and operator new[] .

The string_alloc , string_dup , and string_free functions may not throw
exceptions.

Note that a static array of char in C++ decays to a char* 6, so care must be taken
when assigning one to a String_var , since the String_var will assume the
pointer points to data allocated via string_alloc and thus will eventually attempt
to string_free it:

// C++
// The following is an error, since the char* should point to
// data allocated via string_alloc so it can be consumed
String_var s = "static string";// error

// The following are OK, since const char* are copied,
// not consumed
const char* sp = "static string";

6. This has changed in ANSI/ISO C++, where string literals are const char*, not char*. How-
ever, since most C++ compilers do not yet implement this change, portable programs mus
heed the advice given here.
1-18 C++ Language Mapping June 1999

1

eet

r
er.
is

s = sp;
s = (const char*)"static string too";

When a String_var is passed as an out parameter, any previous value it refers to
must be implicitly freed. To give C++ mapping implementations enough hooks to m
this requirement, the string type also results in the generation of a String_out type
in the CORBA namespace, which is used solely as the string out parameter type. The
general form for the String_out type is shown below.

// C++
class String_out
{

public:
String_out(char*& p) : ptr_(p) { ptr_ = 0; }
String_out(String_var& p) : ptr_(p.ptr_) {

string_free(ptr_); ptr_ = 0;
}
String_out(String_out& s) : ptr_(s.ptr_) {}
String_out& operator=(String_out& s) {

ptr_ = s.ptr_; return *this;
}
String_out& operator=(char* p) {

ptr_ = p; return *this;
}
String_out& operator=(const char* p) {

ptr_ = string_dup(p); return *this;
}
operator char*&() { return ptr_; }
char*& ptr() { return ptr_; }

private:
char*& ptr_;

// assignment from String_var disallowed
void operator=(const String_var&);

};

The first constructor binds the reference data member with the char*& argument.
The second constructor binds the reference data member with the char* held by the
String_var argument, and then calls string_free() on the string. The third
constructor, the copy constructor, binds the reference data member to the same char*
bound to the data member of its argument. Assignment from another String_out
copies the char* referenced by the argument String_out to the char* referenced
by the data member. The overloaded assignment operator for char* simply assigns
the char* argument to the data member. The overloaded assignment operator fo
const char* duplicates the argument and assigns the result to the data memb
Note that assignment does not cause any previously-held string to be freed; in th
regard, the String_out type behaves exactly as a char* . The char*& conversion
operator returns the data member. The ptr() member function, which can be used to
avoid having to rely on implicit conversion, also returns the data member.
C++ Language Mapping Mapping for String Types June 1999 1-19

1

ine

m

g

ked

e

Assignment from String_var to a String_out is disallowed because of the
memory management ambiguities involved. Specifically, it is not possible to determ
whether the string owned by the String_var should be taken over by the
String_out without copying, or if it should be copied. Disallowing assignment fro
String_var forces the application developer to make the choice explicitly:

// C++
void
A::op(String_out arg)
{

String_var s = string_dup("some string");
...
arg = s; // disallowed; either
arg = string_dup(s); // 1: copy, or
arg = s._retn(); // 2: adopt

}

On the line marked with the comment “1,” the application writer is explicitly copyin
the string held by the String_var and assigning the result to the arg argument.
Alternatively, the application writer could use the technique shown on the line mar
with the comment “2” in order to force the String_var to give up its ownership of
the string it holds so that it may be returned in the arg argument without incurring
memory management errors.

A compliant mapping implementation shall provide overloaded operator<<
(insertion) and operator>> (extraction) operators for using String_var and
String_out directly with C++ iostreams.

1.8 Mapping for Wide String Types

Both bounded and unbounded wide string types are mapped to CORBA::WChar* in
C++. In addition, the CORBA module defines WString_var and WString_out
classes. Each of these classes provides the same member functions with the sam
semantics as their string counterparts, except of course they deal with wide strings
and wide characters.

Dynamic allocation and deallocation of wide strings must be performed via the
following functions:

// C++
namespace CORBA {

// ...
WChar *wstring_alloc(ULong len);

WChar *wstring_dup(const WChar* ws);
void wstring_free(WChar*);

};

These functions have the same semantics as the same functions for the string type,
except they operate on wide strings.
1-20 C++ Language Mapping June 1999

1

t
fault

he

nd
py to
 frees

es)

llow

t is

 also
is
es

uct,
A compliant mapping implementation provides overloaded operator<< (insertion)
and operator>> (extraction) operators for using WString_var and
WString_out directly with C++ iostreams.

1.9 Mapping for Structured Types

The mapping for struct, union , and sequence is a C++ struct or class with a defaul
constructor, a copy constructor, an assignment operator, and a destructor. The de
constructor initializes object reference members to appropriately-typed nil object
references, and string members and wide string members to the empty string ("" and
L"" , respectively). All other members are initialized via their default constructors. T
copy constructor performs a deep-copy from the existing structure to create a new
structure, including calling _duplicate on all object reference members and
performing the necessary heap allocations for all string members and wide string
members. The assignment operator first releases all object reference members a
frees all string members and wide string members, and then performs a deep-co
create a new structure. The destructor releases all object reference members and
all string members and wide string members.

The mapping for OMG IDL structured types (structs, unions, arrays, and sequenc
can vary slightly depending on whether the data structure is fixed-length or variable-
length. A type is variable-length if it is one of the following types:

• The type any
• A bounded or unbounded string or wide string

• A bounded or unbounded sequence

• An object reference or reference to a transmissible pseudo-object

• A valuetype
• A struct or union that contains a member whose type is variable-length

• An array with a variable-length element type

• A typedef to a variable-length type

The reason for treating fixed- and variable-length data structures differently is to a
more flexibility in the allocation of out parameters and return values from an
operation. This flexibility allows a client-side stub for an operation that returns a
sequence of strings (for example, to allocate all the string storage in one area tha
deallocated in a single call).

As a convenience for managing pointers to variable-length data types, the mapping
provides a managing helper class for each variable-length type. This type, which
named by adding the suffix “_var” to the original type’s name, automatically delet
the pointer when an instance is destroyed. An object of type T_var behaves similarly
to the structured type T, except that members must be accessed indirectly. For a str
this means using an arrow (“-> ”) instead of a dot (“. ”).

// IDL
struct S { string name; float age; };
void f(out S p);
C++ Language Mapping Mapping for Structured Types June 1999 1-21

1

// C++
S a;
S_var b;
f(b);
a = b; // deep-copy
cout << "names " << a.name << ", " << b->name << endl;

To facilitate template-based programming, all struct , union , and sequence
classes contain nested public typedefs for their associated T_var types. For example,
for an IDL sequence named Seq, the mapped sequence class Seq contains a
_var_type typedef as follows:

// C++
class Seq_var;
class Seq
{

public:
typedef Seq_var _var_type;
// ...

};

1.9.1 T_var Types

The general form of the T_var types is shown below.

// C++
class T_var
{

public:
T_var();
T_var(T *);
T_var(const T_var &);
~T_var();

T_var &operator=(T *);
T_var &operator=(const T_var &);

T* operator->();
const T* operator->() const;

/* in parameter type */ in() const;
/* inout parameter type */ inout();
/* out parameter type */ out();
/* return type */ _retn();

// other conversion operators to support
// parameter passing

};
1-22 C++ Language Mapping June 1999

1

f

 a
ssed

tilize

 by

s

 the
e to

pilers

The default constructor creates a T_var containing a null T* . Compliant applications
may not attempt to convert a T_var created with the default constructor into a T* nor
use its overloaded operator-> without first assigning to it a valid T* or another
valid T_var . Due to the difficulty of doing so, compliant implementations are not
required to detect this error. Conversion of a null T_var to a T_out is allowed,
however, so that a T_var can legally be passed as an out parameter. Conversion of a
null T_var to a T*& is also allowed so as to be compatible with earlier versions o
this specification.

The T* constructor creates a T_var that, when destroyed, will delete the storage
pointed to by the T* parameter. The parameter to this constructor should never be
null pointer. Compliant implementations are not required to detect null pointers pa
to this constructor.

The copy constructor deep-copies any data pointed to by the T_var constructor
parameter. This copy will be destroyed when the T_var is destroyed or when a new
value is assigned to it. Compliant implementations may, but are not required to, u
some form of reference counting to avoid such copies.

The destructor uses delete to deallocate any data pointed to by the T_var , except
for strings and array types, which are deallocated using the string_free and
T_free (for array type T) deallocation functions, respectively.

The T* assignment operator results in the deallocation of any old data pointed to
the T_var before assuming ownership of the T* parameter.

The normal assignment operator deep-copies any data pointed to by the T_var
assignment parameter. This copy will be destroyed when the T_var is destroyed or
when a new value is assigned to it.

The overloaded operator-> returns the T* held by the T_var , but retains
ownership of it. Compliant applications may not call this function unless the T_var
has been initialized with a valid non-null T* or T_var .

In addition to the member functions described above, the T_var types must support
conversion functions that allow them to fully support the parameter passing mode
shown in “Basic Argument and Result Passing” on page 1-104. The form of these
conversion functions is not specified so as to allow different implementations, but
conversions must be automatic (i.e., they must require no explicit application cod
invoke them).

Because implicit conversions can sometimes cause problems with some C++ com
and with code readability, the T_var types also support member functions that allow
them to be explicitly converted for purposes of parameter passing.

To pass a T_var as an: an application can call the ...

in parameter in() member function of the T_var

inout parameter inout() member function

out parameter out() member function
C++ Language Mapping Mapping for Structured Types June 1999 1-23

1

ent

rned

 for
To obtain a return value from the T_var , an application can call the _retn()
function.7

For each T_var type, the return types of each of these functions match the types
shown in version 2.3 of The Common Object Request Broker: Architecture and
Specifications, Mapping: OLE Automation and CORBA chapter, Mapping of
Automation Types to OMG IDL Types table for the in , inout , out and return modes for
underlying type T respectively.

For T_var types that return T*& from the out() member function, the out()
member function calls delete on the T* owned by the T_var , sets it equal to the
null pointer, and then returns a reference to it. This is to allow for proper managem
of the T* owned by a T_var when passed as an out parameter, as described in
Section 1.22, “Argument Passing Considerations,” on page 1-100. An example
implementation of such an out() function is shown below:

// C++
T*& T_var::out()
{

// assume ptr_ is the T* data member of the T_var
delete ptr_;
ptr_ = 0;
return ptr_;

}

Similarly, for T_var types whose corresponding type T is returned from IDL
operations as T* (see “Basic Argument and Result Passing” on page 1-104), the
_retn() function stores the value of the T* owned by the T_var into a temporary
pointer, sets the T* to the null pointer value, and then returns the temporary. The
T_var thus yields ownership of its T* to the caller of _retn() without calling
delete on it, and the caller becomes responsible for eventually deleting the retu
T* . An example implementation of such a _retn() function is shown below:

// C++
T* T_var::_retn()
{

// assume ptr_ is the T* data member of the T_var
T* tmp = ptr_;
ptr_ = 0;

7.A leading underscore is needed on the _retn() function to keep it from clashing with
user-defined member names of constructed types, but leading underscores are not needed
the in() , inout() , and out() functions because their names are IDL keywords, so
users can’t define members with those names.
1-24 C++ Language Mapping June 1999

1

 to

s

of

y is
return tmp;
}

This allows, for example, a method implementation to store a T* as a potential return
value in a T_var so that it will be deleted if an exception is thrown, and yet be able
acquire control of the T* to be able to return it properly:

// C++
T_var t = new T;// t owns pointer to T
if (exceptional_condition) {

// t owns the pointer and will delete it
// as the stack is unwound due to throw
throw AnException();

}
...
return t._retn(); // _retn() takes ownership of

// pointer from t

After _retn() is invoked on a T_var instance, its internal T* pointer is null, so
invoking either of its overloaded operator-> functions without first assigning a
valid non-null T* to the T_var will attempt to de-reference the null pointer, which i
illegal in C++.

The T_var types are also produced for fixed-length structured types for reasons
consistency. These types have the same semantics as T_var types for variable-length
types. This allows applications to be coded in terms of T_var types regardless of
whether the underlying types are fixed- or variable-length.

Each T_var type must be defined at the same level of nesting as its T type.

T_var types do not work with a pointer to constant T, since they provide no
constructor nor operator= taking a const T* parameter. Since C++ does not
allow delete to be called on a const T* 8, the T_var object would normally have
to copy the const object; instead, the absence of the const T* constructor and
assignment operators will result in a compile-time error if such an initialization or
assignment is attempted. This allows the application developer to decide if a cop
really wanted or not. Explicit copying of const T* objects into T_var types can be
achieved via the copy constructor for T:

8.This too has changed in ANSI/ISO C++, but it not yet widely implemented by C++ compilers.
C++ Language Mapping Mapping for Structured Types June 1999 1-25

1

t
et

data

,
ber of

 for
t does
// C++
const T *t = ...;
T_var tv = new T(*t);

1.9.2 T_out Types

When a T_var is passed as an out parameter, any previous value it referred to mus
be implicitly deleted. To give C++ mapping implementations enough hooks to me
this requirement, each T_var type has a corresponding T_out type which is used
solely as the out parameter type. The general form for T_out types for variable-
length types is shown below.

// C++
class T_out
{

public:
T_out(T*& p) : ptr_(p) { ptr_ = 0; }
T_out(T_var& p) : ptr_(p.ptr_) {
delete ptr_;
ptr_ = 0;

}
T_out(const T_out& p) : ptr_(p.ptr_) {}
T_out& operator=(const T_out& p) {

ptr_ = p.ptr_;
return *this;

}
T_out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

// assignment from T_var not allowed
void operator=(const T_var&):

};

The first constructor binds the reference data member with the T*& argument and sets
the pointer to the null pointer value. The second constructor binds the reference
member with the pointer held by the T_var argument, and then calls delete on the
pointer (or string_free() in the case of the String_out type or T_free() in
the case of a T_var for an array type T). The third constructor, the copy constructor
binds the reference data member to the same pointer referenced by the data mem
the constructor argument. Assignment from another T_out copies the T* referenced
by the T_out argument to the data member. The overloaded assignment operator
T* simply assigns the pointer argument to the data member. Note that assignmen
1-26 C++ Language Mapping June 1999

1

e

 copy
r

e

s to
ration
y.

ed
cess

. With
s the

er’s
te an

1-3
not cause any previously-held pointer to be deleted; in this regard, the T_out type
behaves exactly as a T* . The T*& conversion operator returns the data member. Th
ptr() member function, which can be used to avoid having to rely on implicit
conversion, also returns the data member. The overloaded arrow operator (operator-
>()) allows access to members of the data structure pointed to by the T* data member.
Compliant applications may not call the overloaded operator->() unless the
T_out has been initialized with a valid non-null T* .

Assignment to a T_out from instances of the corresponding T_var type is disallowed
because there is no way to determine whether the application developer wants a
to be performed, or whether the T_var should yield ownership of its managed pointe
so it can be assigned to the T_out . To perform a copy of a T_var to a T_out , the
application should use new:

// C++
T_var t = ...;
my_out = new T(t.in());// heap-allocate a copy

The in() function called on t typically returns a const T&, suitable for invoking the
copy constructor of the newly-allocated T instance.

Alternatively, to make the T_var yield ownership of its managed pointer so it can b
returned in a T_out parameter, the application should use the T_var::_retn()
function:

// C++
T_var t = ...;
my_out = t._retn();// t yields ownership, no copy

Note that the T_out types are not intended to serve as general-purpose data type
be created and destroyed by applications; they are used only as types within ope
signatures to allow necessary memory management side-effects to occur properl

1.10 Mapping for Struct Types

An OMG IDL struct maps to C++ struct, with each OMG IDL struct member mapp
to a corresponding member of the C++ struct. This mapping allows simple field ac
as well as aggregate initialization of most fixed-length structs. To facilitate such
initialization, C++ structs must not have user-defined constructors, assignment
operators, or destructors, and each struct member must be of self-managed type
the exception of strings and object references, the type of a C++ struct member i
normal mapping of the OMG IDL member’s type.

For a string, wide string, or object reference member, the name of the C++ memb
type is not specified by the mapping; therefore, a compliant program cannot crea
object of that type. The behavior9 of the type is the same as the normal mapping
(char* for string, WChar* for wide string, and A_ptr for an interface A) except the
type’s copy constructor copies the member’s storage and its assignment operator
releases the member’s old storage. These types must also provide the in() ,
inout() , out() , and _retn() functions that their corresponding T_var types
provide to allow them to support the parameter passing modes specified in Table
C++ Language Mapping Mapping for Struct Types June 1999 1-27

1

me is
 the

.

o the

on page 1-104. A compliant mapping implementation also provides overloaded
operator<< (insertion) and operator>> (extraction) operators for using string
members and wide string members directly with C++ iostreams.

For anonymous sequence members (required for recursive structures), a type na
required for the member. This name is generated by prepending an underscore to
member name, and appending “_seq”. For example:

// IDL
struct node {

long value;
sequence<node, 2> operand;

};

This results in the following C++ code:

// C++
struct node {

typedef ... _operand_seq;
Long value;
_operand_seq operand;

};

In the C++ code shown above, the “...” in the _operand_seq typedef refers to an
implementation-specific sequence type. The name of this type is not standardized

Assignment between a string, wide string, or object reference member and a
corresponding T_var type (String_var , WString_var , or A_var) always results
in copying the data, while assignment with a pointer does not. The one exception t
rule for assignment is when a const char* or const WChar* is assigned to a
member, in which case the storage is copied.

When the old storage must not be freed (for example, it is part of the function’s
activation record), one can access the member directly as a pointer using the _ptr
field accessor. This usage is dangerous and generally should be avoided.

// IDL
struct FixedLen { float x, y, z; };

// C++
FixedLen x1 = {1.2, 2.4, 3.6};

9.Those implementations concerned with data layout compatibility with the C mapping in this
manual will also want to ensure that the sizes of these members match those of their C
mapping counterparts.
1-28 C++ Language Mapping June 1999

1

g of

d.

FixedLen_var x2 = new FixedLen;
x2->y = x1.z;

The example above shows usage of the T and T_var types for a fixed-length struct.
When it goes out of scope, x2 will automatically free the heap-allocated FixedLen
object using delete .

The following examples illustrate mixed usage of T and T_var types for variable-
length types, using the following OMG IDL definition:

// IDL
interface A;
struct Variable { string name; };

// C++
Variable str1; // str1.name is initially
empty
Variable_var str2 = new Variable;// str2->name is

// initially empty

char *non_const;
const char *const2;
String_var string_var;
const char *const3 = "string 1";
const char *const4 = "string 2";

str1.name = const3; // 1: free old storage, copy
str2->name = const4; // 2: free old storage, copy

In the example above, the name components of variables str1 and str2 both start
out as empty strings. On the line marked 1, const3 is assigned to the name
component of str1 . This results in the previous str1.name being freed, and since
const3 points to const data, the contents of const3 being copied. In this case,
str1.name started out as an empty string, so it must be freed before the copyin
const3 takes place. Line 2 is similar to line 1, except that str2 is a T_var type.

Continuing with the example:

// C++
non_const = str1.name; // 3: no free, no copy
const2 = str2->name; // 4: no free, no copy

On the line marked 3, str1.name is assigned to non_const . Since non_const is
a pointer type (char*), str1.name is not freed, nor are the data it points to copie
After the assignment, str1.name and non_const effectively point to the same
storage, with str1.name retaining ownership of that storage. Line 4 is identical to
line 3, even though const2 is a pointer to const char; str2->name is neither freed
nor copied because const2 is a pointer type.
C++ Language Mapping Mapping for Struct Types June 1999 1-29

1

use

iginal
ines

on or
// C++
str1.name = non_const; // 5: free, no copy
str1.name = const2; // 6: free old storage, copy

Line 5 involves assignment of a char* to str1.name , which results in the old
str1.name being freed and the value of the non_const pointer, but not the data it
points to, being copied. In other words, after the assignment str1.name points to the
same storage as non_const points to. Line 6 is the same as line 5 except that beca
const2 is a const char* , the data it points to are copied.

// C++
str2->name = str1.name; // 7: free old storage, copy
str1.name = string_var; // 8: free old storage, copy
string_var = str2->name; // 9: free old storage,copy

On line 7, assignment is performed to a member from another member, so the or
value is of the left-hand member is freed and the new value is copied. Similarly, l
8 and 9 involve assignment to or from a String_var , so in both cases the original
value of the left-hand side is freed and the new value is copied.

// C++
str1.name._ptr = str2.name; // 10: no free, no copy

Finally, line 10 uses the _ptr field accessor, so no freeing or copying takes place.
Such usage is dangerous and generally should be avoided.

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for structs so
that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementati
not, compliant programs use new to dynamically allocate structs and delete to free
them.

1.11 Mapping for Fixed Types

The C++ mapping for fixed is defined by the following class:

// C++
class Fixed
{

public:
// Constructors
Fixed(int val = 0);
Fixed(unsigned val);
Fixed(Long val);
Fixed(ULong val);
Fixed(LongLong val);
Fixed(ULongLong val);
Fixed(Double val);
Fixed(LongDouble val);
Fixed(const Fixed& val);
1-30 C++ Language Mapping June 1999

1

es.
pes,

 C++

Fixed(const char*);
~Fixed();

// Conversions
operator LongLong() const;
operator LongDouble() const;
Fixed round(UShort scale) const;
Fixed truncate(UShort scale) const;

// Operators
Fixed& operator=(const Fixed& val);
Fixed& operator+=(const Fixed& val);
Fixed& operator-=(const Fixed& val);
Fixed& operator*=(const Fixed& val);
Fixed& operator/=(const Fixed& val);

Fixed& operator++();
Fixed operator++(int);
Fixed& operator--();
Fixed operator--(int);
Fixed operator+() const;
Fixed operator-() const;
Boolean operator!() const;

// Other member functions
UShort fixed_digits() const;
UShort fixed_scale() const;

};

istream& operator>>(istream& is, Fixed& val);
ostream& operator<<(ostream& os, const Fixed& val);

Fixed operator + (const Fixed& val1, const Fixed& val2);
Fixed operator - (const Fixed& val1, const Fixed& val2);
Fixed operator * (const Fixed& val1, const Fixed& val2);
Fixed operator / (const Fixed& val1, const Fixed& val2);

Boolean operator > (const Fixed& val1, const Fixed& val2);
Boolean operator < (const Fixed& val1, const Fixed& val2);
Boolean operator >= (const Fixed& val1, const Fixed& val2);
Boolean operator <= (const Fixed& val1, const Fixed& val2);
Boolean operator == (const Fixed& val1, const Fixed& val2);
Boolean operator != (const Fixed& val1, const Fixed& val2);

The Fixed class is used directly by the C++ mapping for IDL fixed-point constant
values and for all intermediate results of arithmetic operations on fixed-point valu
For fixed-point parameters of IDL operations or members of IDL structured dataty
the implementation may use the Fixed type directly, or alternatively, may use a
different type, with an effectively constant digits and scale, that provides the same
interface and can be implicitly converted from/to the Fixed class. The name(s) of this
alternative class is not defined by this mapping. Since fixed-point types used as
C++ Language Mapping Mapping for Fixed Types June 1999 1-31

1

e

n be

l

f the
 the

the
ext
parameters of IDL operations must be named via an IDL typedef declaration, the
mapping must use the typedef to define the type of the operation parameter to mak
sure that server-side operation signatures are portable. Here is an example of the
mapping:

// IDL
typedef fixed<5,2> F;

interface A
{

void op(in F arg);
};

// C++
typedef Implementation_Defined_Class F;

class A
{

public:
...
void op(const F& arg);
...

};

The Fixed class has a number of constructors to guarantee that a fixed value ca
constructed from any of the IDL standard integer and floating point types. The
Fixed(char*) constructor converts a string representation of a fixed-point litera
into a real fixed-point value, with the trailing 'd' or 'D' optional. The Fixed class also
provides conversion operators back to the LongLong and LongDouble types. For
conversion to integral types, digits to the right of the decimal point are truncated. I
magnitude of the fixed-point value does not fit in the target conversion type, then
DATA_CONVERSION system exception is thrown.

The round and truncate functions convert a fixed value to a new value with the
specified scale. If the new scale requires the value to lose precision on the right,
round function will round away from zero values that are halfway or more to the n
absolute value for the new fixed precision. The truncate function always truncates
the value towards zero. For example:

// C++
Fixed f1 = "0.1";
Fixed f2 = "0.05";
Fixed f3 = "-0.005;

In this example, f1.round(0) and f1.truncate(0) both return 0,
f2.round(1) returns 0.1, f2.truncate(1) returns 0.0, f3.round(2) returns
-0.01 and f3.truncate(2) returns 0.00.
1-32 C++ Language Mapping June 1999

1

es

d at

of

e.
 the

nd

lue
the
ct

all
 that

rs and

ch
The fixed_digits and fixed_scale functions return the smallest digits and
scale value that can hold the complete fixed-point value. If the implementation us
alternative classes for operation parameters and structured type members, then
fixed_digits and fixed_scale return the constant digits and scale values
defined by the source IDL fixed-point type.

Arithmetic operations on the Fixed class must calculate the result exactly, using an
effective double precision (62 digit) temporary value. The results are then truncate
run time to fit in a maximum of 31 digits using the method defined in version 2.3
The Common Object Request Broker: Architecture and Specifications, OMG IDL
Syntax and Semantics chapter, Semantics section to determine the new digits and scal
If the result of any arithmetic operation produces more than 31 digits to the left of
decimal point, the DATA_CONVERSION exception will be thrown. If a fixed-point
value, used as an actual operation parameter or assigned to a member of an IDL
structured datatype, exceeds the maximum absolute value implied by the digits a
scale, the DATA_CONVERSION exception will be thrown.

The stream insertion and extraction operators << and >> convert a fixed-point va
to/from a stream. The exact definition of these operators may vary depending on
level of standardization of the C++ environment. These operators insert and extra
fixed-point values into the stream using the same format as for C++ floating point
types. In particular, the trailing ‘d’ or ‘D’ from the IDL fixed-point literal
representation is not inserted or extracted from the stream. These operators use
format controls appropriate to floating point defined by the stream classes except
they never use the scientific format.

1.11.1 Fixed T_var and T_out Types

Because fixed-point types are always passed by reference as operation paramete
returned by value, there is no need for a _var type for a fixed-point type. For each
IDL fixed-point typedef a corresponding _out type is defined as a reference to the
fixed-point type:

// IDL
typedef fixed<5,2> F;

// C++
typedef Implementation_Defined_Name F;
typedef F& F_out;

1.12 Mapping for Union Types

Unions map to C++ classes with access functions for the union members and
discriminant. Some member functions only provide read access to a member. Su
functions are called “accessor functions” or “accessors” for short. For example:

// C++
Long x() const;
C++ Language Mapping Mapping for Union Types June 1999 1-33

1

tions

by
ns”

ers
 can
on-

n of
cted
 a

ORB
so.

n
lt

fault
,

ant
t a

Here, x() is an accessor that returns the value of the member x of a union (of type
Long in this example).

Other member functions only provide write access to a union member. Such func
are called “modifier functions” or “modifiers” for short. For example:

// C++
void x(Long val);

Here, x() is a modifier that sets the value of the member x of a union (of type Long
in this example).

Still other union member functions provide read-write access to a union member
returning a reference to that member. Such functions are called “reference functio
or “referents” for short. For example:

// C++
S& w();

Here, w() is a referent to the member w (of type S) of a union.

The default union constructor performs no application-visible initialization of the
union. It does not initialize the discriminator, nor does it initialize any union memb
to a state useful to an application. (The implementation of the default constructor
do whatever type of initialization it wants to, but such initialization is implementati
dependent. No compliant application can count on a union ever being properly
initialized by the default constructor alone.) Assigning, copying, and the destructio
default-constructed unions are safe. Assignment from or copying a default-constru
union results in the target of the assignment or copy being initialized the same as
default-constructed union.

It is therefore an error for an application to access the union before setting it, but
implementations are not required to detect this error due to the difficulty of doing
The copy constructor and assignment operator both perform a deep-copy of their
parameters, with the assignment operator releasing old storage if necessary. The
destructor releases all storage owned by the union.

The union discriminant accessor and modifier functions have the name _d to both be
brief and to avoid name conflicts with the union members. The _d discriminator
modifier can only be used to set the discriminant to a value within the same unio
member. In addition to the _d accessor and modifier, a union with an implicit defau
member provides a _default() modifier function that sets the discriminant to a
legal default value. A union has an implicit default member if it does not have a de
case and not all permissible values of the union discriminant are listed. Assigning
copying, and the destruction of a union immediately after calling _default() are
safe. Assignment from or copying of such a union results in the target of the
assignment or copy having the same safe state as it would if its _default() function
were invoked.

Setting the union value through a modifier function automatically sets the discrimin
and may release the storage associated with the previous value. Attempting to ge
value through an accessor that does not match the current discriminant results in
1-34 C++ Language Mapping June 1999

1

nt
e to

nt.
lts in
undefined behavior. If a modifier for a union member with multiple legal discrimina
values is used to set the value of the discriminant, the union implementation is fre
set the discriminant to any one of the legal values for that member. The actual
discriminant value chosen under these circumstances is implementation-depende
Calling a referent for a member that does not match the current discriminant resu
undefined behavior.

The following example helps illustrate the mapping for union types:

// IDL
typedef octet Bytes[64];
struct S { long len; };
interface A;
valuetype Val;
union U switch (long) {

case 1: long x;
case 2: Bytes y;
case 3: string z;
case 4:
case 5: S w;
case 6: Val v;
default: A obj;

};

// C++
typedef Octet Bytes[64];
typedef Octet Bytes_slice;
class Bytes_forany { ... };
struct S { Long len; };
typedef ... A_ptr;
class Val ... ;
class U
{

public:
U();
U(const U&);
~U();
U &operator=(const U&);

void _d(Long);
Long _d() const;

void x(Long);
Long x() const;

void y(Bytes);
Bytes_slice *y() const;

void z(char*); // free old storage, no copy
void z(const char*); // free old storage,
void z(const String_var &);// free old storage, copy
C++ Language Mapping Mapping for Union Types June 1999 1-35

1

that
 of
s) or
s, but

r only
ently
er via

re the
e
e

fs for
const char *z() const;

void w(const S &); // deep copy
const S &w() const; // read-only access
S &w(); // read-write access

void v(Val*); // _remove_ref old valuetype,
// _add_ref argument

Val* v() const; // no _add_ref of return value

void obj(A_ptr); // release old objref,
// duplicate

A_ptr obj() const; // no duplicate
};

Accessor and modifier functions for union members provide semantics similar to
of struct data members. Modifier functions perform the equivalent of a deep-copy
their parameters, and their parameters should be passed by value (for small type
by reference to const (for larger types). Referents can be used for read-write acces
are only provided for the following types: struct , union , sequence , any, and fixed .

The reference returned from a reference function continues to denote that membe
for as long as the member is active. If the active member of the union is subsequ
changed, the reference becomes invalid, and attempts to read or write the memb
the reference result in undefined behavior.

For an array union member, the accessor returns a pointer to the array slice, whe
slice is an array with all dimensions of the original except the first (array slices ar
described in detail in Section 1.14, “Mapping For Array Types,” on page 1-46). Th
array slice return type allows for read-write access for array members via regular
subscript operators. For members of an anonymous array type, supporting typede
the array must be generated directly into the union. For example:

// IDL
union U switch (long) {

default: long array[20][20];
};

// C++
class U
{

public:
// ...
void array(long arg[20][20]);
typedef long _array_slice[20];
_array_slice * array();
// ...

};
1-36 C++ Language Mapping June 1999

1

score
ray
d in

ns a

tions
rn
rship

name
name,

.

The name of the supporting array slice typedef is created by prepending an under
and appending “_slice” to the union member name. In the example above, the ar
member named “array” results in an array slice typedef called “_array_slice” neste
the union class.

For string union members, the char* modifier results in the freeing of old storage
before ownership of the pointer parameter is assumed, while the const char*
modifier and the String_var modifier10 both result in the freeing of old storage
before the parameter’s storage is copied. The accessor for a string member retur
const char* to allow examination but not modification of the string storage.11

For object reference union members, object reference parameters to modifier func
are duplicated after the old object reference is released. An object reference retu
value from an accessor function is not duplicated because the union retains owne
of the object reference.

For anonymous sequence union members (required for recursive unions), a type
is required. This name is generated by prepending an underscore to the member
and appending “_seq”. For example:

// IDL
union node switch (long) {

case 0: long value;
case 1: sequence<node, 2> operand;

};

This results in the following C++:

// C++
class node {

public:
typedef ... _operand_seq;
...
// Member functions dealing with the operand
// member use _operand_seq for its type.
...

};

In the C++ code shown above, the “...” in the _operand_seq typedef refers to an
implementation-specific sequence type. The name of this type is not standardized

10.A separate modifier for String_var is needed because it can automatically convert to
both a char* and a const char* ; since unions provide modifiers for both of these
types, an attempt to set a string member of a union from a String_var would otherwise
result in an ambiguity error at compile time.

11.A return type of char* allowing read-write access could mistakenly be assigned to a
String_var , resulting in the String_var and the union both assuming ownership for
the string’s storage.
C++ Language Mapping Mapping for Union Types June 1999 1-37

1

le

e

on or
The restrictions for using the _d discriminator modifier function are shown by the
following examples, based on the definition of the union U shown above:

// C++
S s = {10};
U u;
u.w(s); // member w selected
u._d(4); // OK, member w selected
u._d(5); // OK, member w selected
u._d(1); // error, different member selected
A_ptr a = ...;
u.obj(a); // member obj selected
u._d(7); // OK, member obj selected
u._d(1); // error, different member selected
s = u.w(); // error, member w not active

As shown here, neither the _d modifier function nor the w referent can be used to
implicitly switch between different union members. The following shows an examp
of how the _default() member function is used:

// IDL
union Z switch(boolean) {

case TRUE: short s;
};

// C++
Z z;
z._default(); // implicit default member selected
Boolean disc = z._d(); // disc == FALSE
U u; // union U from previous example
u._default(); // error, no _default() provided

For union Z, calling the _default() modifier function causes the union’s value to b
composed solely of the discriminator value of FALSE, since there is no explicit default
member. For union U, calling _default() causes a compilation error because U has
an explicitly declared default case and thus no _default() member function. A
_default() member function is only generated for unions with implicit default
members.

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for unions so
that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementati
not, compliant programs use new to dynamically allocate unions and delete to free
them.
1-38 C++ Language Mapping June 1999

1

ength
n the

 the
The

length
ting a

e the
 length
te,
d that
value.

an the
r.

pping
1.13 Mapping for Sequence Types

A sequence is mapped to a C++ class that behaves like an array with a current l
and a maximum length. For a bounded sequence, the maximum length is implicit i
sequence’s type and cannot be explicitly controlled by the programmer. For an
unbounded sequence, the initial value of the maximum length can be specified in
sequence constructor to allow control over the size of the initial buffer allocation.
programmer may always explicitly modify the current length of any sequence.

For an unbounded sequence, setting the length to a larger value than the current
may reallocate the sequence data. Reallocation is conceptually equivalent to crea
new sequence of the desired new length, copying the old sequence elements zero
through length-1 into the new sequence, and then assigning the old sequence to b
same as the new sequence. Setting the length to a smaller value than the current
does not affect how the storage associated with the sequence is manipulated. No
however, that the elements orphaned by this reduction are no longer accessible an
their values cannot be recovered by increasing the sequence length to its original

For a bounded sequence, attempting to set the current length to a value larger th
maximum length given in the OMG IDL specification produces undefined behavio

For each different typedef naming an anonymous sequence type, a compliant ma
implementation provides a separate C++ sequence type. For example:

// IDL
typedef sequence<long> LongSeq;
typedef sequence<LongSeq, 3> LongSeqSeq;

// C++
class LongSeq // unbounded sequence
{

public:
LongSeq(); // default constructor
LongSeq(ULong max); // maximum constructor
LongSeq(// T *data constructor

ULong max,
ULong length,

Long *value,
Boolean release = FALSE

);
LongSeq(const LongSeq&);
~LongSeq();
...

};

class LongSeqSeq // bounded sequence
{

public:
LongSeqSeq(); // default constructor
LongSeqSeq(// T *data constructor

ULong length,
C++ Language Mapping Mapping for Sequence Types June 1999 1-39

1

in the
e
ded

he
ve).
the

d
ces, it

ce

l

th as

ssary.
ource

 length

her
ion,

This
LongSeq *value,
Boolean release = FALSE

);
LongSeqSeq(const LongSeqSeq&);
~LongSeqSeq();
...

};

For both bounded and unbounded sequences, the default constructor (as shown
example above) sets the sequence length equal to 0. For bounded sequences, th
maximum length is part of the type and cannot be set or modified, while for unboun
sequences, the default constructor also sets the maximum length to 0. Default
constructors for bounded and unbounded sequences need not allocate buffers
immediately.

Unbounded sequences provide a constructor that allows only the initial value of t
maximum length to be set (the “maximum constructor” shown in the example abo
This allows applications to control how much buffer space is initially allocated by
sequence. This constructor also sets the length to 0 and the release flag to TRUE.

The “T *data ” constructor (as shown in the example above) allows the length an
contents of a bounded or unbounded sequence to be set. For unbounded sequen
also allows the initial value of the maximum length to be set. For this constructor,
ownership of the buffer is determined by the release parameter—FALSE means the
caller owns the storage for the buffer and its elements, while TRUE means that the
sequence assumes ownership of the storage for the buffer and its elements. If
release is TRUE, the buffer is assumed to have been allocated using the sequen
allocbuf function, and the sequence will pass it to freebuf when finished with it.
The allocbuf and freebuf functions are described on Section 1.13.3, “Additiona
Memory Management Functions,” on page 1-45.

The copy constructor creates a new sequence with the same maximum and leng
the given sequence, copies each of its current elements (items zero through length–1),
and sets the release flag to TRUE.

The assignment operator deep-copies its parameter, releasing old storage if nece
It behaves as if the original sequence is destroyed via its destructor and then the s
sequence copied using the copy constructor.

If release=TRUE , the destructor destroys each of the current elements (items zero
through length–1), and destroys the underlying sequence buffer.

For an unbounded sequence, if a reallocation is necessary due to a change in the
and the sequence was created using the release=TRUE parameter in its constructor,
the sequence will deallocate the old storage for all elements and the buffer. If
release is FALSE under these circumstances, old storage will not be freed for eit
the elements or for the buffer before the reallocation is performed. After reallocat
the release flag is always set to TRUE.

For an unbounded sequence, the maximum() accessor function returns the total
number of sequence elements that can be stored in the current sequence buffer.
allows applications to know how many items they can insert into an unbounded
1-40 C++ Language Mapping June 1999

1

ype

e
nce
lt
s and
 the

e.
f
, such
ences

ts of a

st

ment

nd
 wide

 must

C++

ss
locks
the per-

s
 can
the
sequence without causing a reallocation to occur. For a bounded sequence,
maximum() always returns the bound of the sequence as given in its OMG IDL t
declaration.

The length() functions can be used to access and modify the length of the
sequence. Increasing the length of a sequence adds new elements at the tail. Th
newly-added elements behave as if they are default-constructed when the seque
length is increased. However, a sequence implementation may delay actual defau
construction until a newly-added element is first accessed. For sequences of string
wide strings, default element construction requires initialization of each element to
empty string or wide string. For sequences of object references, default element
construction requires initialization of each element to a suitably-typed nil referenc
For sequences of valuetypes, default element construction requires initialization o
each element to a null pointer. The elements of sequences of other complex types
as structs and sequences, are initialized by their default constructors. Union sequ
elements do not have any application-visible initialization; in particular, a default-
constructed union element is not safe for marshaling or access. Sequence elemen
basic type, such as ULong, have undefined default values.

The overloaded subscript operators (operator[]) return the item at the given index.
The non-const version must return something that can serve as an lvalue (i.e.,
something that allows assignment into the item at the given index), while the con
version must allow read-only access to the item at the given index.

The overloaded subscript operators may not be used to access or modify any ele
beyond the current sequence length. Before either form of operator[] is used on a
sequence, the length of the sequence must first be set using the length(ULong)
modifier function, unless the sequence was constructed using the T *data constructor.

For strings, wide strings, and object references, operator[] for a sequence must
return a type with the same semantics as the types used for string, wide string, a
object reference members of structs and arrays, so that assignment to the string,
string, or object reference sequence member via operator=() will release old
storage when appropriate. Note that whatever these special return types are, they
honor the setting of the release parameter in the T *data constructor with respect
to releasing old storage. A compliant mapping implementation also provides
overloaded operator<< (insertion) and operator>> (extraction) operators for
using string sequence elements and wide string sequence elements directly with
iostreams.

The release() accessor function returns the state of the sequence release flag.

The overloaded get_buffer() accessor and reference functions allow direct acce
to the buffer underlying a sequence. This can be very useful when sending large b
of data as sequences, such as sending image data as a sequence of octet, and
element access provided by the overloaded subscript operators is not sufficient.

The non-const get_buffer() reference function allows read-write access to the
underlying buffer. If its orphan argument is FALSE (the default), the sequence return
a pointer to its buffer, allocating one if it has not yet done so. The size of the buffer
be determined using the maximum() accessor. For bounded sequences, the size of
C++ Language Mapping Mapping for Sequence Types June 1999 1-41

1

uffer

y
s, the

gned
 the

ging

f the
the

nce
ated.

s
l the

he

ot be
al
on
se
large

is
e

e
returned buffer is equal to the sequence bound. The number of elements in the b
can be determined from the sequence length() accessor. The sequence maintains
ownership of the underlying buffer. Elements in the returned buffer may be directl
replaced by the caller. For sequences of strings, wide strings, and object reference
caller must use the sequence release() accessor to determine whether elements
should be freed (using string_free , wstring_free , or CORBA::release for
string, wide strings, and object references, respectively) before being directly assi
to. Because the sequence maintains a notion of the length and size of the buffer,
caller of get_buffer() shall not lengthen or shorten the sequence by directly
adding elements to the buffer or directly removing elements from the buffer. Chan
the length of the sequence shall be performed only by invoking the sequence
length() modifier function.

Alternatively, if the orphan argument to get_buffer() is TRUE, the sequence
yields ownership of the buffer to the caller. If orphan is TRUE and the sequence does
not own its buffer (i.e., its release flag is FALSE), the return value is a null pointer.
If the buffer is taken from the sequence using this form of get_buffer() , the
sequence reverts to the same state it would have if constructed using its default
constructor. The caller becomes responsible for eventually freeing each element o
returned buffer (for strings, wide string, and object references), and then freeing
returned buffer itself using freebuf .

The const get_buffer() accessor function allows read-only access to the seque
buffer. The sequence returns its buffer, allocating one if one has not yet been alloc
No direct modification of the returned buffer by the caller is permitted.

For the non-const get_buffer() reference function with an orphan argument of
FALSE, and for the const get_buffer() accessor function, the return value remain
valid until another non-const member function of the sequence is invoked, or unti
sequence is destroyed, whichever occurs first.

The replace() function allows the buffer underlying a sequence to be replaced. T
parameters to replace() are identical in type, order, and purpose to those for theT
*data constructor for the sequence.

Access to the underlying sequences buffers seems to imply that a sequence
implementation must use contiguous memory to hold the elements, but this need n
the case. A compliant sequence implementation could keep its elements in sever
separate memory buffers and relocate them to a single buffer only if the applicati
called the get_buffer() accessors. In fact, for applications that never invoke the
accessors, such an implementation would very likely be better suited to handling
sequences than one using a large single contiguous buffer.

For the T *data sequence constructor and for the buffer parameter of the
replace() function, the type of T for strings, wide strings, and object references
char* , CORBA::WChar* , and T_ptr , respectively. In other words, string buffers ar
passed as char** , wide string buffers as CORBA::WChar** , and object reference
buffers as T_ptr* . The return type of the non-const get_buffer() reference
function for sequences of strings is char** , CORBA::WChar** for sequences of
wide strings, and T_ptr* for sequences of object references. The return type of th
1-42 C++ Language Mapping June 1999

1

d
const get_buffer() accessor function for sequences of strings is const char*
const* , const CORBA::WChar* const* for sequences of wide strings, and
const T_ptr* for sequences of object reference.

1.13.1 Sequence Example

The example below shows full declarations for both a bounded and an unbounde
sequence.

// IDL
typedef sequence<T> V1; // unbounded sequence
typedef sequence<T, 2> V2; // bounded sequence

// C++
class V1 // unbounded sequence
{

public:
V1();
V1(ULong max);
V1(ULong max, ULong length, T *data,

Boolean release = FALSE);
V1(const V1&);
~V1();
V1 &operator=(const V1&);

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[](ULong index) const;

Boolean release() const;

void replace(ULong max, ULong length, T *data,
Boolean release = FALSE);

T* get_buffer(Boolean orphan = FALSE);
const T* get_buffer() const;

};
C++ Language Mapping Mapping for Sequence Types June 1999 1-43

1

t
class V2 // bounded sequence
{

public:
V2();
V2(ULong length, T *data, Boolean release = FALSE);
V2(const V2&);
~V2();
V2 &operator=(const V2&);

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[](ULong index) const;

Boolean release() const;

void replace(ULong length, T *data,
Boolean release = FALSE);

T* get_buffer(Boolean orphan = FALSE);
const T* get_buffer() const;

};

1.13.2 Using the “release” Constructor Parameter

Consider the following example:

// IDL
typedef sequence<string, 3> StringSeq;

// C++
char *static_arr[] = {"one", "two", "three"};
char **dyn_arr = StringSeq::allocbuf(3);
dyn_arr[0] = string_dup("one");
dyn_arr[1] = string_dup("two");
dyn_arr[2] = string_dup("three");

StringSeq seq1(3, static_arr);
StringSeq seq2(3, dyn_arr, TRUE);

seq1[1] = "2"; // no free, no copy
char *str = string_dup("2");
seq2[1] = str; // free old storage, no copy

In this example, both seq1 and seq2 are constructed using user-specified data, bu
only seq2 is told to assume management of the user memory (because of the
release=TRUE parameter in its constructor). When assignment occurs into
1-44 C++ Language Mapping June 1999

1

 can

ment

t

ded

n

 to
2,

e
 and

c
on or

. For
seq1[1] , the right-hand side is not copied, nor is anything freed because the
sequence does not manage the user memory. When assignment occurs into seq2[1] ,
however, the old user data must be freed before ownership of the right-hand side
be assumed, since seq2 manages the user memory. When seq2 goes out of scope, it
will call string_free for each of its elements and then call freebuf on the buffer
given to it in its constructor.

When the release flag is set to TRUE and the sequence element type is either a
string or an object reference type, the sequence will individually release each ele
before releasing the contents buffer. It will release strings using string_free , and it
will release object references using the release function from the CORBA
namespace.

In general, assignment should never take place into a sequence element via
operator[] unless release=TRUE due to the possibility for memory managemen
errors. In particular, a sequence constructed with release=FALSE should never be
passed as an inout parameter because previous versions of this specification provi
no means for the callee to determine the setting of the sequence release flag, and
thus the callee always had to assume that release was set to TRUE. Code that creates
a sequence with release=FALSE and then knowingly and correctly manipulates it i
that state, as shown with seq1 in the example above, is compliant, but care should
always be taken to avoid memory leaks under these circumstances.

As with other out and return values, out and return sequences must not be assigned
by the caller without first copying them. This is more fully explained in Section 1.2
“Argument Passing Considerations,” on page 1-100.

When a sequence is constructed with release=TRUE , a compliant application should
make no assumptions about the continued lifetime of the data buffer passed to th
constructor, since a compliant sequence implementation is free to copy the buffer
immediately free the original pointer.

1.13.3 Additional Memory Management Functions

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for sequences
so that dynamic allocation uses the same mechanism as the C language dynami
allocation functions. Whether these operators are overloaded by the implementati
not, compliant programs use new to dynamically allocate sequences and delete to
free them.

Sequences also provide additional memory management functions for their buffers
a sequence of type T, the following static member functions are provided in the
sequence class public interface:
C++ Language Mapping Mapping for Sequence Types June 1999 1-45

1

e
r

re
to

uffer

on the

g,

tring

ill
// C++
static T *allocbuf(ULong nelems);
static void freebuf(T *);

The allocbuf function allocates a vector of T elements that can be passed to thT
*data constructor and to the replace() member function. The length of the vecto
is given by the nelems function argument. The allocbuf function initializes each
element using its default constructor, except for strings and wide strings, which a
initialized to pointers to empty string, and object references, which are initialized
suitably-typed nil object references. A null pointer is returned if allocbuf for some
reason cannot allocate the requested vector.

Vectors allocated by allocbuf should be freed using the freebuf function. The
freebuf function ensures that the destructor for each element is called before the b
is destroyed, except for string and wide string elements, which are freed using
string_free() and wstring_free() , respectively, and object reference
elements, which are freed using CORBA::release() . The freebuf function will
ignore null pointers passed to it. Neither allocbuf nor freebuf may throw
CORBA exceptions.

1.13.4 Sequence T_var and T_out Types

In addition to the regular operations defined for T_var and T_out types, the T_var
and T_out for a sequence type also supports an overloaded operator[] that
forwards requests to the operator[] of the underlying sequence.12 This subscript
operator should have the same return type as that of the corresponding operator
underlying sequence type.

1.14 Mapping For Array Types

Arrays are mapped to the corresponding C++ array definition, which allows the
definition of statically-initialized data using the array. If the array element is a strin
wide string, or an object reference, then the mapping uses the same type as for
structure members. That is, the default constructor for string elements and wide s
elements initializes them to the empty string ("" and L"" , respectively), and
assignment to an array element that is a string, wide string, or object reference w
release the storage associated with the old value.

// IDL
typedef float F[10];
typedef string V[10];
typedef string M[1][2][3];
void op(out F p1, out V p2, out M p3);

12.Note that since T_var and T_out types do not handle const T* , there is no need to pro-
vide the const version of operator[] for Sequence_var and Sequence_out types.
1-46 C++ Language Mapping June 1999

1

ith the
 the

o
d

he

hat
// C++
typedef Float F[10];
typedef ... V[10]; // underlying type not shown
because
typedef ... M[1][2][3]; // it is implementation-dependent
F f1; F_var f2;
V v1; V_var v2;
M m1; M_var m2;
f(f2, v2, m2);
f1[0] = f2[1];
v1[1] = v2[1]; // free old storage, copy
m1[0][1][2] = m2[0][1][2]; // free old storage, copy

In the above example, the last two assignments result in the storage associated w
old value of the left-hand side being automatically released before the value from
right-hand side is copied.

As shown in Table 1-3 on page 1-104, out and return arrays are handled via pointer t
array slice, where a slice is an array with all the dimensions of the original specifie
except the first one. As a convenience for application declaration of slice types, t
mapping also provides a typedef for each array slice type. The name of the slice
typedef consists of the name of the array type followed by the suffix “_slice”. For
example:

// IDL
typedef long LongArray[4][5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];

Both the T_var type and the T_out type for an array should overload operator[]
instead of operator-> . The use of array slices also means that the T_var type and
the T_out type for an array should have a constructor and assignment operator t
each take a pointer to array slice as a parameter, rather than T* . The T_var for the
previous example would be:

// C++
class LongArray_var
{

public:
LongArray_var();
LongArray_var(LongArray_slice*);
LongArray_var(const LongArray_var &);
~LongArray_var();
LongArray_var &operator=(LongArray_slice*);
LongArray_var &operator=(const LongArray_var &);

LongArray_slice &operator[](ULong index);
const LongArray_slice &operator[](Ulong index) const;
C++ Language Mapping Mapping For Array Types June 1999 1-47

1

s for
o

name
ns

 is
3,
const LongArray_slice* in() const;
LongArray_slice* inout();
LongArray_slice* out();
LongArray_slice* _retn();

// other conversion operators to support
// parameter passing

};

Because arrays are mapped into regular C++ arrays, they present special problem
the type-safe any mapping described in “Mapping for the Any Type” on page 1-50. T
facilitate their use with the any mapping, a compliant implementation must also
provide for each array type a distinct C++ type whose name consists of the array
followed by the suffix _forany . These types must be distinct so as to allow functio
to be overloaded on them. Like Array_var types, Array_forany types allow
access to the underlying array type, but unlike Array_var , the Array_forany type
does not delete the storage of the underlying array upon its own destruction. This
because the Any mapping retains storage ownership, as described in Section 1.16.
“Extraction from any,” on page 1-55.

The interface of the Array_forany type is identical to that of the Array_var type,
but it may not be implemented as a typedef to the Array_var type by a compliant
implementation since it must be distinguishable from other types for purposes of
function overloading. Also, the Array_forany constructor taking an
Array_slice* parameter also takes a Boolean nocopy parameter, which defaults
to FALSE:

// C++
class Array_forany
{

public:
Array_forany(Array_slice*, Boolean nocopy = FALSE);

...
};

The nocopy flag allows for a non-copying insertion of an Array_slice* into an
Any.

Each Array_forany type must be defined at the same level of nesting as its Array
type.

For dynamic allocation of arrays, compliant programs must use special functions
defined at the same scope as the array type. For array T, the following functions will be
available to a compliant program:

// C++
T_slice *T_alloc();
T_slice *T_dup(const T_slice*);
void T_copy(T_slice* to, const T_slice* from);
void T_free(T_slice *);
1-48 C++ Language Mapping June 1999

1

t

rray
l

ent

C++,
w

s. For
The T_alloc function dynamically allocates an array, or returns a null pointer if i
cannot perform the allocation. The T_dup function dynamically allocates a new array
with the same size as its array argument, copies each element of the argument a
into the new array, and returns a pointer to the new array. If allocation fails, a nul
pointer is returned. The T_copy function copies the contents of the from array to the
to array. If either argument is a null pointer, T_copy does not attempt a copy and
results in no action being performed. The T_free function deallocates an array that
was allocated with T_alloc or T_dup . Passing a null pointer to T_free is
acceptable and results in no action being performed. The T_alloc , T_dup , and
T_free functions allow ORB implementations to utilize special memory managem
mechanisms for array types if necessary, without forcing them to replace global
operator new and operator new[] .

The T_alloc , T_dup , T_copy , and T_free functions may not throw CORBA
exceptions.

1.15 Mapping For Typedefs

A typedef creates an alias for a type. If the original type maps to several types in
then the typedef creates the corresponding alias for each type. The example belo
illustrates the mapping.

// IDL
typedef long T;
interface A1;
typedef A1 A2;
typedef sequence<long> S1;
typedef S1 S2;

// C++
typedef Long T;

// ...definitions for A1...

typedef A1 A2;
typedef A1_ptr A2_ptr;
typedef A1_var A2_var;

// ...definitions for S1...
class S1 { ... };

typedef S1 S2;
typedef S1_var S2_var;

For a typedef of an IDL type that maps to multiple C++ types, such as arrays, the
typedef maps to all of the same C++ types and functions that its base type require
example:
C++ Language Mapping Mapping For Typedefs June 1999 1-49

1

in
at
for
// IDL
typedef long array[10];
typedef array another_array;

// C++
// ...C++ code for array not shown...
typedef array another_array;
typedef array_var another_array_var;
typedef array_slice another_array_slice;
typedef array_forany another_array_forany;

inline another_array_slice *another_array_alloc() {
return array_alloc();

}

inline another_array_slice*
another_array_dup(another_array_slice *a) {

return array_dup(a);
}

inline void
another_array_copy(another_array_slice* to,

const another_array_slice* from)
{

array_copy(to, from);
}

inline void another_array_free(another_array_slice *a) {
array_free(a);

}

1.16 Mapping for the Any Type

A C++ mapping for the OMG IDL type any must fulfill two different requirements:

• Handling C++ types in a type-safe manner.

• Handling values whose types are not known at implementation compile time.

The first item covers most normal usage of the any type—the conversion of typed
values into and out of an any. The second item covers situations such as those
involving the reception of a request or response containing an any that holds data of a
type unknown to the receiver when it was created with a C++ compiler.

1.16.1 Handling Typed Values

To decrease the chances of creating an any with a mismatched TypeCode and value,
the C++ function overloading facility is utilized. Specifically, for each distinct type
an OMG IDL specification, overloaded functions to insert and extract values of th
type are provided by each ORB implementation. Overloaded operators are used
1-50 C++ Language Mapping June 1999

1

of

m
eans

t,

t
h

ay

DL

cts,
these functions so as to completely avoid any name space pollution. The nature
these functions, which are described in detail below, is that the appropriate TypeCode
is implied by the C++ type of the value being inserted into or extracted from the any.

Since the type-safe any interface described below is based upon C++ function
overloading, it requires C++ types generated from OMG IDL specifications to be
distinct. However, there are special cases in which this requirement is not met:

• As noted in Section 1.5, “Mapping for Basic Data Types,” on page 1-15, the
boolean , octet , char , and wchar OMG IDL types are not required to map to
distinct C++ types, which means that a separate means of distinguishing the
from each other for the purpose of function overloading is necessary. The m
of distinguishing these types from each other is described in Section 1.16.4,
“Distinguishing boolean, octet, char, wchar, bounded string, and bounded
wstring,” on page 1-57.

• Since all strings and wide strings are mapped to char* and WChar* ,
respectively, regardless of whether they are bounded or unbounded, another
means of creating or setting an any with a bounded string or wide string value is
necessary. This is described in Section 1.16.4, “Distinguishing boolean, octe
char, wchar, bounded string, and bounded wstring,” on page 1-57.

• In C++, arrays within a function argument list decay into pointers to their firs
elements. This means that function overloading cannot be used to distinguis
between arrays of different sizes. The means for creating or setting an any when
dealing with arrays is described below and in Section 1.14, “Mapping For Arr
Types,” on page 1-46.

1.16.2 Insertion into any

To allow a value to be set in an any in a type-safe fashion, an ORB implementation
must provide the following overloaded operator function for each separate OMG I
type T.

// C++
void operator<<=(Any&, T);

This function signature suffices for types that are normally passed by value:

• Short , UShort , Long , ULong, LongLong , ULongLong , Float , Double ,
LongDouble

• Enumerations

• Unbounded strings and wide strings (char* and WChar* passed by value)

• Object references (T_ptr)

• Pointers to valuetype s (T*)

For values of type T that are too large to be passed by value efficiently, such as stru
unions, sequences, Any, and exceptions, two forms of the insertion function are
provided.
C++ Language Mapping Mapping for the Any Type June 1999 1-51

1

the

e

-to

se the
ed

sing
// C++
void operator<<=(Any&, const T&);// copying form
void operator<<=(Any&, T*); // non-copying form

Note that the copying form is largely equivalent to the first form shown, as far as
caller is concerned.

These “left-shift-assign” operators are used to insert a typed value into an any as
follows.

// C++
Long value = 42;
Any a;
a <<= value;

In this case, the version of operator<<= overloaded for type Long must be able to
set both the value and the TypeCode properly for the any variable.

Setting a value in an any using operator<<= means that:

• For the copying version of operator<<= , the lifetime of the value in the any is
independent of the lifetime of the value passed to operator<<= . The
implementation of the any may not store its value as a reference or pointer to th
value passed to operator<<= .

• For the noncopying version of operator<<= , the inserted T* is consumed by the
any . The caller may not use the T* to access the pointed-to data after insertion,
since the any assumes ownership of it, and it may immediately copy the pointed
data and destroy the original.

• With both the copying and non-copying versions of operator<<= , any previous
value held by the Any is properly deallocated. For example, if the
Any(TypeCode_ptr,void*,TRUE) constructor was called to create the Any,
the Any is responsible for de-allocating the memory pointed to by the void*
before copying the new value.

Copying insertion of a string type or wide string type causes one of the following
functions to be invoked:

// C++
void operator<<=(Any&, const char*);
void operator<<=(Any&, const WChar*);

Since all string types are mapped to char* , and all wide string types are mapped to
WChar* , these insertion functions assume that the values being inserted are
unbounded. Section 1.16.4, “Distinguishing boolean, octet, char, wchar, bounded
string, and bounded wstring,” on page 1-57 describes how bounded strings and
bounded wide strings may be correctly inserted into an Any. Note that insertion of
wide strings in this manner depends on standard C++, in which wchar_t is a distinct
type. Code that must be portable across standard and older C++ compilers must u
Any::from_wstring helper. Noncopying insertion of both bounded and unbound
strings can be achieved using the Any::from_string helper type. Similarly,
noncopying insertion of bounded and unbounded wide strings can be achieved u
1-52 C++ Language Mapping June 1999

1

n

ns

r
the Any::from_wstring helper type. Both of these helper types are described i
Section 1.16.4, “Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring,” on page 1-57.

Note that the following code has undefined behavior in nonstandard C++
environments:

// C++
Any a = ...;
WChar wc;
a >>= wc; // undefined behavior

This code may erroneously extract an integer type in environments where wchar_t is
not a distinct type.

Because valuetype s may be represented legally using null pointers, a conforming
application may insert a null valuetype pointer into an Any.

Type-safe insertion of arrays uses the Array_forany types described in
Section 1.14, “Mapping For Array Types,” on page 1-46. Compliant implementatio
must provide a version of operator<<= overloaded for each Array_forany type.
For example:

// IDL
typedef long LongArray[4][5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];
class LongArray_forany { ... };

void operator<<=(Any &, const LongArray_forany &);

The Array_forany types are always passed to operator<<= by reference to
const. The nocopy flag in the Array_forany constructor is used to control whethe
the inserted value is copied (nocopy == FALSE) or consumed (nocopy == TRUE).
Because the nocopy flag defaults to FALSE, copying insertion is the default.

Because of the type ambiguity between an array of T and a T* , it is highly
recommended that portable code explicitly13 use the appropriate Array_forany type
when inserting an array into an any :

// IDL
struct S {... };
typedef S SA[5];

13.A mapping implementor may use the new C++ keyword “explicit” to prevent implicit con-
versions through the Array_forany constructor, but this feature is not yet widely available
in current C++ compilers.
C++ Language Mapping Mapping for the Any Type June 1999 1-53

1

ed.

of

 to by
 by
nal

f

// C++
struct S { ... };
typedef S SA[5];
typedef S SA_slice;
class SA_forany { ... };

SA s;
// ...initialize s...
Any a;
a <<= s; // line 1
a <<= SA_forany(s); // line 2

Line 1 results in the invocation of the noncopying operator<<=(Any&, S*) due
to the decay of the SA array type into a pointer to its first element, rather than the
invocation of the copying SA_forany insertion operator. Line 2 explicitly constructs
the SA_forany type and thus results in the desired insertion operator being invok

The noncopying version of operator<<= for object references takes the address
the T_ptr type.

// IDL
interface T { ... };

// C++
void operator<<=(Any&, T_ptr); // copying
void operator<<=(Any&, T_ptr*); // non-copying

The noncopying object reference insertion consumes the object reference pointed
T_ptr* ; therefore after insertion the caller may not access the object referred to
T_ptr since the any may have duplicated and then immediately released the origi
object reference. The caller maintains ownership of the storage for the T_ptr itself.

The noncopying version of operator<<= for valuetype s takes the address of the
T* pointer type.

// IDL
valuetype T { ... };

// C++
void operator<<=(Any&, T*); // copying
void operator<<=(Any&, T**); // non-copying

The noncopying valuetype insertion consumes the valuetype pointed to by the
pointer that T** points to. After insertion, the caller may not access the valuetype
instance pointed to by the pointer that T* points to. The caller maintains ownership o
the storage for the pointed-to T* itself.

In general, the copying versions of operator<<= are also supported on the
Any_var type. Note that due to the conversion operators that convert Any_var to
Any& for parameter passing, only those operator<<= functions defined as member
functions of any need to be explicitly defined for Any_var .
1-54 C++ Language Mapping June 1999

1

lue.
cts,
ed as

f the

-

1.16.3 Extraction from any

To allow type-safe retrieval of a value from an any , the mapping provides the
following operators for each OMG IDL type T:

// C++
Boolean operator>>=(const Any&, T&);

This function signature suffices for primitive types that are normally passed by va
For values of type T that are too large to be passed by value efficiently (such as stru
unions, sequences, Any, valuetypes, and exceptions) this function may be prototyp
follows:

// C++
Boolean operator>>=(const Any&, T*&); // deprecated
Boolean operator>>=(const Any&, const T*&);

The non-constant version of the operator will be deprecated in a future version o
mapping and should not be used.

The first form of this function is used only for the following types:

• Short , UShort , Long , ULong, LongLong , ULongLong , Float , Double ,
LongDouble

• Enumerations

• Unbounded strings and wide strings (const char* and const WChar* passed
by reference (i.e., const char*& and const WChar*&)14

• Object references (T_ptr)

For all other types, the second form of the function is used.

All versions of operator>>= implemented as member functions of class Any, such
as those for primitive types, should be marked as const .

This “right-shift-assign” operator is used to extract a typed value from an any as
follows:

// C++
Long value;
Any a;
a <<= Long(42);
if (a >>= value) {

// ... use the value ...
}

14.Note that extraction of wide strings in this manner depends on standard C++, in which
wchar_t is a distinct type. Code that must be portable across standard and older C++ com
pilers must use the to_wstring helper type.
C++ Language Mapping Mapping for the Any Type June 1999 1-55

1

ction

 the

e

he
In this case, the version of operator>>= for type Long must be able to determine
whether the Any truly does contain a value of type Long and, if so, copy its value into
the reference variable provided by the caller and return TRUE. If the Any does not
contain a value of type Long , the value of the caller’s reference variable is not
changed, and operator>>= returns FALSE.

For non-primitive types, such as struct, union, sequence, exception, and Any, extra
is done by pointer to const (valuetypes are extracted by pointer to non-const
because valuetype operations do not support const). For example, consider the
following IDL struct:

// IDL
struct MyStruct {

long lmem;
short smem;

};

Such a struct could be extracted from an any as follows:

// C++
Any a;
// ... a is somehow given a value of type MyStruct ...
const MyStruct *struct_ptr;
if (a >>= struct_ptr) {
// ... use the value ...
}

If the extraction is successful, the caller’s pointer will point to storage managed by
any , and operator>>= will return TRUE. The caller must not try to delete or
otherwise release this storage. The caller also should not use the storage after th
contents of the any variable are replaced via assignment, insertion, or the replace
function, or after the any variable is destroyed. Care must be taken to avoid using
T_var types with these extraction operators, since they will try to assume
responsibility for deleting the storage owned by the any .

If the extraction is not successful, the value of the caller’s pointer is set equal to t
null pointer, and operator>>= returns FALSE. Note that because valuetype s may
legally be represented as null pointers, however, a pointer to T extracted from an Any,
where T is a valuetype , may be null even when extraction is successful if the Any
holds a null valuetype pointer.

Correct extraction of array types relies on the Array_forany types described in
Section 1.14, “Mapping For Array Types,” on page 1-46.

// IDL
typedef long A[20];
typedef A B[30][40][50];

// C++
typedef Long A[20];
1-56 C++ Language Mapping June 1999

1

e
y,

 is

ing
typedef Long A_slice;
class A_forany { ... };
typedef A B[30][40][50];
typedef A B_slice[40][50];
class B_forany { ... };

Boolean operator>>=(const Any &, A_forany&);// for type A
Boolean operator>>=(const Any &, B_forany&); // for
type B

The Array_forany types are always passed to operator>>= by reference.

For strings, wide strings, and arrays, applications are responsible for checking th
TypeCode of the any to be sure that they do not overstep the bounds of the arra
string, or wide string object when using the extracted value.

The operator>>= is also supported on the Any_var type. Note that due to the
conversion operators that convert Any_var to const Any& for parameter passing,
only those operator>>= functions defined as member functions of any need to be
explicitly defined for Any_var .

1.16.4 Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring

Since the boolean , octet , char , and wchar OMG IDL types are not required to
map to distinct C++ types, another means of distinguishing them from each other
necessary so that they can be used with the type-safe any interface. Similarly, since
both bounded and unbounded strings map to char* , both bounded and unbounded
wide strings map to WChar* , and all fixed-point types map to the Fixed class,
another means of distinguishing them must be provided. This is done by introduc
several new helper types nested in the any class interface. For example, this can be
accomplished as shown next.

// C++
class Any
{

public:
// special helper types needed for boolean, octet,

char,
// and bounded string insertion
struct from_boolean {

from_boolean(Boolean b) : val(b) {}
Boolean val;

};
struct from_octet {

from_octet(Octet o) : val(o) {}
Octet val;

};
struct from_char {

from_char(Char c) : val(c) {}
C++ Language Mapping Mapping for the Any Type June 1999 1-57

1

Char val;
};
struct from_wchar {

from_wchar(WChar wc) : val(wc) {}
WChar val;

};
struct from_string {

from_string(char* s, ULong b,
Boolean n = FALSE) :

val(s), bound(b), nocopy(n) {}
from_string(const char* s, ULong b) :

val (const_cast<char*>(s)), bound(b),
nocopy (0) {}

char *val;
ULong bound;
Boolean nocopy;

};
struct from_wstring {

from_wstring(WChar* s, ULong b,
Boolean n = FALSE) :

val(s), bound(b), nocopy(n) {}
from_wstring(const WChar* s, ULong b) :

val(const_cast<WChar*>(s)), bound(b),
nocopy(0) {}

WChar *val;
ULong bound;
Boolean nocopy;

};
struct from_fixed {

from_fixed(const Fixed& f, UShort d, UShort s)
: val(f), digits(d), scale(s) {}

const Fixed& val;
UShort digits;
UShort scale;

};

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_wchar);
void operator<<=(from_octet);
void operator<<=(from_string);
void operator<<=(from_wstring);
void operator<<=(from_fixed);
1-58 C++ Language Mapping June 1999

1

// special helper types needed for boolean, octet,
// char, and bounded string extraction
struct to_boolean {

to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;

};
struct to_char {

to_char(Char &c) : ref(c) {}
Char &ref;

};
struct to_wchar {

to_wchar(WChar &wc) : ref(wc) {}
WChar &ref;

};
struct to_octet {

to_octet(Octet &o) : ref(o) {}
Octet &ref;

};
struct to_string {

to_string(const char *&s, ULong b)
: val(s), bound(b) {}
const char *&val;
ULong bound;

// the following constructor is deprecated
to_string(char *&s, ULong b) : val(s), bound(b) {}

};
struct to_wstring {

to_wstring(const WChar *&s, ULong b)
: val(s), bound(b) {}

const WChar *&val;
ULong bound;

// the following constructor is deprecated
to_wstring(WChar *&s, ULong b)

:val(s), bound(b) {}
};
struct to_fixed {

to_fixed(Fixed& f, UShort d, UShort s)
: val(f), digits(d), scale(s) {}

Fixed& val;
UShort digits;
UShort scale;

};

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
Boolean operator>>=(to_wchar) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_string) const;
Boolean operator>>=(to_wstring) const;
C++ Language Mapping Mapping for the Any Type June 1999 1-59

1

ext.

ded

nd

of
Boolean operator>>=(to_fixed) const;

// other public Any details omitted

private:
// these functions are private and not implemented
// hiding these causes compile-time errors for
// unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char &) const;

};

An ORB implementation provides the overloaded operator<<= and operator>>=
functions for these special helper types. These helper types are used as shown n

// C++
Boolean b = TRUE;
Any any;
any <<= Any::from_boolean(b);
// ...
if (any >>= Any::to_boolean(b)) {

// ...any contained a Boolean...
}

const char* p = "bounded";
any <<= Any::from_string(p, 8);
// ...
if (any >>= Any::to_string(p, 8)) {

// ...any contained a string<8>...
}

A bound value of zero passed to the appropriate helper type indicates an unboun
string or wide string.

For noncopying insertion of a bounded or unbounded string into an any , the nocopy
flag on the from_string constructor should be set to TRUE.

// C++
char* p = string_alloc(8);
// ...initialize string p...
any <<= Any::from_string(p, 8, 1); // any consumes p

The same rules apply for bounded and unbounded wide strings and the
from_wstring helper type. Note that the non-constant versions of the to_string
and to_wstring constructors will be removed in a future version of the mapping a
should not be used.

Assuming that boolean , char , and octet all map the C++ type unsigned char ,
the private and unimplemented operator<<= and operator>>= functions for
unsigned char will cause a compile-time error if straight insertion or extraction
any of the boolean , char , or octet types is attempted.
1-60 C++ Language Mapping June 1999

1

tion
sible,

ired

ted

 on
// C++
Octet oct = 040;
Any any;
any <<= oct; // this line will not compile
any <<= Any::from_octet(oct);// but this one will

It is important to note that the previous example is only one possible implementa
for these helpers, not a mandated one. Other compliant implementations are pos
such as providing them via in-lined static any member functions if boolean , char ,
and octet are in fact mapped to distinct C++ types. All compliant C++ mapping
implementations must provide these helpers, however, for purposes of portability.

In standard C++ environments, the mapping implementation must declare the
constructors of the from_ and to_ helper classes as explicit . This prevents
undesirable conversions via temporaries.

1.16.5 Widening to Object

Sometimes it is desirable to extract an object reference from an Any as the base
Object type. This can be accomplished using a helper type similar to those requ
for extracting Boolean , Char , and Octet :

// C++
class Any
{

public:
...
struct to_object {

to_object(Object_out obj) : ref(obj) {}
Object_ptr &ref;

};
Boolean operator>>=(to_object) const;
...

};

The to_object helper type is used to extract an object reference from an Any as the
base Object type. If the Any contains a value of an object reference type as indica
by its TypeCode , the extraction function operator>>=(to_object) explicitly
widens its contained object reference to Object and returns true, otherwise it returns
false. This is the only object reference extraction function that performs widening
the extracted object reference. Unlike for regular object reference extraction, the
lifetime of an object reference extracted using to_object is independent of that of
the Any that it is extracted from, and so the responsibility for invoking release on it
becomes that of the caller.
C++ Language Mapping Mapping for the Any Type June 1999 1-61

1

eate

f

1.16.6 Widening to Abstract Interface

The CORBA::Any::to_abstract_base type allows the contents of an Any to be
extracted as an AbstractBase if the entity stored in the Any is an object reference
type or a valuetype directly or indirectly derived from the AbstractBase base
class. The to_abstract_base type is shown below:

// C++
class Any {

public:
...
struct to_abstract_base {

to_abstract_base(AbstractBase_ptr& base)
: ref(base) {}

AbstractBase_ptr& ref;
};

Boolean operator>>=(to_abstract_base val) const;
...

};

See Section 1.18.1, “Abstract Interface Base,” on page 1-92 for a description of
AbstractBase .

1.16.7 Handling Untyped Values

Under some circumstances the type-safe interface to Any is not sufficient. An example
is a situation in which data types are read from a file in binary form and used to cr
values of type Any. For these cases, the Any class provides a constructor with an
explicit TypeCode and generic pointer:

// C++
Any(TypeCode_ptr tc, void *value, Boolean release = FALSE);

The constructor is responsible for duplicating the given TypeCode pseudo object
reference. If the release parameter is TRUE, then the Any object assumes ownership
of the storage pointed to by the value parameter. A compliant application should
make no assumptions about the continued lifetime of the value parameter once it has
been handed to an Any with release=TRUE , since a compliant Any implementation
is allowed to copy the value parameter and immediately free the original pointer. I
the release parameter is FALSE (the default case), then the Any object assumes the
caller will manage the memory pointed to by value . The value parameter can be a
null pointer.

The Any class also defines three unsafe operations:

// C++
void replace(

TypeCode_ptr,
void *value,
Boolean release = FALSE
1-62 C++ Language Mapping June 1999

1

 the
. The

 of

tency

r

ns

 a
);
TypeCode_ptr type() const;
const void *value() const;

The replace function is intended to be used with types that cannot be used with
type-safe insertion interface, and so is similar to the constructor described above
existing TypeCode is released and value storage deallocated, if necessary. The
TypeCode function parameter is duplicated. If the release parameter is TRUE, then
the Any object assumes ownership for the storage pointed to by the value parameter.
A compliant application should make no assumptions about the continued lifetime
the value parameter once it has been handed to the Any::replace function with
release=TRUE , since a compliant Any implementation is allowed to copy the
value parameter and immediately free the original pointer. If the release
parameter is FALSE (the default case), then the Any object assumes the caller will
manage the memory occupied by the value. The value parameter of the replace
function can be a null pointer.

For C++ mapping implementations that use Environment parameters to pass
exception information, the default release argument can be simulated by providing
two overloaded replace functions, one that takes a non-defaulted release
parameter and one that takes no release parameter. The second function simply
invokes the first with the release parameter set to FALSE.

Note that neither the constructor shown above nor the replace function is type-safe.
In particular, no guarantees are made by the compiler or runtime as to the consis
between the TypeCode and the actual type of the void* argument. The behavior of
an ORB implementation when presented with an Any that is constructed with a
mismatched TypeCode and value is not defined.

The type accessor function returns a TypeCode_ptr pseudo-object reference to the
TypeCode associated with the Any. Like all object reference return values, the calle
must release the reference when it is no longer needed, or assign it to a
TypeCode_var variable for automatic management.

The value function returns a pointer to the data stored in the Any. If the Any has no
associated value, the value function returns a null pointer. The type to which the
void* returned by the value function may be cast depends on the ORB
implementation; therefore, use of the value function is not portable across ORB
implementations and its usage is deprecated. Portable programs should use the
DynAny interface to access and modify the contents of an Any in those cases where
insertion and extraction operators are not sufficient. Note that ORB implementatio
are allowed to make stronger guarantees about the void* returned from the value
function, if so desired.

1.16.8 TypeCode Replacement

Because C++ typedef s are only aliases and do not define distinct types, inserting
type with a tk_alias TypeCode into an Any while preserving that TypeCode is not
possible. For example:
C++ Language Mapping Mapping for the Any Type June 1999 1-63

1

or

ses its
en

r’s

on or
// IDL
typedef long LongType;

// C++
Any any;
LongType val = 1234;
any <<= val;
TypeCode_var tc = any.type();
assert(tc->kind() == tk_alias); // assertion failure!
assert(tc->kind() == tk_long); // assertion OK

In this code, the LongType is an alias for CORBA::Long . Therefore, when the value
is inserted, standard C++ overloading mechanisms cause the insertion operator f
CORBA::Long to be invoked. In fact, because LongType is an alias for
CORBA::Long , an overloaded operator<<= for LongType cannot be generated
anyway.

In cases where the TypeCode in the Any must be preserved as a tk_alias
TypeCode , the application can use the type modifier function on the Any to replace
its TypeCode with an equivalent one. Revising the previous example:

// C++
Any any;
LongType val = 1234;
any <<= val;
any.type(_tc_LongType); // replace TypeCode
TypeCode_var tc = any.type();
assert(tc->kind() == tk_alias); // assertion OK

The type modifier function invokes the TypeCode::equivalent operation on the
TypeCode in the target Any, passing the TypeCode it received as an argument. If
TypeCode::equivalent returns true, the type modifier function replaces the original
TypeCode in the Any with its argument TypeCode . If the two TypeCode s are not
equivalent, the type modifier function raises the BAD_TYPECODE exception.

1.16.9 Any Constructors, Destructor, Assignment Operator

The default constructor creates an Any with a TypeCode of type tk_null , and no
value. The copy constructor calls _duplicate on the TypeCode_ptr of its Any
parameter and deep-copies the parameter’s value. The assignment operator relea
own TypeCode_ptr and deallocates storage for the current value if necessary, th
duplicates the TypeCode_ptr of its Any parameter and deep-copies the paramete
value. The destructor calls release on the TypeCode_ptr and deallocates storage
for the value, if necessary.

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for Anys so
that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementati
not, compliant programs use new to dynamically allocate anys and delete to free
them.
1-64 C++ Language Mapping June 1999

1

er
e
,

 and

nd
re

l

s
e

ns
nce
1.16.10 The Any Class

The full definition of the Any class can be found in “The Any Class” on page 1-65.

1.16.11 The Any_var Class

Since Anys are returned via pointer as out and return parameters (see Table 1-3 on
page 1-104), there exists an Any_var class similar to the T_var classes for object
references. Any_var obeys the rules for T_var classes described in Section 1.9,
“Mapping for Structured Types,” on page 1-21, calling delete on its Any* when it
goes out of scope or is otherwise destroyed. The full interface of the Any_var class is
shown in Section 1.41.6, “Any_var Class,” on page 1-154.

1.17 Mapping for Valuetypes

The IDL valuetype has features that make its C++ mapping unlike that of any oth
IDL type. Specifically, from an application perspective all other IDL types compris
either pure state or pure interface, but a valuetype may include both. Because of this
the C++ mapping for the valuetype is necessarily more restrictive in terms of
implementation than other parts of the C++ mapping.

An IDL valuetype is mapped to a C++ class with the same name as the IDL
valuetype . This class is an abstract base class (ABC), with pure virtual accessor
modifier functions corresponding to the state members of the valuetype , and pure
virtual functions corresponding to the operations of the valuetype .

A C++ class whose name is formed by prepending the string "OBV_" to the fully-
scoped name of the valuetype provides default implementations for the accessors a
modifiers of the ABC base class. The application developer then overrides the pu
virtual functions corresponding to valuetype operations in a concrete class derived
directly or indirectly from the OBV_ base class.

Applications are responsible for the creation of valuetype instances, and after
creation, they deal with those instances only via C++ pointers. Unlike object
references, which map to C++ _ptr types that may be implemented either as actua
C++ pointers or as C++ pointer-like objects, "handles" to C++ valuetype instances
are actual C++ pointers. This helps to distinguish them from object references.

Because valuetype supports the sharing of instances within other constructed type
(such as graphs), the lifetimes of C++ valuetype instances are managed via referenc
counting. Unlike the semantics of object reference counting, where neither duplicate
nor release actually affect the object implementation, reference counting operatio
for C++ valuetype instances are directly implemented by those instances. Refere
counting mix-in classes are provided by ORB implementations for use by valuetype
implementors (see Section 1.17.6, “Reference Counting Mix-in Classes,” on
page 1-73).

As for most other types in the C++ mapping, each valuetype also has an associated
C++ _var type that automates its reference counting.
C++ Language Mapping Mapping for Valuetypes June 1999 1-65

1

a
he

lic

of the
ure
ess

n the

ng

cal

turn a
ample:
All init initializers declared for a valuetype are mapped to pure virtual functions on
separate abstract C++ factory class. The class is named by appending “_init” to t
name of the valuetype (e.g., type A has a factory class named A_init) .

1.17.1 Valuetype Data Members

The C++ mapping for valuetype data members follows the same rules as the C++
mapping for unions, except that the accessors and modifiers are pure virtual. Pub
state members are mapped to public pure virtual accessor and modifier functions
C++ valuetype base class, and private state members are mapped to protected p
virtual accessor and modifier functions (so that derived concrete classes may acc
them). Portable applications that use OBV_ classes, including derived value type
classes, shall not access the actual data members of OBV_ classes, and ORB
implementations are free to make such members private. The only requirement o
actual data members in a concrete or partially-concrete class such as an OBV_ class is
that they be self-managing so that derived classes can correctly implement copyi
without needing direct access to them.

Like C++ unions, the accessor and modifier functions for valuetype state members do
not follow the regular C++ parameter passing rules. This is because they allow lo
program access to the state stored inside the valuetype instance. Modifier functions
perform the equivalent of a deep-copy of their parameters, and accessors that re
reference or pointer to a state member can be used for read-write access. For ex

// IDL
typedef octet Bytes[64];
struct S { ... };
interface A { ... };

valuetype Val {
public Val t;
private long v;
public Bytes w;
public string x;
private S y;
private A z;

};

// C++
typedef Octet Bytes[64];
typedef Octet Bytes_slice;
...
struct S { ... };

typedef ... A_ptr;

class Val : public virtual ValueBase {
public:

...
virtual Val* t() const = 0;
1-66 C++ Language Mapping June 1999

1

ve

d

s

d

virtual void t(Val*) = 0;

virtual const Bytes_slice* w() const = 0;
virtual Bytes_slice* w() = 0;
virtual void w(const Bytes) = 0;

virtual const char* x() const = 0;
virtual void x(char*) = 0;
virtual void x(const char*) = 0;
virtual void x(const String_var&) = 0;

protected:
virtual Long v() const = 0;
virtual void v(Long) = 0;

virtual const S& y() const = 0;
virtual S& y() = 0;
virtual void y(const S&) = 0;

virtual A_ptr z() const = 0;
virtual void z(A_ptr) = 0;
...

};

The following rules apply to the accessor and modifier functions shown in the abo
example:

• The t accessor function does not increment the reference count of the returne
valuetype . This implies that the caller of t does not adopt the return value.

• The t modifier function increments the reference count of its argument, then
decrements the reference count of the t member it is replacing before returning.

• The x(char*) modifier function frees the old string member and adopts its
argument.

• The x(const char*) modifier function frees the old string member and copie
its argument.

• The x(const String_var&) modifier function frees the old string member an
copies its argument.

• By returning a reference to a const S, the first y accessor function provides read-
only access to the y member.

• By returning a reference to an S, the second y accessor function provides read-write
access to the y member.

• The y modifier function deep-copies its S argument.

• The z accessor function does not invoke _duplicate on the object reference it
returns. This implies that the caller of z is not responsible for invoking release
on the return value.
C++ Language Mapping Mapping for Valuetypes June 1999 1-67

1

rs and

rting
types;

m

lue

alizer
ottom,
ll
ter

lt

ted to

 to as

ject
or the

r

• The z modifier function releases its old object reference corresponding to the z
member, then duplicates its argument before returning.

These rules correspond directly to the parameter passing rules for union accesso
modifiers as explained in Section 1.12, “Mapping for Union Types,” on page 1-33.

State members of anonymous array and sequence types require the same suppo
C++ typedefs as required for union members of anonymous array and sequence
see Section 1.12, “Mapping for Union Types,” on page 1-33 for more details.

1.17.2 Constructors, Assignment Operators, and Destructors

A C++ valuetype class defines a protected default constructor and a protected
virtual destructor. The default constructor is protected to allow only derived class
instances to invoke it, while the destructor is protected to prevent applications fro
invoking delete on pointers to value instances instead of using reference counting
operations. The destructor is virtual to provide for proper destruction of derived va
class instances when their reference counts drop to zero.

For the same reasons, a C++ OBV_ class defines a protected default constructor, a
protected constructor that takes an initializer for each valuetype data member, and a
protected default constructor. The parameters of the constructor that takes an initi
for each member appear in the same order as the data members appear, top to b
in the IDL valuetype definition, regardless of whether they are public or private. A
parameters for the member initializer constructor follow the C++ mapping parame
passing rules for in arguments of their respective types.

Portable applications shall not invoke a valuetype class copy constructor or defau
assignment operator. Due to the required value reference counting, the default
assignment operator for a value class shall be private and preferably unimplemen
completely disallow assignment of value instances.

1.17.3 Valuetype Operations

Operations declared on a valuetype are mapped to public pure virtual member
functions in the corresponding valuetype C++ class. (Note that state member
accessor and modifier functions are not considered to be operations—they have
different parameter passing rules than operations and so they are always referred
accessor and modifier functions.) None of the pure virtual member functions
corresponding to operations shall be declared const because unlike C++, IDL
provides no way to distinguish between operations that change the state of an ob
and those that merely access that state. This choice, similar to the choice made f
C++ mapping for operations declared in IDL interface types, has an impact on
parameter passing rules, as described in Section 1.22, “Argument Passing
Considerations,” on page 1-100. The alternative, declaring all pure virtual membe
functions as const , is less desirable because it would not allow member functions
inherited from interface classes to be invoked on const value instances, since all
such member functions are already mapped as non-const .
1-68 C++ Language Mapping June 1999

1

d in

ble
y

to
 to the
ment
ed.
The C++ signatures and memory management rules for valuetype operations (but
not state member accessor and modifier functions) are identical to those describe
Section 1.22, “Argument Passing Considerations,” on page 1-100 for client-side
interface operations.

A static _downcast function is provided by each valuetype class to provide a porta
way for applications to cast down the C++ inheritance hierarchy. This is especiall
required after an invocation of the _copy_value function (see Section 1.17.5,
“ValueBase and Reference Counting,” on page 1-70). If a null pointer is passed to
_downcast , it returns a null pointer. Otherwise, if the valuetype instance pointed
by the argument is an instance of the valuetype class being downcast to, a pointer
downcast-to class type is returned. If the valuetype instance pointed to by the argu
is not an instance of the valuetype class being downcast to, a null pointer is return

1.17.4 Valuetype Example

For example, consider the following IDL valuetype:

// IDL
valuetype Example {

short op1();
long op2(in Example x);
private short val1;
public long val2;

private string val3;
private float val4;
private Example val5;

};

The C++ mapping for this valuetype is:

// C++
class Example : public virtual ValueBase {

public:
virtual Short op1() = 0;
virtual Long op2(Example*) = 0;

virtual Long val2() const = 0;
virtual void val2(Long) = 0;

static Example* _downcast(ValueBase*);

protected:
Example();
virtual ~Example();

virtual Short val1() const = 0;
virtual void val1(Short) = 0;
C++ Language Mapping Mapping for Valuetypes June 1999 1-69

1

all
virtual const char* val3() const = 0;
virtual void val3(char*) = 0;
virtual void val3(const char*) = 0;
virtual void val3(const String_var&) = 0;

virtual Float val4() const = 0;
virtual void val4(Float) = 0;

virtual Example* val5() const = 0;
virtual void val5(Example*) = 0;

private:
// private and unimplemented
void operator=(const Example&);

};

class OBV_Example : public virtual Example {
public:

virtual Long val2() const;
virtual void val2(Long);

protected:
OBV_Example();
OBV_Example(Short init_val1, Long init_val2,

const char* init_val3, Float init_val4,
Example* init_val5);

virtual ~OBV_Example();

virtual Short val1() const;
virtual void val1(Short);

virtual const char* val3() const;
virtual void val3(char*);
virtual void val3(const char*);
virtual void val3(const String_var&);

virtual Float val4() const;
virtual void val4(Float);

virtual Example* val5() const;
virtual void val5(Example*);

// ...
};

1.17.5 ValueBase and Reference Counting

The C++ mapping for the ValueBase IDL type serves as an abstract base class for
C++ valuetype classes. ValueBase provides several pure virtual reference
counting functions inherited by all valuetype classes:
1-70 C++ Language Mapping June 1999

1

// C++
namespace CORBA {

class ValueBase {
public:

virtual ValueBase* _add_ref() = 0;
virtual void _remove_ref() = 0;
virtual ValueBase* _copy_value() = 0;
virtual ULong _refcount_value() = 0;

static ValueBase* _downcast(ValueBase*);

protected:
ValueBase();
ValueBase(const ValueBase&);
virtual ~ValueBase();

private:
void operator=(const ValueBase&);

};

}

Table 1-2 Operation Descriptions

Operation Description

_add_ref Used to increment the reference count of a
valuetype instance.

_remove_ref Used to decrement the reference count of a
valuetype instance and delete the instance when
the reference count drops to zero. Note that the
use of delete to destroy instances requires that
all valuetype instances be allocated using new.

_copy_value Used to make a deep copy of the valuetype
instance. The copy has no connections with the
original instance and has a lifetime independent
of that of the original. Since C++ supports
covariant return types, derived classes can
override the _copy_value function to return a
pointer to the derived class rather than
ValueBase* , but since covariant return types
are still not commonly supported by commercial
C++ compilers, the return value of
_copy_value can also be ValueBase* , even
for derived classes.
C++ Language Mapping Mapping for Valuetypes June 1999 1-71

1

 with

ctor,
opy

f

ms.

 a
 the

ting
The names of these operations begin with underscore to keep them from clashing
user-defined operations in derived valuetype classes.

ValueBase also provides a protected default constructor, a protected copy constru
and a protected virtual destructor. The copy constructor is protected to disallow c
construction of derived valuetype instances except from within derived class
functions, and the destructor is protected to prevent direct deletion of instances o
classes derived from ValueBase .

With respect to reference counting, ValueBase is intended to introduce only the
reference counting interface. Depending upon the inheritance hierarchy of a
valuetype class, its instances may require different reference counting mechanis
For example, the reference counting mechanisms needed for a valuetype class that
supports an interface are likely to be different from those needed for a regular
concrete valuetype class, since the former has object adapter issues to consider.
Therefore, ValueBase normally serves as a virtual base class multiply inherited into
valuetype class. One inheritance path is through the IDL inheritance hierarchy for
valuetype , since all valuetype s inherit from ValueBase , which provides the
reference counting interface. The other inheritance path is through the reference
counting implementation mix-in base class (see Section 1.17.6, “Reference Coun
Mix-in Classes,” on page 1-73), which itself also inherits from ValueBase .

1.17.5.1 CORBA Module Additions

The C++ mapping also adds two additional reference counting functions to the CORBA
namespace, as shown below:

// C++
namespace CORBA {

void add_ref(ValueBase* vb)
{

if (vb != 0) vb->_add_ref();
}

Operation Description

_copy_value (continued)
A compliant ORB implementation may use either
approach. For now, portable applications will not rely
on covariant return types and will instead use
downcasting1 to regain the most derived type of a
copied valuetype.

1. The C++ dynamic_cast<> operator may also be used to cast down the value hierarchy, but it
too is still not available in all C++ compilers and thus its use is still not portable at this time.

_refcount_value Returns the value of the reference count for the
valuetype instance on which it is invoked.
1-72 C++ Language Mapping June 1999

1

nting

e
nce

ine

in

 but

a

ets the
cted
 one.

void remove_ref(ValueBase* vb)
{

if (vb != 0) vb->_remove_ref();
}

// ...
}

These functions are provided for consistency with object reference reference cou
functions. They are similar in that unlike the _add_ref and _remove_ref member
functions, they can be called with null valuetype pointers. The CORBA::add_ref
function increments the reference count of the valuetype instance pointed to by the
function argument if non-null, or does nothing if the argument is a null pointer. Th
CORBA::remove_ref function behaves the same except it decrements the refere
count. (The implementations shown above are intended to specify the required
semantics of the functions, not to imply that conforming implementations must inl
the functions.)

1.17.6 Reference Counting Mix-in Classes

The C++ mapping provides two standard reference counting implementation mix-
base classes:

• CORBA::DefaultValueRefCountBase , which can serve as a base class for
any application-provided concrete valuetype class whose corresponding IDL value
type does not derive from any IDL interface s. For these types of valuetype
classes, applications are also free to use their own reference-counting
implementation mix-ins as long as they fulfill the ValueBase reference counting
interface.

• PortableServer::ValueRefCountBase , which must serve as a base class
for any application-provided concrete valuetype class whose corresponding IDL
valuetype does derive from one or more IDL interface s, and whose instances will
be registered with the POA as servants. If IDL interface inheritance is present,
instances of the application-provided concrete valuetype class will not be
registered with the POA, the CORBA::DefaultValueRefCountBase or an
application-specific reference counting implementation mix-in may be used as
base class instead.

Each of these classes shall be fully concrete and shall completely fulfill the
ValueBase reference counting interface, except that since they provide
implementation, not interface, they shall not provide support for downcasting. In
addition, each of these classes shall provide a protected default constructor that s
reference count of the instance to one, a protected virtual destructor, and a prote
copy constructor that sets the reference count of the newly-constructed instance to
Just as with the ValueBase base class, the default assignment operator should be
private and preferably unimplemented to completely disallow assignment.
C++ Language Mapping Mapping for Valuetypes June 1999 1-73

1

iting
 are

e

ng
te

lasses

s
s
n

. For
y
Note that it is the application-supplied concrete valuetype classes that must derive
from these mix-in classes, not the valuetype classes generated by the IDL compiler.
This is to avoid the need to inherit these mix-ins as virtual bases, or to avoid inher
multiple copies of the mix-ins (and thus multiple reference counts) if virtual bases
not employed. Also, only the final implementor of a valuetype knows whether it will
ever be used as a POA servant or not, and thus the implementor must specify th
desired reference counting mix-in.

1.17.7 Value Boxes

A value box class essentially provides a reference-counted version of its underlyi
type. Unlike normal valuetype classes, C++ classes for value boxes can be concre
since value boxes do not support methods, inheritance, or interfaces. Value box c
differ depending upon their underlying types.

To fulfill the ValueBase interface, all value box classes are derived from
CORBA::DefaultValueRefCountBase .

1.17.7.1 Parameter Passing for Underlying Boxed Type

All value box classes provide _boxed_in , _boxed_inout , and _boxed_out
member functions that allow the underlying boxed value to be passed to function
taking parameters of the underlying boxed type. The signatures of these function
depend on the parameter passing modes of the underlying boxed type. The retur
values of the _boxed_inout and _boxed_out functions shall be such that the
boxed value is referenced directly, allowing it to be replaced or set to a new value
example, invoking _boxed_out on a boxed string allows the actual string owned b
the value box to be replaced:

// IDL
valuetype StringValue string;
interface X {

void op(out string s);
};

// C++
StringValue* sval = new StringValue("string val");
X_var x = ...
x->op(sval->_boxed_out()); // boxed string is replaced

// by op() invocation

Assume the implementation of op is as follows:

// C++
void MyXImpl::op(String_out s)
{

s = string_dup("new string val");
}

1-74 C++ Language Mapping June 1999

1

uns

er.

ent

This

e
The return value of the _boxed_out function shall be such that the string value
boxed in the instance pointed to by sval is set to "new string val" after op
returns, with the instance pointed to by sval maintaining ownership of the string.

1.17.7.2 Basic Types, Enums, and Object References

For all the signed and unsigned integer types except for the fixed type, and for
boolean , octet , char , wchar , float , double , long double , and enumerated types,
and for typedefs of all of these, value box classes provide:

• A public default constructor. Note that except for the object reference case, the
value of the underlying boxed value will be indeterminate after this constructor r
(i.e., the default constructor does not initialize the boxed value to a given value).
This is because the built-in constructors for each of the basic types and
enumerations do not initialize instances of their types to particular values, eith
For boxed object references, this constructor sets the underlying boxed object
reference to nil.

• A public constructor that takes one argument of the underlying type. This argum
is used to initialize the value of the underlying boxed type.

• A public assignment operator that takes one argument of the underlying type.
argument is used to replace the value of the underlying boxed type.

• Public accessor and modifier functions for the boxed value. The accessor and
modifier functions are always named _value . For boxed object references, the
return value of the accessor is not a duplicate.

• Explicit conversion functions that allow the boxed value to be passed where its
underlying type is called for. These functions are named _boxed_in ,
_boxed_inout , and _boxed_out , and their return types match the in , inout ,
and out parameter passing modes, respectively, of the underlying boxed type.
Implicit conversions to the underlying type are not provided because values ar
normally handled by pointer.

• A public copy constructor.

• A public static _downcast function.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

An example value box class for an enumerated type is shown below:

// IDL
enum Color { red, green, blue };
valuetype ColorValue Color;

// C++
class ColorValue : public DefaultValueRefCountBase {

public:
ColorValue();
ColorValue(Color val);
C++ Language Mapping Mapping for Valuetypes June 1999 1-75

1

ifier

t

ct

ions
rs.
ColorValue(const ColorValue& val);

ColorValue& operator=(Color val);

Color _value() const;// accessor
void _value(Color val);// modifier

// explicit conversion functions for
// underlying boxed type
//
Color _boxed_in() const;
Color& _boxed_inout();
Color& _boxed_out();

static ColorValue* _downcast(ValueBase* base);

protected:
~ColorValue();

private:
void operator=(const ColorValue& val);

};

1.17.7.3 Struct Types

Value box classes for struct types map to classes that provide accessor and mod
functions for each struct member. Specifically, the classes provide:

• A public default constructor. The underlying boxed struct type is initialized as i
would be by its own default constructor.

• A public constructor that takes a single argument of type const T&, where T is the
underlying boxed struct type.

• A public assignment operator that takes a single argument of type const T&,
where T is the underlying boxed struct type.

• Public accessor and modifier functions, all named _value , for the underlying
boxed struct type. Two accessors are provided: one a const member function
returning const T&, and the other a non-const member function returning a T&.
The modifier function takes a single argument of type const T&.

• The _boxed_in , _boxed_inout , and _boxed_out functions that allow access
to the boxed value to pass it in signatures expecting the underlying boxed stru
type. The return values of these functions correspond to the in , inout , and out
parameter passing modes for the underlying boxed struct type, respectively.

• For each struct member, a set of accessor and modifier functions. These funct
have the same signatures as accessor and modifier functions for union membe

• A public copy constructor.

• A public static _downcast function.
1-76 C++ Language Mapping June 1999

1

type
• A protected destructor.

• A private and preferably unimplemented default assignment operator.

As with other value box classes, no implicit conversions to the underlying boxed
are provided since values are normally handled by pointer.

For example:

// IDL
struct S {

string str;
long len;

};
valuetype BoxedS S;

// C++
class BoxedS : public DefaultValueRefCountBase {

public:
BoxedS();
BoxedS(const S& val);
BoxedS(const BoxedS& val);

BoxedS& operator=(const S& val);

const S& _value() const;
S& _value();
void _value(const S& val);

const S& _boxed_in() const;
S& _boxed_inout();
S*& _boxed_out();

static BoxedS* _downcast(ValueBase* base);

const char* str() const;
void str(char* val);
void str(const char* val);
void str(const String_var& val);

Long len() const;
void len(Long val);

protected:
~BoxedS();

private:
void operator=(const BoxedS& val);

};
C++ Language Mapping Mapping for Valuetypes June 1999 1-77

1

value

 that

ing

ions
rns

,

ing.

al
1.17.7.4 String and WString Types

In order to allow boxed strings to be treated as normal strings where appropriate,
box classes for strings provide largely the same interface as the String_var class.
The only differences from the interface of the String_var class are:

• The value box class interface does not provide the in , inout , out , and _retn
functions that String_var provides. Rather, the value box class provides
replacements for these functions called _boxed_in , _boxed_inout , and
_boxed_out . They have mostly the same semantics and signatures as their
String_var counterparts, but their names have been changed to make it clear
they provide access to the underlying string, not to the value box itself.

• There are no overloaded operators for implicit conversion to the underlying str
type because values are normally handled by pointer.

In addition to most of the String_var interface, value box classes for strings
provide:

• Public accessor and modifier functions for the boxed string value. These funct
are all named _value . The single accessor function takes no arguments and retu
a const char* . There are three modifier functions, each taking a single
argument. One takes a char* argument which is adopted by the value box class
one takes a const char* argument which is copied, and one takes a const
String_var& from which the underlying string value is copied.

• A public default constructor that initializes the underlying string to an empty str

• Three public constructors that take string arguments. One takes a char* argument
which is adopted, one takes a const char* which is copied, and one takes a
const String_var& from which the underlying string value is copied. If the
String_var holds no string, the boxed string value is initialized to the empty
string.

• Three public assignment operators: one that takes a parameter of type char* which
is adopted, one that takes a parameter of type const char* which is copied, and
one that takes a parameter of type const String_var& from which the
underlying string value is copied. Each returns a reference to the object being
assigned to. If the String_var holds no string, the boxed string value is set equ
to the empty string.

• A public copy constructor.

• A public static _downcast function.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

An example of a value box class for a string is shown below:

// IDL
valuetype StringValue string;
1-78 C++ Language Mapping June 1999

1

ust be
// C++
class StringValue : public DefaultValueRefCountBase {

public:
// constructors
//
StringValue();
StringValue(const StringValue& val);
StringValue(char* str);
StringValue(const char* str);
StringValue(const String_var& var);

// assignment operators
//
StringValue& operator=(char* str);
StringValue& operator=(const char* str);
StringValue& operator=(const String_var& var);

// accessor
//
const char* _value() const;

// modifiers
//
void _value(char* str);
void _value(const char* str);
void _value(const String_var& var);

// explicit argument passing conversions for
// the underlying string
//
const char* _boxed_in() const;
char*& _boxed_inout();
char*& _boxed_out();

// ...other String_var functions such as overloaded
// subscript operators, etc....

static StringValue* _downcast(ValueBase* base);

protected:
~StringValue();

private:
void operator=(const StringValue& val);

};

Note that even though value box classes for strings provide overloaded subscript
operators, the fact that values are normally handled by pointer means that they m
dereferenced before the subscript operators can be used.
C++ Language Mapping Mapping for Valuetypes June 1999 1-79

1

rfaces

ype,

ns
tion

e

type

e

1.17.7.5 Union, Sequence, Fixed, and Any Types

Value boxes for these types map to classes that have exactly the same public inte
as the underlying boxed types, except that each has:

• In addition to the constructors provided by the class for the underlying boxed t
a public constructor that takes a single argument of type const T& , where T is the
underlying boxed type.

• An assignment operator that takes a single argument of type const T& , where T
is the underlying boxed type.

• Accessor and modifier functions for the underlying boxed value. All such functio
are named _value . There are two accessor functions, one a const member func
returning a const T& , and the other a non-const member function returning T&.
The modifier function takes a single argument of type const T& .

• The _boxed_in , _boxed_inout , and _boxed_out functions that allow access
to the boxed value to pass it in signatures expecting the underlying boxed valu
type. The return values of these functions correspond to the in , inout , and out
parameter passing modes for the underlying boxed type, respectively.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

As with other value box classes, no implicit conversions to the underlying boxed
are provided since values are normally handled by pointer.

Note that the value box class for sequence types provides overloaded subscript
operators (operator[]) just as a sequence class does. However, since values ar
normally handled by pointer, the value instance must be dereferenced before the
overloaded subscript operator can be applied to it.

Value box instances for the any type can be passed to the overloaded operators for
insertion and extraction by invoking the appropriate explicit conversion function:

// C++
AnyValueBox* val = ...
val->_boxed_inout() <<= something;
if (val->_boxed_in() >>= something_else) ...

Below is an example value box along with its corresponding C++ class:

// IDL
typedef sequence<long> LongSeq;
valuetype LongSeqValue LongSeq;

// C++
class LongSeqValue : public DefaultValueRefCountBase {

public:
LongSeqValue();
LongSeqValue(ULong max);
LongSeqValue(ULong max,
1-80 C++ Language Mapping June 1999

1

value
ray

 for

rlying

ay
ULong length,
Long* buf,
Boolean release = 0);

LongSeqValue(const LongSeq& init);
LongSeqValue(const LongSeqValue& val);

LongSeqValue& operator=(const LongSeq& val);

const LongSeq& _value() const;
LongSeq& _value();
void _value(const LongSeq&);

const LongSeq& _boxed_in() const;
LongSeq& _boxed_inout();
LongSeq*& _boxed_out();

static LongSeqValue* _downcast(ValueBase*);

ULong maximum() const;
ULong length() const;
void length(ULong len);

Long& operator[](ULong index);
Long operator[](ULong index) const;

protected:
~LongSeqValue();

private:
void operator=(const LongSeqValue&);

};

1.17.7.6 Array Types

In order to allow boxed arrays to be treated as normal arrays where appropriate,
box classes for arrays provide largely the same interface as the corresponding ar
_var class. The only differences from the interface of the _var class are:

• The value box class interface does not provide the in , inout , out , and _retn
functions that _var provides. Rather, the value box class provides replacements
these functions called _boxed_in , _boxed_inout , and _boxed_out . They
have mostly the same semantics and signatures as their _var counterparts, but their
names have been changed to make it clear that they provide access to the unde
array, not to the value box itself.

• There are no overloaded operators for implicit conversion to the underlying arr
type because values are normally handled by pointer.

In addition to most of the _var interface, value box classes for arrays provide:
C++ Language Mapping Mapping for Valuetypes June 1999 1-81

1

ons
ns a
nst
• Public accessor and modifier functions for the boxed array value. These functi
are named _value . The single accessor function takes no arguments and retur
pointer to array slice. The modifier function takes a single argument of type co
array.

• A public default constructor.

• A public constructor that takes a const array argument.

• A public assignment operator that takes a const array argument.

• A public copy constructor.

• A public static _downcast function.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

An example of a value box class for an array is shown below:

// IDL
typedef long LongArray[3][4];
valuetype ArrayValue LongArray;

// C++
typedef Long LongArray[3][4];
typedef Long LongArray_slice[4];
class ArrayValue : public DefaultValueRefCountBase {

public:
ArrayValue();
ArrayValue(const ArrayValue& val);
ArrayValue(const LongArray val);

ArrayValue& operator=(const LongArray val);

const LongArray_slice* _value() const;
LongArray_slice* _value();

void _value(const LongArray val);

// explicit argument passing conversions for
// the underlying array
//
const LongArray_slice* _boxed_in() const;
LongArray_slice* _boxed_inout();
LongArray_slice* _boxed_out();

// ...overloaded subscript operators...

static ArrayValue* _downcast(ValueBase* base);

protected:
~ArrayValue();
1-82 C++ Language Mapping June 1999

1

ust be

oes

r

y

irtual
se
is
" to

d

it
 of

ht

. It
een

rio
s.
private:
void operator=(const ArrayValue& val);

};

Note that even though value box classes for arrays provide overloaded subscript
operators, the fact that values are normally handled by pointer means that they m
dereferenced before the subscript operators can be used.

1.17.8 Abstract Valuetypes

Abstract IDL valuetype s follow the same C++ mapping rules as concrete IDL
valuetype s, except that because they have no data members, the IDL compiler d
not generate OBV_ classes for them.

1.17.9 Valuetype Inheritance

For an IDL valuetype derived from other valuetype s or that supports interface
types, several C++ inheritance scenarios are possible:

• Concrete value base classes are inherited as public virtual bases to allow for “ladde
style” implementation inheritance.

• Abstract value base classes are inherited as public virtual base classes, since the
may be multiply inherited in IDL.

• Interface classes supported by the IDL valuetype are not inherited. Instead, the
operations on the interface (and base interfaces, if any) are mapped to pure v
functions in the generated C++ base value class. In addition to this abstract ba
value class and the OBV_ class, the IDL compiler generates a POA skeleton for th
value type; the name of this skeleton is formed by prepending the string "POA_
the fully-scoped name of the valuetype . The base value class and the POA
skeleton of the interface type are public virtual base classes of this skeleton.

The reason that interface classes are not inherited is that valuetype instances, ike
POA servants, are themselves not object references. Providing this inheritance would
allow for error-prone code that implicitly widened pointers to valuetype instances to
C++ object references for the supported interfaces, but without first obtaining vali
object references for those valuetype instances from the POA. When such an
application attempted to use an invalid object reference obtained in this manner,
would encounter errors that could be difficult to track back to the implicit widening
the pointer to valuetype to object reference. The C++ language provides no hooks
into the implicit pointer-to-class widening mechanism by which an application mig
guard against this type of error.

Avoiding the derivation of valuetype classes from interface classes also separates
the lifetimes of valuetype instances from the lifetimes of object reference instances
would be surprising to an application if a valid object reference that had not yet b
released unexpectedly became invalid because another part of the program had
decremented the valuetype part of the object reference instance to zero. This scena
could be solved by the provision of an appropriate reference counting mix-in clas
C++ Language Mapping Mapping for Valuetypes June 1999 1-83

1

g

es

s do

ay
However, given that such an approach breaks local/remote transparency by havin
object reference release operations affect the servant, and given the associated
problems described in the preceding paragraphs, deriving valuetype classes from
interface classes is best avoided.

An example of the mapping for a valuetype that supports an interface is shown
below.

// IDL
interface A {

void op();
};

valuetype B supports A {
public short data;

};

// C++
class B : public virtual ValueBase {

public:
virtual void op() throw(SystemException) = 0;

virtual Short data() const = 0;
virtual void data(Short) = 0;

// ...
};

class POA_B : public virtual POA_A, public virtual B {
public:

virtual void op() throw(SystemException) = 0;
// ...

};

Note that valuetype operations inherited from interface s always include exception
specifications, just as skeleton classes do. See Section 1.37, “Implementing
Operations,” on page 1-142 for more details.

1.17.10 Valuetype Factories

Because concrete valuetype classes are provided by the application developer, the
creation of values is problematic under certain circumstances. These circumstanc
include:

• Unmarshaling. The ORB cannot know a priori about all potential concrete value
classes supplied by the application, and so the ORB unmarshaling mechanism
not possess the capability to directly create instances of those classes.

• Component Libraries. Portions of an application, such as parts of a framework, m
be limited to only manipulating valuetype instances while leaving creation of
those instances to other parts of the application.
1-84 C++ Language Mapping June 1999

1

++

ype,

d via

ver,

 to

w
1.17.10.1 ValueFactoryBase Class

Just as they provide concrete C++ valuetype classes, applications must also provide
factories for those concrete classes. The base of all value factory classes is the C
CORBA::ValueFactoryBase class:

// C++
namespace CORBA {

class ValueFactoryBase;
typedef ValueFactoryBase* ValueFactory;

class ValueFactoryBase
{
public:

virtual ~ValueFactoryBase();

virtual void _add_ref();
virtual void _remove_ref();

static ValueFactory _downcast(ValueFactory vf);

protected:
ValueFactoryBase();

private:
virtual ValueBase* create_for_unmarshal() = 0;

};
// ...

}

The C++ mapping for the IDL CORBA::ValueFactory native type is a pointer to a
ValueFactoryBase class, as shown above. Applications derive concrete factory
classes from ValueFactoryBase , and register instances of those factory classes
with the ORB via the ORB::register_value_factory function. If a factory is
registered for a given value type and no previous factory was registered for that t
the register_value_factory function returns a null pointer.

When unmarshaling value instances, the ORB needs to be able to call up to the
application to ask it to create those instances. Value instances are normally create
their type-specific value factories (see Section 1.17.10, “Valuetype Factories,” on
page 1-84) so as to preserve any invariants they might have for their state. Howe
creation for unmarshaling is different because the ORB has no knowledge of
application-specific factories, and in fact in most cases may not even have the
necessary arguments to provide to the type-specific factories.

To allow the ORB to create value instances required during unmarshaling, the
ValueFactoryBase class provides the create_for_unmarshal pure virtual
function. The function is private so that only the ORB, through implementation-
specific means (e.g., via a friend class), can invoke it. Applications are not expected
invoke the create_for_unmarshal function. Derived classes shall override the
create_for_unmarshal function and shall implement it such that it creates a ne
C++ Language Mapping Mapping for Valuetypes June 1999 1-85

1

urned

ck to

he
cted
t

 zero,

cur in

f one
value instance and returns a pointer to it. The caller assumes ownership of the ret
instance and shall ensure that _remove_ref is eventually invoked on it. Since the
create_for_unmarshal function returns a pointer to ValueBase , the caller may
use the downcasting functions supplied by value types to downcast the pointer ba
a pointer to a derived value type.

Once the ORB has created a value instance via the create_for_unmarshal
function, it can use the value data member modifier functions to set the state of t
new value instance from the unmarshaled data. How the ORB accesses the prote
value data member modifiers of the value is implementation-specific and does no
affect application portability.

The ValueFactoryBase uses reference counting to prevent itself from being
destroyed while still in use by the application. A ValueFactoryBase initially has a
reference count of one. Invoking _add_ref on a ValueFactoryBase increases its
reference count by one. Invoking _remove_ref on a ValueFactoryBase
decrements its reference count by one, and if the resulting reference count equals
_remove_ref invokes delete on its this pointer in order to destroy the factory.
For ORBs that operate in multi-threaded environments, the implementations of
ValueFactoryBase::_add_ref and ValueFactoryBase::_remove_ref
are thread-safe.

When a valuetype factory is registered with the ORB, the ORB invokes _add_ref
once on the factory before returning from register_value_factory . When the ORB
is done using that factory, the reference count is decremented once. This can oc
any of the following circumstances:

• If the factory is explicitly unregistered via unregister_value_factory the ORB
invokes _remove_ref once on the factory.

• If the factory is implicitly unregistered due to ORB::shutdown , the ORB is
responsible for invoking _remove_ref once on each registered factory.

• If the factory is replaced with a new invocation of register_value_factory , the
previously registered factory is returned to the caller who assumes ownership o
reference to that factory. When the caller is done with the factory, it invokes
_remove_ref once on that factory.

The caller of lookup_value_factory assumes ownership of one reference to the
factory. When the caller is done with the factory, it invokes _remove_ref once on
that factory.

The _downcast function on the factory allows the return type of the
ORB::lookup_value_factory function to be downcast to a pointer to a type-
specific factory (see Section 1.17.10, “Valuetype Factories,” on page 1-84). It is
important to note that the return value of the factory _downcast does not become the
memory management responsibility of the caller, and thus _remove_ref is not called
on it.
1-86 C++ Language Mapping June 1999

1

31).
1.17.10.2 ValueFactoryBase_var Class

For the convenience of automatically managing valuetype factory reference counts,
the CORBA namespace provides the ValueFactoryBase_var class. This class
behaves similarly to the PortableServer::ServantBase_var class for servant
memory management (see Section 1.36.3, “ServantBase_var Class,” on page 1-1

// C++
namespace CORBA
{

class ValueFactoryBase_var
{
public:

ValueFactoryBase_var() :_ptr(0) {}
ValueFactoryBase_var(ValueFactoryBase* p)

: _ptr(p) {}
ValueFactoryBase_var(const ValueFactoryBase_var& b)

: _ptr(b._ptr)
{

if (_ptr != 0) _ptr->_add_ref();
}
~ValueFactoryBase_var()
{

if (_ptr != 0) _ptr->_remove_ref();
}
ValueFactoryBase_var&
operator=(ValueFactoryBase* p)
{

if (_ptr != 0) _ptr->_remove_ref();
_ptr = p;

return *this;
}
ValueFactoryBase_var&
operator=(const ValueFactoryBaseBase_var& b)
{

if (_ptr != b._ptr) {
if (_ptr != 0) _ptr->_remove_ref();
if ((_ptr = b._ptr) != 0)

_ptr->_add_ref();
}
return *this;

}
ValueFactoryBase* operator->() const {return _ptr;}
ValueFactoryBase* in() const { return _ptr; }
ValueFactoryBase*& inout() { return _ptr; }
ValueFactoryBase*& out()
{

if (_ptr != 0) _ptr->_remove_ref();
_ptr = 0;
return _ptr;

}

C++ Language Mapping Mapping for Valuetypes June 1999 1-87

1

 are
own

 be
ss,

 the
he

ter
ValueFactoryBase* _retn()
{

ValueFactoryBase* retval = _ptr;
_ptr = 0;
return retval;

}

private:
ValueFactoryBase* _ptr;

};
// ...

}

The implementation shown above for the ValueFactoryBase_var is intended only
as an example that conveys required semantics. Variations of this implementation
conforming as long as they provide the same semantics as the implementation sh
here.

1.17.10.3 Type-Specific Value Factories

All valuetype s that have initializer operations declared for them also have type-
specific C++ value factory classes generated for them. For a valuetype A, the name of
the factory class, which is generated at the same scope as the value class, shall
A_init . Each initializer operation maps to a pure virtual function in the factory cla
and each of these initializers defined in IDL is mapped to an initializer function of
same name. Base valuetype initializers are not inherited, and so do not appear in t
factory class. The initializer parameters are mapped using normal C++ parameter
passing rules for in parameters. The return type of each initializer function is a poin
to the created valuetype .

For example, consider the following valuetype :

// IDL
valuetype V {

factory create_bool(boolean b);
factory create_(char c);
factory create_(octet o);
factory create_(short s, string p);
...

};

The factory class for the example given above will be generated as follows:

// C++
class V_init : public ValueFactoryBase {

public:
virtual ~V_init();

virtual V*
create_bool(Boolean val) = 0;
1-88 C++ Language Mapping June 1999

1

 each

s,

r

ery

d to

or
virtual V* create_char(Char val) =0;
virtual V* create_octet(Octet val)=0;
virtual V* create_other(Short s, const char* p) = 0;

static V_init* _downcast(ValueFactory vf);

protected:
V_init();

};

Each generated factory class has a public virtual destructor, a protected default
constructor, and a public _downcast function allowing downcasting from a pointer to
the base ValueFactoryBase class. Each also supplies a public pure virtual
create function corresponding to each initializer. Applications derive concrete
factory classes from these classes and register them with the ORB. Note that since
generated value factory derives from the base ValueFactoryBase , all derived
concrete factory classes shall also override the private pure virtual
create_for_unmarshal function inherited from ValueFactoryBase .

For valuetype s that have no initializers, there are no type-specific abstract factory
classes, but applications must still supply concrete factory classes. These classe
which are derived directly from ValueFactoryBase , need not supply _downcast
functions15, and only need to override the create_for_unmarshal function.

1.17.10.4 Unmarshaling Issues

When the ORB unmarshals a valuetype for a request handled via C++ static stubs o
skeletons, it tries to find a factory for the valuetype via the
ORB::lookup_value_factory operation. If the factory lookup fails, the client
application receives a CORBA::MARSHAL exception. Thus, applications utilizing
static stubs or skeletons must ensure that a valuetype factory is registered for ev
valuetype it expects to receive via static invocation mechanisms.

Because of their dynamic nature, applications using the DII or DSI are not expecte
have compile-time information for all the valuetype s they might receive. For these
applications, valuetype instances are represented as CORBA::Any , and so value
factories are not required to be registered with the ORB to allow such valuetype s to
be unmarshaled. However, value factories must be registered with the ORB and
available for lookup if the application attempts extraction of the valuetypes via the
statically-typed Any extraction functions. See “Extraction from any” on page 1-55 f
more details.

15. Since the factory class hierarchy has virtual functions in it, a C++ dynamic_cast can
always be used to traverse the factory inheritance hierarchy, but it is not portable since all
C++ compilers do not yet support it.
C++ Language Mapping Mapping for Valuetypes June 1999 1-89

1

1.17.11 Custom Marshaling

The C++ mappings for the IDL CORBA::CustomerMarshal ,
CORBA::DataOutputStream , and CORBA::DataInputStream types follow
normal C++ valuetype mapping rules.

1.17.12 Another Valuetype Example

// IDL
valuetype Node {

public long data;
public Node next;
void print();

Node change(in Node inval,
inout Node ioval,
out Node outval);

};

// C++
class Node : public virtual ValueBase
{

public:
virtual Long data() const = 0;
virtual void data(Long) = 0;

virtual Node* next() const = 0;
virtual void next(Node*) = 0;

virtual void print() = 0;
virtual Node* change(Node* inval,

Node*& ioval,
Node_out outval) = 0;

static Node* _downcast(ValueBase*);

protected:
Node();
virtual ~Node();

private:
// private and unimplemented
void operator=(const Node&);

};

class OBV_Node : public virtual Node
{

public:
virtual Long data() const;
virtual void data(Long);
1-90 C++ Language Mapping June 1999

1

types

nager

ager

ose

nt of

 on
e

ce

type
virtual Node* next() const;
virtual void next(Node*);

protected:
OBV_Node();
OBV_Node(Long data_init, Node* next_init);
virtual ~OBV_Node();

private:
// private and unimplemented
void operator=(const OBV_Node&);

};

1.17.13 Valuetype Members of Structs

As described in Section 1.9, “Mapping for Structured Types,” on page 1-21, struct
members are required to be self-managing. This results in the need for manager
for both strings and object references. Since valuetype s are handled by pointer,
similar to the way strings and object references are handled, they too require ma
types to represent them when they are used as struct members.

The valuetype instance manager types have semantics similar to that of the man
types for object references:

• Any assignment to a managed valuetype member causes that member to
decrement the reference count of the valuetype it is managing, if any.

• A valuetype pointer assigned to a managed valuetype member is adopted by the
member.

• A valuetype _var assigned to a managed valuetype member results in the
reference count of the instance being incremented. The _var types and valuetype
member manager types follow the same rules for widening assignment that th
for object references do.

• If the constructed type holding the managed valuetype member is assigned to
another constructed type (for example, an instance of a struct with a valuetype
member is assigned to another instance of the same struct), the reference cou
the managed valuetype instance in the struct on the right-hand side of the
assignment is incremented, while the reference count of the managed instance
the left-hand side is decremented. As usual in C++, assignment to self must b
guarded against to avoid any mishandling of the reference count.

• When it is destroyed, the managed valuetype member decrements the referen
count of the managed valuetype instance.

The semantics of valuetype managers described here provide for sharing of value
instances across constructed types by default. Each C++ valuetype also provides an
explicit copy function that can be used to avoid sharing when desired.
C++ Language Mapping Mapping for Valuetypes June 1999 1-91

1

ular
hich

es
h
ribed

es,
s that

nd
e
1.18 Mapping for Abstract Interfaces

The C++ mapping for abstract interfaces is almost identical to the mapping for reg
interfaces. Rather than defining a complete C++ mapping for abstract interfaces, w
would only duplicate much of the specification of the mapping for regular interfac
found in Section 1.3, “Mapping for Interfaces,” on page 1-6, only the ways in whic
the abstract interface mapping differs from the regular interface mapping are desc
here.

1.18.1 Abstract Interface Base

C++ classes for abstract interfaces are not derived from the CORBA::Object C++
class. In IDL, abstract interfaces have no common base. However, to facilitate
narrowing from an abstract interface base class down to derived abstract interfac
derived interfaces, and derived valuetype types, all abstract interface base classe
have no other base abstract interfaces derive directly from CORBA::AbstractBase .
This base class provides the following:

• a protected default constructor

• a protected copy constructor

• a protected pure virtual destructor

• a public static _duplicate function

• a public static _narrow function

• a public static _nil function

The AbstractBase class is shown below:

// C++
class AbstractBase;
typedef ... AbstractBase_ptr;// either pointer or class

class AbstractBase {
public:

static AbstractBase_ptr _duplicate(AbstractBase_ptr);
static AbstractBase_ptr _narrow(AbstractBase_ptr);
static AbstractBase_ptr _nil();

protected:
AbstractBase();
AbstractBase(const AbstractBase& val);
virtual ~AbstractBase() = 0;

};

The _duplicate function operates polymorphically over both object references a
valuetype types. If an AbstractBase_ptr that actually refers to an object referenc
is passed to the _duplicate function, the object reference is duplicated and a
1-92 C++ Language Mapping June 1999

1

ype

ing,

t

ce

to

 for

upplied
a
e of

nce
can
ch
asses
duplicate object reference is returned. Otherwise, the argument refers to a valuet
instance, so the _add_ref function is called on the valuetype and the argument is
returned. If the argument is a nil AbstractBase_ptr , the return value is nil.

The implementation of AbstractBase::_narrow merely passes its argument to
_duplicate and uses the value it returns as its own return value. Strictly speak
the _narrow function is not needed in the AbstractBase interface because it is of
little use to narrow an AbstractBase to its own type, but it is required by all
conforming implementations to make writing C++ templates that deal with abstrac
interfaces easier (AbstractBase does not present a special case).

As with regular object references, the _nil function returns a typed AbstractBase
nil reference.

Both the is_nil and release functions in the CORBA namespace are overloaded to
handle abstract interface references:

// C++
namespace CORBA {

Boolean is_nil(AbstractBase_ptr);
void release(AbstractBase_ptr);

}

These behave the same as their object reference counterparts. Note that release is
expected to operate polymorphically over both valuetype types and object referen
types. If its argument is nil, it does nothing. If its argument refers to a valuetype
instance, it invokes _remove_ref on that instance. Otherwise, its argument refers
an object reference, on which it invokes CORBA::release for object references.

1.18.2 Client Side Mapping

The client side mapping for abstract interfaces is almost identical to the mapping
object references, except:

• C++ classes for abstract interfaces derive from CORBA::AbstractBase , not
CORBA::Object .

• Because abstract interface classes can serve as base classes for application-s
concrete valuetype classes, they shall provide a protected default constructor,
protected copy constructor, and a protected destructor (which is virtual by virtu
inheritance from AbstractBase).

• The mapping for object reference classes does not specify the type of inherita
used for base object reference classes. However, because abstract interfaces
serve as base classes for application-supplied concrete valuetype classes, whi
themselves can be derived from regular interface classes, abstract interface cl
shall always be inherited as public virtual base classes.

• Inserting an abstract interface reference into a CORBA::Any operates
polymorphically; either the object reference or valuetype to which the abstract
interface reference refers is what actually gets inserted into the Any. Because
abstract interfaces cannot actually be inserted into an Any, there is no need for
C++ Language Mapping Mapping for Abstract Interfaces June 1999 1-93

1

e,”

cal

pes

t
.9,
r the

A
less

ct to
mpty

free
ines a
lizes
g

pes

icit
abstract interface extraction operators, either. The
CORBA::Any::to_abstract_base type allows the contents of an Any to be
extracted as an AbstractBase if the entity stored in the Any is an object
reference type or a valuetype directly or indirectly derived from the
AbstractBase base class. See Section 1.16.6, “Widening to Abstract Interfac
on page 1-62 for details.

Other than that, the mapping for abstract interfaces is identical to that for regular
interfaces, including the provision of _var types, _out types, manager types for
struct, sequence, and array members, identical memory management, and identi
C++ signatures for operations.

Both interfaces that are derived from one or more abstract interfaces, and valuety
that support one or more abstract interfaces support implicit widening to the _ptr
type for each abstract interface base class. Specifically, the T* for valuetype T and
the T_ptr type for interface type T support implicit widening to the Base_ptr type
for abstract interface type Base . The only exception to this rule is for valuetypes tha
directly or indirectly support one or more regular interface types (see Section 1.17
“Valuetype Inheritance,” on page 1-83). In these cases, it is the object reference fo
valuetype, not the pointer to the valuetype, that supports widening to the abstract
interface base.

1.19 Mapping for Exception Types

An OMG IDL exception is mapped to a C++ class that derives from the standard
UserException class defined in the CORBA module (see Section 1.1.4, “CORB
Module,” on page 1-5). The generated class is like a variable-length struct, regard
of whether or not the exception holds any variable-length members. Just as for
variable-length structs, each exception member must be self-managing with respe
its storage. String and wide string exception members must be initialized to the e
string ("" and L"" , respectively) by the default constructor for the exception.

The copy constructor, assignment operator, and destructor automatically copy or
the storage associated with the exception. For convenience, the mapping also def
constructor with one parameter for each exception member—this constructor initia
the exception members to the given values. For exception types that have a strin
member, this constructor should take a const char* parameter, since the
constructor must copy the string argument. Similarly, constructors for exception ty
that have an object reference member must call _duplicate on the corresponding
object reference constructor parameter. The default constructor performs no expl
member initialization.

// C++
class Exception
{

public:
virtual ~Exception();
virtual void _raise() const = 0;

};
1-94 C++ Language Mapping June 1999

1

 of an

.

t

.

The Exception base class is abstract and may not be instantiated except as part
instance of a derived class. It supplies one pure virtual function to the exception
hierarchy: the _raise() function. This function can be used to tell an exception
instance to throw itself so that a catch clause can catch it by a more derived type
Each class derived from Exception implements _raise() as follows:

// C++
void SomeDerivedException::_raise() const
{

throw *this;
}

For environments that do not support exception handling, please refer to
Section 1.42.2, “Without Exception Handling,” on page 1-164 for information abou
the _raise() function.

The UserException class is derived from a base Exception class, which is also
defined in the CORBA module.

All standard exceptions are derived from a SystemException class, also defined in
the CORBA module. Like UserException , SystemException is derived from
the base Exception class. The SystemException class interface is shown below

// C++
enum CompletionStatus {

COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};

class SystemException : public Exception
{

public:
SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

virtual void _raise() const = 0;

CompletionStatus completed() const;
void completed(CompletionStatus);

};

The default constructor for SystemException causes minor() to return 0 and
completed() to return COMPLETED_NO.

Each specific system exception is derived from SystemException :
C++ Language Mapping Mapping for Exception Types June 1999 1-95

1

e

 lets
// C++
class UNKNOWN : public SystemException { ... };
class BAD_PARAM : public SystemException { ... };
// etc.

All specific system exceptions are defined within the CORBA module.

This exception hierarchy allows any exception to be caught by simply catching th
Exception type:

// C++
try {

...
} catch (const Exception &exc) {

...
}

Alternatively, all user exceptions can be caught by catching the UserException
type, and all system exceptions can be caught by catching the SystemException
type:

// C++
try {

...
} catch (const UserException &ue) {

...
} catch (const SystemException &se) {

...
}

Naturally, more specific types can also appear in catch clauses.

Exceptions are normally thrown by value and caught by reference. This approach
the exception destructor release storage automatically.

The Exception class provides for downcasting within the exception hierarchy:

// C++
class UserException : public Exception
{

public:
static UserException *_downcast(Exception *);
static const UserException *_downcast(

const Exception *
);

virtual void _raise() const = 0;

// ...
};

class SystemException : public Exception
1-96 C++ Language Mapping June 1999

1

he

++

. In

ved

ing

ject
{
public:

static SystemException *_downcast(Exception *);
static const SystemException *_downcast(

const Exception *
);

virtual void _raise() const = 0;

// ...
};

Each exception class supports an overloaded static member function named
_downcast . The parameter to the _downcast calls is a pointer to a const or non-
const instance of the base class Exception . If the parameter is a null pointer, the
return type of _downcast is a null pointer. If the actual (run time) type of the
parameter exception can be widened to the requested exception’s type, then
_downcast will return a valid pointer to the parameter Exception . Otherwise,
_downcast will return a null pointer. The version of _downcast overloaded to take
a pointer to a const Exception returns a pointer to const in order to preserve
const -correctness.

Unlike the _narrow operation on object references, the _downcast operation on
exceptions is equivalent to the C++ dynamic_cast operator in that it returns a
suitably-typed pointer to the same exception parameter, not a pointer to a new
exception. If the original exception goes out of scope or is otherwise destroyed, t
pointer returned by _downcast is no longer valid. The semantics for _downcast
are thus the same as for valuetype as described in Section 1.17.3, “Valuetype
Operations,” on page 1-68.

For application portability, conforming C++ mapping implementations built using C
compilers that support the standard C++ Run Time Type Information (RTTI)
mechanisms still need to support downcasting for the Exception hierarchy. RTTI
supports, among other things, determination of the run-time type of a C++ object
particular, the dynamic_cast<T*> operator16 allows for downcasting from a base
pointer to a more derived pointer if the object pointed to really is of the more deri
type. This operator is not useful for narrowing object references, since it cannot
determine the actual type of remote objects, but it can be used by the C++ mapp
implementation to downcast within the exception hierarchy.

Previous versions of this mapping provided support for downcasting via a static
member function called _narrow , which had exactly the same semantics as
_downcast . Due to confusion over memory management differences between ob
reference _narrow functions and exception _narrow functions, the exception
_narrow function is now deprecated in favor of _downcast . Portable applications
shall use _downcast for exception downcasting, not _narrow . ORB

16.It is unlikely that a compiler would support RTTI without supporting exceptions, since much
of a C++ exception handling implementation is based on RTTI mechanisms.
C++ Language Mapping Mapping for Exception Types June 1999 1-97

1

that
 type

ling

er
implementations that provide _narrow functions for exceptions for purposes of
backwards compatibility shall provide overloaded _narrow functions for both const
and non-const Exception* , same as for _downcast .

1.19.1 UnknownUserException

Request invocations made through the DII may result in user-defined exceptions
cannot be fully represented in the calling program because the specific exception
was not known at compile-time. The mapping provides the
UnknownUserException so that such exceptions can be represented in the cal
process:

// C++
class UnknownUserException : public UserException
{

public:
Any &exception();

};

As shown here, UnknownUserException is derived from UserException . It
provides the exception() accessor that returns an Any holding the actual
exception. Ownership of the returned Any is maintained by the
UnknownUserException —the Any merely allows access to the exception data.
Conforming applications should never explicitly throw exceptions of type
UnknownUserException —it is intended for use with the DII.

1.19.2 Any Insertion and Extraction for Exceptions

Conforming implementations shall generate Any insertion and extraction operators
(operator<<= and operator>>= , respectively) that allow all system and user
exceptions to be correctly inserted into and extracted from Any. Both copying and non-
copying forms of the Any insertion operator shall be provided for all system and us
exceptions.

In addition, conforming mapping implementations must support Any insertion (but not
extraction) for CORBA::Exception . This is required to allow DSI-based
applications to catch exceptions as CORBA::Exception& and store them into a
ServerRequest :

// C++
try {

// ...
} catch (Exception& exc) {

Any any;
any <<= exc;
server_request->set_exception(any);

}

1-98 C++ Language Mapping June 1999

1

 read-
me),

 and
egular

there

tion

is
e

ws
C++
Note that this shall result in both the TypeCode and value for the actual derived
exception type being stored into the Any. Both copying and non-copying forms of Any
insertion for CORBA::Exception shall be provided:

// C++
void operator<<=(Any&, const Exception&);
void operator<<=(Any&, const Exception*);

1.20 Mapping For Operations and Attributes

An operation maps to a C++ function with the same name as the operation. Each
write attribute maps to a pair of overloaded C++ functions (both with the same na
one to set the attribute’s value and one to get the attribute’s value. The set function
takes an in parameter with the same type as the attribute, while the get function takes
no parameters and returns the same type as the attribute. An attribute marked
“ readonly” maps to only one C++ function, to get the attribute’s value. Parameters
return types for attribute functions obey the same parameter passing rules as for r
operations.

OMG IDL oneway operations are mapped the same as other operations; that is,
is no way to know by looking at the C++ whether an operation is oneway or not.

The mapping does not define whether exceptions specified for an OMG IDL opera
are part of the generated operation’s type signature or not.

// IDL
interface A
{

void f();
oneway void g();
attribute long x;

};

// C++
A_var a;
a->f();
a->g();
Long n = a->x();
a->x(n + 1);

Unlike the C mapping, C++ operations do not require an additional Environment
parameter for passing exception information—real C++ exceptions are used for th
purpose. See Section 1.19, “Mapping for Exception Types,” on page 1-94 for mor
details.

1.21 Implicit Arguments to Operations

If an operation in an OMG IDL specification has a context specification, then a
Context_ptr input parameter (see Section 1.31, “Context,” on page 1-118) follo
all operation-specific arguments. In an implementation that does not support real
C++ Language Mapping Mapping For Operations and Attributes June 1999 1-99

1

 the

mory

te

 (to

ping

t is

There
fic
e

exceptions, an output Environment parameter is the last argument following all
operation-specific arguments, and following the context argument if present. The
parameter passing mode for Environment is described in Section 1.42.2, “Without
Exception Handling,” on page 1-164.

1.22 Argument Passing Considerations

The mapping of parameter passing modes attempts to balance the need for both
efficiency and simplicity. For primitive types, enumerations, and object references,
modes are straightforward, passing the type P for primitives and enumerations and the
type A_ptr for an interface type A.

Aggregate types are complicated by the question of when and how parameter me
is allocated and deallocated. Mapping in parameters is straightforward because the
parameter storage is caller-allocated and read-only. The mapping for out and inout
parameters is more problematic. For variable-length types, the callee must alloca
some if not all of the storage. For fixed-length types, such as a Point type represented
as a struct containing three floating point members, caller allocation is preferable
allow stack allocation).

To accommodate both kinds of allocation, avoid the potential confusion of split
allocation, and eliminate confusion with respect to when copying occurs, the map
is T& for a fixed-length aggregate T and T*& for a variable-length T. This approach has
the unfortunate consequence that usage for structs depends on whether the struc
fixed- or variable-length; however, the mapping is consistently T_var& if the caller
uses the managed type T_var .

The mapping for out and inout parameters additionally requires support for
deallocating any previous variable-length data in the parameter when a T_var is
passed. Even though their initial values are not sent to the operation, we include out
parameters because the parameter could contain the result from a previous call.
are many ways to implement this support. The mapping does not require a speci
implementation, but a compliant implementation must free the inaccessible storag
associated with a parameter passed as a T_var managed type. The provision of the
T_out types is intended to give implementations the hooks necessary to free the
inaccessible storage while converting from the T_var types. The following examples
demonstrate the compliant behavior:

// IDL
struct S { string name; float age; };
void f(out S p);

// C++
S_var s;
f(s);
// use s
f(s); // first result will be freed

S *sp; // need not initialize before passing to out
f(sp);
1-100 C++ Language Mapping June 1999

1

 is

h

e
ring
r a

g or
ith

 to

s

n
// use sp
delete sp; // cannot assume next call will free old value
f(sp);

Note that implicit deallocation of previous values for out and inout parameters works
only with T_var types, not with other types:

// IDL
void q(out string s);

// C++
char *s;
for (int i = 0; i < 10; i++)

q(s); // memory leak!

Each call to the q function in the loop results in a memory leak because the caller
not invoking string_free on the out result. There are two ways to fix this, as
shown below:

// C++
char *s;
String_var svar;
for (int i = 0 ; i < 10; i++) {

q(s);
string_free(s);// explicit deallocation
// OR:
q(svar); // implicit deallocation

}

Using a plain char* for the out parameter means that the caller must explicitly
deallocate its memory before each reuse of the variable as an out parameter, while
using a String_var means that any deallocation is performed implicitly upon eac
use of the variable as an out parameter.

If strings or wide strings are passed as inout parameters, the callee may modify the th
contents of the string or wide string in place. However, if the new string or wide st
is longer than the initial string or wide string, reallocation becomes necessary. Fo
new string or wide string that is shorter than the original string or wide string,
reallocation may also be used to conserve memory. However, shortening the strin
wide string by replacing a character that is part of the initial string or wide string w
the appropriate NUL character is also legal.

For inout object references, reallocation is necessary whenever the callee needs
change the initial value of the reference. The example below illustrates this.

For in valuetype s, the callee shall receive a copy of each valuetype argument passed
to it even if the caller and callee are collocated in the same process. The callee i
allowed to invoke operations and modifier functions that modify the state of the
valuetype instance, but the state of the caller’s copy of that valuetype instance shall
not be affected by the callee’s state changes. This is required to preserve locatio
transparency for interface operations.
C++ Language Mapping Argument Passing Considerations June 1999 1-101

1

ll
r

 by

it

 a
s a
For inout valuetype s, the callee may either modify the incoming valuetype
instance, or may replace the incoming pointer with a pointer to a different valuetype
instance. The callee shall invoke _remove_ref on the valuetype instance passed in
before replacing it with a valuetype instance to be passed back out. The caller sha
eventually invoke _remove_ref on the valuetype instance it receives back as eithe
an inout , out , or return value.

The example below illustrates the replacement of inout arguments. For the operation
f , s1 is an inout string that is modified in place and whose length is not changed
the callee, s2 is an inout string that is grown by the callee, obj is an inout object
reference that is changed by the callee, val1 is an inout valuetype that is changed in
place by the callee, and val2 is an inout valuetype that is replaced by the callee. The
example code uses local T_var variables to ensure automatic deallocation, but explic
calls to CORBA::string_free and CORBA::release could have been used
instead.

// IDL
valuetype V { public long state; };
interface A {

void f(inout string s1, inout string s2, inout A obj,
inout V val1, inout V val2);

};

// C++
void Aimpl::f(char *&s1, char *&s2, A_ptr &obj,

V *&val1, V *&val2)
{

// Convert s1 to uppercase in place
while (*s1 != ‘\0’) to upper(*s1++);

// Return a different string value for s2
String_var s2_tmp = s2;
s2 = string_dup("new s2");

// Assign new value to obj
A_ptr newobj = ...
A_var obj_tmp = obj;
obj = A::_duplicate(newobj);

// Change value of val1 in place
if (val1 != 0) val1->state(42);

// Replace val2 entirely
CORBA::remove_ref(val2);
val2 = new MyVImpl(1234);

}

For parameters that are passed or returned as a pointer (T*) or reference to pointer
(T*&), except for valuetype s, a compliant program is not allowed to pass or return
null pointer; the result of doing so is undefined. In particular, a caller may not pas
null pointer under any of the following circumstances:
1-102 C++ Language Mapping June 1999

1

.
all

structs,
l

r,
n

 and

sing

es

ction
• in and inout string

• in and inout array (pointer to first element)

A caller may pass a reference to a pointer with a null value for out parameters,
however, since the callee does not examine the value but rather just overwrites it
Furthermore, conforming applications may also pass and return null pointers for
valuetype parameters and return types, and may embed null valuetype pointers
within constructed types that are passed as parameters or return values, such as
unions, arrays, sequences, Any, and other valuetypes. A callee may not return a nul
pointer under any of the following circumstances:

• out and return variable-length struct

• out and return variable-length union

• out and return string

• out and return sequence

• out and return variable-length array, return fixed-length array

• out and return any

Since OMG IDL has no concept of pointers in general or null pointers in particula
except for valuetype s, allowing the passage of null pointers to or from an operatio
would project C++ semantics onto OMG IDL operations.17 A compliant
implementation is allowed but not required to raise a BAD_PARAM exception if it
detects such an error.

1.22.1 Operation Parameters and Signatures

Table 1-3 displays the mapping for the basic OMG IDL parameter passing modes
return type according to the type being passed or returned, while Table 1-4 on
page 1-104 displays the same information for T_var types. “T_var Argument and
Result Passing” is merely for informational purposes; it is expected that operation
signatures for both clients and servers will be written in terms of the parameter pas
modes shown in “Basic Argument and Result Passing”, with the exception that the
T_out types will be used as the actual parameter types for all out parameters. It is
also expected that T_var types will support the necessary conversion operators to
allow them to be passed directly. Callers should always pass instances of either T_var
types or the base types shown in “Basic Argument and Result Passing”, and calle
should treat their T_out parameters as if they were actually the corresponding
underlying types shown in Table 1-3.

In Table 1-3, fixed-length arrays are the only case where the type of an out parameter
differs from a return value, which is necessary because C++ does not allow a fun
to return an array. The mapping returns a pointer to a slice of the array, where a slice
is an array with all the dimensions of the original specified except the first one.

17.When real C++ exceptions are not available, however, it is important that null pointers are
returned whenever an Environment containing an exception is returned; see
Section 1.42.2, “Without Exception Handling,” on page 1-164 for more details.
C++ Language Mapping Argument Passing Considerations June 1999 1-103

1

A caller is responsible for providing storage for all arguments passed as in arguments.

Table 1-3 Basic Argument and Result Passing

Data Type In Inout Out Return
short Short Short& Short& Short

long Long Long& Long& Long

long long LongLong LongLong& LongLong& LongLong

unsigned short UShort UShort& UShort& UShort

unsigned long ULong ULong& ULong& ULong

unsigned long long ULongLong ULongLong& ULongLong& ULongLong

float Float Float& Float& Float

double Double Double& Double& Double

long double LongDouble LongDouble& LongDouble& LongDouble

boolean Boolean Boolean& Boolean& Boolean

char Char Char& Char& Char

wchar WChar WChar& WChar& WChar

octet Octet Octet& Octet& Octet

enum enum enum& enum& enum

object reference ptr1

1. Including pseudo-object references.

objref_ptr objref_ptr& objref_ptr& objref_ptr

struct, fixed const struct& struct& struct& struct

struct, variable const struct& struct& struct*& struct*

union, fixed const union& union& union& union

union, variable const union& union& union*& union*

string const char* char*& char*& char*

wstring const WChar* WChar*& WChar*& WChar*

sequence const sequence& sequence& sequence*& sequence*

array, fixed const array array array array slice*2

2. A slice is an array with all the dimensions of the original except the first one.

array, variable const array array array slice*&2 array slice*2

any const any& any& any*& any*

fixed const fixed& fixed& fixed& fixed

valuetype3

3. Including value boxes.

valuetype* valuetype*& valuetype*& valuetype*

Table 1-4 T_var Argument and Result Passing1

Data Type In Inout Out Return
object reference var2 const objref_var& objref_var& objref_var& objref_var

struct_var const struct_var& struct_var& struct_var& struct_var

union_var const union_var& union_var& union_var& union_var

string_var const string_var& string_var& string_var& string_var

sequence_var const sequence_var& sequence_var& sequence_var& sequence_var
1-104 C++ Language Mapping June 1999

1

ith

“Caller Argument Storage Responsibilities” on page 1-105 and “Argument Passing
Cases” on page 1-106 describe the caller’s responsibility for storage associated w
inout and out parameters and for return results.

array_var const array_var& array_var& array_var& array_var

any_var const any_var& any_var& any_var& any_var

valuetype_var3 const valuetype_var& valuetype_var& valuetype_var& valuetype_var

1. Fixed types have no corresponding_var type and are therefore not shown in this table.

2. Including pseudo-object references.

3. Including value boxes.

Table 1-5 Caller Argument Storage Responsibilities

Type
Inout
Param

Out
Param

Return
Result

short 1 1 1

long 1 1 1

long long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

unsigned long long 1 1 1

float 1 1 1

double 1 1 1

long double 1 1 1

boolean 1 1 1

char 1 1 1

wchar 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

wstring 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

Table 1-4 T_var Argument and Result Passing1

Data Type In Inout Out Return
C++ Language Mapping Argument Passing Considerations June 1999 1-105

1

.

fixed 1 1 1

valuetype 7 7 7

Table 1-6 Argument Passing Cases

Case
1 Caller allocates all necessary storage, except that which may be encapsulated and managed

within the parameter itself. For inout parameters, the caller provides the initial value, and the
callee may change that value. For out parameters, the caller allocates the storage but need not
initialize it, and the callee sets the value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an
initial value; if the callee wants to reassign the inout parameter, it will first call CORBA::release
on the original input value. To continue to use an object reference passed in as an inout, the
caller must first duplicate the reference. The caller is responsible for the release of all out and
return object references. Release of all object references embedded in other structures is
performed automatically by the structures themselves.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The
callee sets the pointer to point to a valid instance of the parameter’s type. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. To maintain local/remote
transparency, the caller must always release the returned storage, regardless of whether the
callee is located in the same address space as the caller or is located in a different address
space. Following the completion of a request, the caller is not allowed to modify any values in
the returned storage—to do so, the caller must first copy the returned instance into a new
instance, then modify the new instance.

4 For inout strings, the caller provides storage for both the input string and the char* or wchar*
pointing to it. Since the callee may deallocate the input string and reassign the char* or
wchar* to point to new storage to hold the output value, the caller should allocate the input
string using string_alloc() or wstring_alloc() . The size of the out string is therefore
not limited by the size of the in string. The caller is responsible for deleting the storage for the
out using string_free() or wstring_free() . The callee is not allowed to return a null
pointer for an inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause
deallocation of owned storage before any reallocation occurs, depending upon the state of the
Boolean release parameter with which the sequence or any was constructed.

Table 1-5 Caller Argument Storage Responsibilities (Continued)

Type
Inout
Param

Out
Param

Return
Result
1-106 C++ Language Mapping June 1999

1

r as
n

 rules

that are

 the
bjects
 this
l.

his
ject
re
hile
1.23 Mapping of Pseudo Objects to C++

CORBA pseudo objects may be implemented either as normal CORBA objects o
serverless objects. In the CORBA specification, the fundamental differences betwee
these strategies are:

• Serverless object types do not inherit from CORBA::Object

• Individual serverless objects are not registered with any ORB

• Serverless objects do not necessarily follow the same memory management
as for regular IDL types.

References to serverless objects are not necessarily valid across computational
contexts; for example, address spaces. Instead, references to serverless objects
passed as parameters may result in the construction of independent functionally-
identical copies of objects used by receivers of these references. To support this,
otherwise hidden representational properties (such as data layout) of serverless o
are made known to the ORB. Specifications for achieving this are not contained in
chapter. Making serverless objects known to the ORB is an implementation detai

This section provides a standard mapping algorithm for all pseudo object types. T
avoids the need for piecemeal mappings for each of the nine CORBA pseudo ob
types, and accommodates any pseudo object types that may be proposed in futu
revisions of CORBA. It also avoids representation dependence in the C mapping w
still allowing implementations that rely on C-compatible representations.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to the
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. To maintain local/remote
transparency, the caller must always release the returned storage, regardless of whether the
callee is located in the same address space as the caller or is located in a different address
space. Following completion of a request, the caller is not allowed to modify any values in the
returned storage—to do so, the caller must first copy the returned array instance into a new
array instance, then modify the new instance.

7 Caller allocates storage for the valuetype instance. For inout parameters, the caller provides an
initial value; if the callee wants to reassign the inout pointer value to point to a different
valuetype instance, it will first call _remove_ref on the original input valuetype. To continue to
use a valuetype instance passed in as an inout after the invoked operation returns, the caller
must first invoke _add_ref on the valuetype instance. The caller is responsible for invoking
_remove_ref on all out and return valuetype instances. The reduction of reference counts via
_remove_ref for all valuetype instances embedded in other structures is performed
automatically by the structures themselves.

Table 1-6 Argument Passing Cases (Continued)

Case
C++ Language Mapping Mapping of Pseudo Objects to C++ June 1999 1-107

1

act

7,
l or

ns or

the

e

rs,
lowed
y not

hat

lues
unter
1.24 Usage

Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to
describe serverless object types. Interfaces for pseudo object types follow the ex
same rules as normal OMG IDL interfaces, with the following exceptions:

• They are prefaced by the keyword pseudo .
• Their declarations may refer to other18 serverless object types that are not

otherwise necessarily allowed in OMG IDL.

As explained in Section 1.23, “Mapping of Pseudo Objects to C++,” on page 1-10
the pseudo prefix means that the interface may be implemented in either a norma
serverless fashion. That is, apply either the rules described in the following sectio
the normal mapping rules described in this chapter.

1.25 Mapping Rules

Serverless objects are mapped in the same way as normal interfaces, except for
differences outlined in this section.

Classes representing serverless object types are not subclasses of CORBA::Object ,
and are not necessarily subclasses of any other C++ class. Thus, they do not
necessarily support, for example, the Object::create_request operation.

For each class representing a serverless object type T, overloaded versions of th
following functions are provided in the CORBA namespace:

// C++
void release(T_ptr);
Boolean is_nil(T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by use
although subclasses can be provided by implementations. Implementations are al
to make assumptions about internal representations and transport formats that ma
apply to subclasses.

The member functions of classes representing serverless object types do not
necessarily obey the normal memory management rules. This is due to the fact t
some serverless objects, such as CORBA::NVList , are essentially just containers for
several levels of other serverless objects. Requiring callers to explicitly free the va
returned from accessor functions for the contained serverless objects would be co
to their intended usage.

All other elements of the mapping are the same. In particular:

18.In particular, exception used as a data type and a function name.
1-108 C++ Language Mapping June 1999

1

e
ate

le”
ement

logs
using
ween

of

ces,

ption
1. The types of references to serverless objects, T_ptr , may or may not simply be a
typedef of T* .

2. Each mapped class supports the following static member functions:

// C++
static T_ptr _duplicate(T_ptr p);
static T_ptr _nil();

Legal implementations of _duplicate include simply returning the argument
or constructing references to a new instance. Individual implementations may
provide stronger guarantees about behavior.

1. The corresponding C++ classes may or may not be directly instantiable or hav
other instantiation constraints. For portability, users should invoke the appropri
constructive operations.

2. As with normal interfaces, assignment operators are not supported.

3. Although they can transparently employ “copy-style” rather than “reference-sty
mechanics, parameter passing signatures and rules as well as memory manag
rules are identical to those for normal objects, unless otherwise noted.

1.26 Relation to the C PIDL Mapping

All serverless object interfaces and declarations that rely on them have direct ana
in the C mapping. The mapped C++ classes can, but need not be, implemented
representations compatible with those chosen for the C mapping. Differences bet
the pseudo object specifications for C-PIDL and C++ PIDL are as follows:

• C++-PIDL calls for removal of representation dependencies through the use
interfaces rather than structs and typedefs.

• C++-PIDL calls for placement of operations on pseudo objects in their interfa
including a few cases of redesignated functionality as noted.

• In C++-PIDL, the release performs the role of the associated free and
delete operations in the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are
provided in the following sections. Further details, including definitions of types
referenced but not defined below, may be found in the relevant sections of this
specification.

Some of the pseudo-interfaces shown in this chapter rely on a user-defined exce
supplied in the CORBA module by ORB implementations. This exception is called
Bounds and is defined as follows:

// IDL
module CORBA
{

exception Bounds {};
// ...

};
C++ Language Mapping Relation to the C PIDL Mapping June 1999 1-109

1

true
 may

tes.

ut

Note that this exception is not the same as the CORBA::TypeCode::Bounds
exception.

1.27 Environment

Environment provides a vehicle for dealing with exceptions in those cases where
exception mechanics are unavailable or undesirable (for example in the DII). They
be set and inspected using the exception attribute.

As with normal OMG IDL attributes, the exception attribute is mapped into a pair of
C++ functions used to set and get the exception. The semantics of the set and get
functions, however, are somewhat different than those for normal OMG IDL attribu
The set C++ function assumes ownership of the Exception pointer passed to it.
The Environment will eventually call delete on this pointer, so the Exception
it points to must be dynamically allocated by the caller. The get function returns a
pointer to the Exception , just as an attribute for a variable-length struct would, b
the pointer refers to memory owned by the Environment . Once the Environment
is destroyed, the pointer is no longer valid. The caller must not call delete on the
Exception pointer returned by the get function. The Environment is responsible
for deallocating any Exception it holds when it is itself destroyed. If the
Environment holds no exception, the get function returns a null pointer.

The clear() function causes the Environment to delete any Exception it is
holding. It is not an error to call clear() on an Environment holding no
exception. Passing a null pointer to the set exception function is equivalent to calling
clear() . If an Environment contains exception information, the caller is
responsible for calling clear() on it before passing it to an operation.

1.27.1 Environment Interface

// IDL
pseudo interface Environment
{

attribute exception exception;
void clear();

};

1.27.2 Environment C++ Class

// C++
class Environment
{

public:
void exception(Exception*);
Exception *exception() const;
void clear();

};
1-110 C++ Language Mapping June 1999

1

her

ion.
1.27.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a struct.

• Supports an attribute allowing operations on exception values as a whole rat
than on major numbers and/or identification strings.

• Supports a clear() function that is used to destroy any Exception the
Environment may be holding.

• Supports a default constructor that initializes it to hold no exception informat

1.27.4 Memory Management

Environment has the following special memory management rules:

• The void exception(Exception*) member function adopts the
Exception* given to it.

• Ownership of the return value of the Exception *exception() member
function is maintained by the Environment ; this return value must not be freed
by the caller.

1.28 NamedValue

NamedValue is used only as an element of NVList , especially in the DII.
NamedValue maintains an (optional) name, an any value, and labelling flags. Legal
flag values are ARG_IN, ARG_OUT, and ARG_INOUT.

The value in a NamedValue may be manipulated via standard operations on any.

1.28.1 NamedValue Interface

// IDL
pseudo interface NamedValue
{

readonly attribute Identifier name;
readonly attribute any value;
readonly attribute Flags flags;

};

1.28.2 NamedValue C++ Class

// C++
class NamedValue
{

public:
const char *name() const;
Any *value() const;
Flags flags() const;

};
C++ Language Mapping NamedValue June 1999 1-111

1

y
1.28.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a struct.

• Provides no analog of the len field.

1.28.4 Memory Management

NamedValue has the following special memory management rules:

• Ownership of the return values of the name() and value() functions is
maintained by the NamedValue ; these return values must not be freed by the
caller.

1.29 NVList

NVList is a list of NamedValue s. A new NVList is constructed using the
ORB::create_list operation (see Section 1.33, “ORB,” on page 1-121). New
NamedValue s may be constructed as part of an NVList , in any of three ways:

• add—creates an unnamed value, initializing only the flags.

• add_item —initializes name and flags.

• add_value —initializes name, value, and flags.

• add_item_consume —initializes name and flags, taking over memory
management responsibilities for the char* name parameter.

• add_value_consume —initializes name, value, and flags, taking over memor
management responsibilities for both the char* name parameter and the Any*
value parameter. Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexing. The add, add_item ,
add_value, add_item_consume , and add_value_consume functions lengthen
the NVList to hold the new element each time they are called. The item function can
be used to access existing elements.

1.29.1 NVList Interface

// IDL
pseudo interface NVList
{

readonly attribute unsigned long count;
NamedValue add(in Flags flags);
NamedValue add_item(in Identifier item_name, in Flags flags);
NamedValue add_value(

in Identifier item_name,
in any val,
in Flags flags

);
NamedValue item(in unsigned long index) raises(Bounds);
1-112 C++ Language Mapping June 1999

1

void remove(in unsigned long index) raises(Bounds);
};

1.29.2 NVList C++ Class

// C++
class NVList
{

public:
ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(

const char*,

const Any&,
Flags

);
NamedValue_ptr add_item_consume(

char*,
Flags

);

NamedValue_ptr add_value_consume(
char*,
Any *,
Flags

);
NamedValue_ptr item(ULong);
void remove(ULong);

};

1.29.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a typedef

• Provides different signatures for operations that add items in order to avoid
representation dependencies

• Provides indexed access methods

1.29.4 Memory Management

NVList has the following special memory management rules:

• Ownership of the return values of the add , add_item , add_value ,
add_item_consume , add_value_consume , and item functions is maintained
by the NVList ; these return values must not be freed by the caller.
C++ Language Mapping NVList June 1999 1-113

1

t
on

s, the
nt

tion
• The char* parameters to the add_item_consume and add_value_consume
functions and the Any* parameter to the add_value_consume function are
consumed by the NVList . The caller may not access these data after they have
been passed to these functions because the NVList may copy them and destroy the
originals immediately. The caller should use the NamedValue::value()
operation in order to modify the value attribute of the underlying NamedValue ,
if desired.

• The remove function also calls CORBA::release on the removed
NamedValue .

1.30 Request

Request provides the primary support for DII. A new request on a particular targe
object may be constructed using the short version of the request creation operati
shown in Section 1.34, “Object,” on page 1-125:

// C++
Request_ptr Object::_request(Identifier operation);

Arguments and contexts may be added after construction via the corresponding
attributes in the Request interface. Results, output arguments, and exceptions are
similarly obtained after invocation. The following C++ code illustrates usage:

// C++
Request_ptr req = anObj->_request("anOp");
*(req->arguments()->add(ARG_IN)->value()) <<= anArg;
// ...
req->invoke();
if (req->env()->exception() == 0) {

*(req->result()->value()) >>= aResult;
}

While this example shows the semantics of the attribute-based accessor function
following example shows that it is much easier and preferable to use the equivale
argument manipulation helper functions:

// C++
Request_ptr req = anObj->_request("anOp");
req->add_in_arg() <<= anArg;
// ...
req->invoke();
if (req->env()->exception() == 0) {

req->return_value() >>= aResult;
}

Alternatively, requests can be constructed using one of the long forms of the crea
operation shown in the Object interface in Section 1.34, “Object,” on page 1-125:

// C++
void Object::_create_request(
1-114 C++ Language Mapping June 1999

1

 done

e

to
over

ation
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags

);
void Object::_create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags

);

Usage is the same as for the short form except that all invocation parameters are
established on construction. Note that the OUT_LIST_MEMORY and
IN_COPY_VALUE flags can be set as flags in the req_flags parameter, but they
are meaningless and thus ignored because argument insertion and extraction are
via the Any type.

Request also allows the application to supply all information necessary for it to b
invoked without requiring the ORB to utilize the Interface Repository. In order to
deliver a request and return the response, the ORB requires:

• a target object reference

• an operation name

• a list of arguments (optional)

• a place to put the result (optional)

• a place to put any returned exceptions

• a Context (optional)

• a list of the user-defined exceptions that can be thrown (optional)

• a list of Context strings that must be sent with the operation (optional)

Since the Object::create_request operation allows all of these except the last two
be specified, an ORB may have to utilize the Interface Repository in order to disc
them. Some applications, however, may not want the ORB performing potentially
expensive Interface Repository lookups during a request invocation, so two new
serverless objects have been added to allow the application to specify this inform
instead:

• ExceptionList : allows an application to provide a list of TypeCode s for all user-
defined exceptions that may result when the Request is invoke.

• ContextList : allows an application to provide a list of Context strings that must
be supplied with the Request invocation.
C++ Language Mapping Request June 1999 1-115

1

t

The ContextList differs from the Context in that the former supplies only the contex
strings whose values are to be looked up and sent with the request invocation (if
applicable), while the latter is where those values are obtained.

The IDL descriptions for ExceptionList, ContextList , and Request are shown
below.

1.30.1 Request Interface

// IDL
pseudo interface ExceptionList
{

readonly attribute unsigned long count;
void add(in TypeCode exc);
TypeCode item(in unsigned long index) raises(Bounds);
void remove(in unsigned long index) raises(Bounds);

};

pseudo interface ContextList
{

readonly attribute unsigned long count;
void add(in string ctxt);
string item(in unsigned long index) raises(Bounds);
void remove(in unsigned long index) raises(Bounds);

};

pseudo interface Request
{

readonly attribute Object target;
readonly attribute Identifier operation;
readonly attribute NVList arguments;
readonly attribute NamedValue result;
readonly attribute Environment env;
readonly attribute ExceptionList exceptions;
readonly attribute ContextList contexts;

attribute context ctx;

void invoke();
void send_oneway();
void send_deferred();
void get_response();
boolean poll_response();

};
1-116 C++ Language Mapping June 1999

1

1.30.2 Request C++ Class

// C++
class ExceptionList
{

public:
ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
void remove(ULong index);

};

class ContextList
{

public:
ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
void remove(ULong index);

};
class Request
{

public:
Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

// argument manipulation helper functions
Any &add_in_arg();
Any &add_in_arg(const char* name);
Any &add_inout_arg();
Any &add_inout_arg(const char* name);
Any &add_out_arg();
Any &add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any &return_value();
void invoke();
void send_oneway();
void send_deferred();
void get_response();
Boolean poll_response();

};
C++ Language Mapping Request June 1999 1-117

1

n

l

he

ion.
1.30.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Replacement of add_argument , and so forth, with attribute-based accessors.

• Use of env attribute to access exceptions raised in DII calls.

• The invoke operation does not take a flag argument, since there are no flag
values that are listed as legal in CORBA.

• The send_oneway and send_deferred operations replace the single send
operation with flag values, in order to clarify usage.

• The get_response operation does not take a flag argument, and an operatio
poll_response is defined to immediately return with an indication of whether
the operation has completed.

• The add_*_arg , set_return_type , and return_value member functions are
added as shortcuts for using the attribute-based accessors.

1.30.4 Memory Management

Request has the following special memory management rules:

• Ownership of the return values of the target , operation , arguments ,
result , env , exceptions , contexts , and ctx functions is maintained by the
Request ; these return values must not be freed by the caller.

ExceptionList has the following special memory management rules:

• The add_consume function consumes its TypeCode_ptr argument. The caller
may not access the object referred to by the TypeCode_ptr after it has been
passed in because the add_consume function may copy it and release the origina
immediately.

• Ownership of the return value of the item function is maintained by the
ExceptionList ; this return value must not be released by the caller.

ContextList has the following special memory management rules:

• The add_consume function consumes its char* argument. The caller may not
access the memory referred to by the char* after it has been passed in because t
add_consume function may copy it and free the original immediately.

• Ownership of the return value of the item function is maintained by the
ContextList ; this return value must not be released by the caller.

1.31 Context

A Context supplies optional context information associated with a method invocat

1.31.1 Context Interface

// IDL
pseudo interface Context
1-118 C++ Language Mapping June 1999

1

rt
{
readonly attribute Identifier context_name;
readonly attribute context parent;

void create_child(in Identifier child_ctx_name, out Context child_ctx);

void set_one_value(in Identifier propname, in any propvalue);
void set_values(in NVList values);
void delete_values(in Identifier propname);
void get_values(

in Identifier start_scope,
in Flags op_flags,
in Identifier pattern,
out NVList values

);
};

1.31.2 Context C++ Class

// C++
class Context
{

public:
const char *context_name() const;
Context_ptr parent() const;

void create_child(const char *, Context_out);

void set_one_value(const char *, const Any &);
void set_values(NVList_ptr);
void delete_values(const char *);
void get_values(

const char*,
Flags,
const char*,
NVList_out

);
};

1.31.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Introduction of attributes for context name and parent.

• The signatures for values are uniformly set to any.

• In the C mapping, set_one_value used strings, while others used
NamedValue s containing any. Even though implementations need only suppo
strings as values, the signatures now uniformly allow alternatives.

• The release operation frees child contexts.
C++ Language Mapping Context June 1999 1-119

1

.

be
 to
and

er,
since
1.31.4 Memory Management

Context has the following special memory management rules:

• Ownership of the return values of the context_name and parent functions is
maintained by the Context ; these return values must not be freed by the caller

1.32 TypeCode

A TypeCode represents OMG IDL type information.

No constructors for TypeCode s are defined. However, in addition to the mapped
interface, for each basic and defined OMG IDL type, an implementation provides
access to a TypeCode pseudo object reference (TypeCode_ptr) of the form
tc<type> that may be used to set types in Any, as arguments for equal , and so
on. In the names of these TypeCode reference constants, <type> refer to the local
name of the type within its defining scope. Each C++ _tc_<type> constant must be
defined at the same scoping level as its matching type.

In all C++ TypeCode pseudo object reference constants, the prefix “_tc_” should
used instead of the “TC_” prefix prescribed in “TypeCode” on page 1-120. This is
avoid name clashes for CORBA applications that simultaneously use both the C
C++ mappings.

Like all other serverless objects, the C++ mapping for TypeCode provides a _nil()
operation that returns a nil object reference for a TypeCode . This operation can be
used to initialize TypeCode references embedded within constructed types. Howev
a nil TypeCode reference may never be passed as an argument to an operation,
TypeCode s are effectively passed as values, not as object references.

1.32.1 TypeCode Interface

The TypeCode IDL interface is fully defined in version 2.3 of The Common Object
Request Broker: Architecture and Specifications, Interface Repository chapter, The
TypeCode Interface section and is thus not duplicated here.

1.32.2 TypeCode C++ Class

// C++
class TypeCode
{

public:
class Bounds : public UserException { ... };
class BadKind : public UserException { ... };

Boolean equal(TypeCode_ptr) const;
Boolean equivalent(TypeCode_ptr) const;
TCKind kind() const;
1-120 C++ Language Mapping June 1999

1

ler.
TypeCode_ptr get_compact_typecode() const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;

UShort fixed_digits() const;
Short fixed_scale() const;

Visibility member_visibility(ULong index) const;
ValuetypeModifier type_modifier() const;
TypeCode_ptr concrete_base_type() const;

};

1.32.3 Differences from C-PIDL

For C++, use of prefix “_tc_” instead of “TC_” for constants.

1.32.4 Memory Management

TypeCode has the following special memory management rules:

• Ownership of the return values of the id , name, and member_name functions is
maintained by the TypeCode ; these return values must not be freed by the cal

1.33 ORB

An ORB is the programmer interface to the Object Request Broker.

1.33.1 ORB Interface

// IDL
pseudo interface ORB
{

typedef sequence<Request> RequestSeq;
string object_to_string(in Object obj);
Object string_to_object(in string str);
C++ Language Mapping ORB June 1999 1-121

1

void create_list(in long count, out NVList new_list);
void create_operation_list(in OperationDef oper, out NVList

new_list);

void create_named_value(out NamedValue nmval);
void create_exception_list(out ExceptionList exclist);
void create_context_list(out ContextList ctxtlist);

void get_default_context(out Context ctx);
void create_environment(out Environment new_env);

void send_multiple_requests_oneway(in RequestSeq req);
void send_multiple_requests_deferred(in RequestSeq req);
boolean poll_next_response();
void get_next_response(out Request req);

Boolean work_pending();
void perform_work();
void shutdown(in Boolean wait_for_completion);
void run();

Boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);

typedef string ObjectId;
typedef sequence<ObjectId> ObjectIdList;
Object resolve_initial_references(

in ObjectId id
) raises(InvalidName);
ObjectIdList list_initial_services();

Policy create_policy(in PolicyType type, in any val)
raises(PolicyError);

};
1-122 C++ Language Mapping June 1999

1

1.33.2 ORB C++ Class

// C++
class ORB
{

public:
class RequestSeq {...};
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char *);
void create_list(Long, NVList_out);
void create_operation_list(

OperationDef_ptr,
NVList_out

);

void create_named_value(NamedValue_out);
void create_exception_list(ExceptionList_out);
void create_context_list(ContextList_out);

void get_default_context(Context_out);
void create_environment(Environment_out);

void send_multiple_requests_oneway(
const RequestSeq&

);

void send_multiple_requests_deferred(
const RequestSeq &

);
Boolean poll_next_response();
void get_next_response(Request_out);

Boolean work_pending();
void perform_work();
void shutdown(Boolean wait_for_completion);
void run();

Boolean get_service_information(
ServiceType svc_type,
ServiceInformation_out svc_info

);

typedef char* ObjectId;
class ObjectIdList { ... };
Object_ptr resolve_initial_references(const char* id);
ObjectIdList* list_initial_services();
C++ Language Mapping ORB June 1999 1-123

1

s

t in

of
Policy_ptr create_policy(
PolicyType type,
const Any& val

);
};

1.33.3 Differences from C-PIDL

• Added create_environment . Unlike the struct version, Environment requires
a construction operation. (Since this is overly constraining for implementation
that do not support real C++ exceptions, these implementations may allow
Environment to be declared on the stack. See Section 1.42.2, “Without
Exception Handling,” on page 1-164 for details.)

• Assigned multiple request support to ORB, made usage symmetrical with tha
Request , and used a sequence type rather than otherwise illegal unbounded
arrays in signatures.

• Added create_named_value , which is required for creating NamedValue
objects to be used as return value parameters for the Object::create_request
operation.

• Added create_exception_list and create_context_list (see Section 1.30,
“Request,” on page 1-114 for more details).

1.33.4 Mapping of ORB Initialization Operations

The following PIDL specifies initialization operations for an ORB; this PIDL is part
the CORBA module (not the ORB interface) and is described in version 2.3 of The
Common Object Request Broker: Architecture and Specifications, ORB Interface
chapter, ORB Initialization section.

// PIDL
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

};

The mapping of the preceding PIDL operations to C++ is as follows:

// C++
namespace CORBA {

typedef char* ORBid;
static ORB_ptr ORB_init(

int& argc,
 char** argv,

const char* orb_identifier = ""
);

}

1-124 C++ Language Mapping June 1999

1

of

hich

 If a

fore

od
ve
oid
v list

bjects.
The C++ mapping for ORB_init deviates from the OMG IDL PIDL in its handling of
the arg_list parameter. This is intended to provide a meaningful PIDL definition
the initialization interface, which has a natural C++ binding. To this end, the
arg_list structure is replaced with argv and argc parameters.

The argv parameter is defined as an unbound array of strings (char **) and the
number of strings in the array is passed in the argc (int &) parameter.

If an empty ORBid string is used then argc arguments can be used to determine w
ORB should be returned. This is achieved by searching the argv parameters for one
tagged ORBid, e.g., -ORBid "ORBid_example." If an empty ORBid string is used and
no ORB is indicated by the argv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init ,
the argv arguments are examined to determine if any ORB parameters are given.
non-empty ORBid string is passed to ORB_init , all -ORBid parameters in the argv
are ignored. All other -ORB<suffix> parameters may be of significance during the
ORB initialization process.

For C++, the order of consumption of argv parameters may be significant to an
application. In order to ensure that applications are not required to handle argv
parameters they do not recognize the ORB initialization function must be called be
the remainder of the parameters is consumed. Therefore, after the ORB_init call the
argv and argc parameters will have been modified to remove the ORB understo
arguments. It is important to note that the ORB_init call can only reorder or remo
references to parameters from the argv list, this restriction is made in order to av
potential memory management problems caused by trying to free parts of the arg
or extending the argv list of parameters. This is why argv is passed as a char** and
not a char**& .

1.34 Object

The rules in this section apply to OMG IDL interface Object , the base of the OMG
IDL interface hierarchy. Interface Object defines a normal CORBA object, not a
pseudo object. However, it is included here because it references other pseudo o

1.34.1 Object Interface

// IDL
interface Object
{

boolean is_nil();
Object duplicate();
void release();
ImplementationDef get_implementation();
InterfaceDef get_interface();
boolean is_a(in string logical_type_id);
boolean non_existent();
boolean is_equivalent(in Object other_object);
C++ Language Mapping Object June 1999 1-125

1

ce
unsigned long hash(in unsigned long maximum);
void create_request(

in Context ctx,
in Identifier operation,
in NVList arg_list,

in NamedValue result,
out Request request,
in Flags req_flags

);

void create_request2(
in Context ctx,
in Identifier operation,
in NVList arg_list,
in NamedValue result,
in ExceptionList exclist,
in ContextList ctxtlist,
out Request request,
in Flags req_flags

);
Policy_ptr get_policy(in PolicyType policy_type);
DomainManagerList get_domain_managers();
Object set_policy_overrides(in PolicyList policies,

in SetOverrideType set_or_add);
};

1.34.2 Object C++ Class

In addition to other rules, all operation names in interface Object have leading
underscores in the mapped C++ class. Also, the mapping for create_request is split
into three forms, corresponding to the usage styles described in Section 1.30,
“Request,” on page 1-114 of this specification. The is_nil and release functions are
provided in the CORBA namespace, as described in Section 1.3.3, “Object Referen
Operations,” on page 1-8.

// C++
class Object
{

public:
static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
ImplementationDef_ptr _get_implementation();
InterfaceDef_ptr _get_interface();
Boolean _is_a(const char* logical_type_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);
1-126 C++ Language Mapping June 1999

1

tion
s
pping

as the
e

a
ULong _hash(ULong maximum);
void _create_request(

Context_ptr ctx,
const char *operation,

NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags

void _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags

);
Request_ptr _request(const char* operation);
Policy_ptr _get_policy(PolicyType policy_type);
DomainManagerList* _get_domain_managers();
Object_ptr _set_policy_overrides(

const PolicyList&,
SetOverrideType

);
};

1.35 Server-Side Mapping

Server-side mapping refers to the portability constraints for an object implementa
written in C++. The term server is not meant to restrict implementations to situation
in which method invocations cross address space or machine boundaries. This ma
addresses any implementation of an OMG IDL interface.

1.36 Implementing Interfaces

To define an implementation in C++, one defines a C++ class with any valid C++
name. For each operation in the interface, the class defines a non-static member
function with the mapped name of the operation (the mapped name is the same
OMG IDL identifier except when the identifier is a C++ keyword, in which case th
string “_cxx_” is prepended to the identifier, as noted in Section 1.1, “Preliminary
Information,” on page 1-3). Note that the ORB implementation may allow one
implementation class to derive from another, so the statement “the class defines
member function” does not mean the class must explicitly define the member
function—it could inherit the function.
C++ Language Mapping Server-Side Mapping June 1999 1-127

1

lied
ically,

ide
e

ive

er

sses.

The mapping specifies two alternative relationships between the application-supp
implementation class and the generated class or classes for the interface. Specif
the mapping requires support for both inheritance-based relationships and delegation-
based relationships. CORBA-compliant ORB implementations are required to prov
both of these alternatives. Conforming applications may use either or both of thes
alternatives.

1.36.1 Mapping of PortableServer::Servant

The PortableServer module for the Portable Object Adapter (POA) defines the nat
Servant type. The C++ mapping for Servant is as follows:

// C++
namespace PortableServer
{

class ServantBase
{
public:

virtual ~ServantBase();

virtual POA_ptr _default_POA();

virtual InterfaceDef_ptr
_get_interface() throw(SystemException);

virtual Boolean
_is_a(const char* logical_type_id)

throw(SystemException);

virtual Boolean
_non_existent() throw(SystemException);

virtual void _add_ref();
virtual void _remove_ref();

protected:
ServantBase();
ServantBase(const ServantBase&);
ServantBase& operator=(const ServantBase&);
// ...all other constructors...

};
typedef ServantBase* Servant;

}

The ServantBase destructor is public and virtual to ensure that skeleton classes
derived from it can be properly destroyed. The default constructor, along with oth
implementation-specific constructors, must be protected so that instances of
ServantBase cannot be created except as sub-objects of instances of derived cla
A default constructor (a constructor that either takes no arguments or takes only
arguments with default values) must be provided so that derived servants can be
1-128 C++ Language Mapping June 1999

1

apter,

 to a

his

f

ed
rmal
 to

the

being

irtual
ting

ails.
constructed portably. Both copy construction and a protected default assignment
operator must be supported so that application-specific servants can be copied if
necessary. Note that copying a servant that is already registered with the object ad
either by assignment or by construction, does not mean that the target of the
assignment or copy is also registered with the object adapter. Similarly, assigning
ServantBase or a class derived from it that is already registered with the object
adapter does not in any way change its registration.

The default implementation of the _default_POA function provided by
ServantBase returns an object reference to the root POA of the default ORB in t
process—the same as the return value of an invocation of
ORB::resolve_initial_references("RootPOA") on the default ORB.
Classes derived from ServantBase can override this definition to return the POA o
their choice, if desired.

ServantBase provides default implementations of the _get_interface , _is_a ,
and _non_existent object reference operations that can be overridden by deriv
servants if the default behavior is not adequate. The POA invokes these just like no
skeleton operations, thus allowing overriding definitions in derived servant classes
use _this and the PortableServer::Current interface within their function
bodies.

For static skeletons, the default implementation of the _get_interface and _is_a
functions provided by ServantBase use the interface associated with the skeleton
class to determine their respective return values. For dynamic skeletons
(seeSection 1.38, “Mapping of DSI to C++,” on page 1-144), these functions use
_primary_interface function to determine their return values.

The default implementation of _non_existent simply returns false.

Servant instances may implement reference counting to prevent themselves from
destroyed while the application is still using them. Servant reference counting is
performed using the _add_ref and _remove_ref functions declared in
ServantBase . The default implementations of _add_ref and _remove_ref
supplied by ServantBase do nothing:

// C++
void PortableServer::ServantBase::_add_ref()
{

// empty
}

void PortableServer::ServantBase::_remove_ref()
{

// empty
}

For servants that need to perform actual reference counting, these functions are v
and thus may be overridden by derived servant classes. A default reference coun
mix-in class is also provided in the PortableServer namespace; please see
Section 1.36.2, “Servant Reference Counting Mix-In,” on page 1-130 for more det
C++ Language Mapping Implementing Interfaces June 1999 1-129

1

rence

of the
rns
Details concerning POA and application responsibilities with respect to reference
counting can be found inSection 1.36.4, “Servant Memory Management
Considerations,” on page 1-132.

1.36.2 Servant Reference Counting Mix-In

The PortableServer namespace also provides a standard servant reference
counting mix-in class:

// C++
namespace PortableServer
{

class RefCountServantBase : public virtual ServantBase
{
public:

~RefCountServantBase();

virtual void _add_ref();
virtual void _remove_ref();

protected:
RefCountServantBase() : _ref_count(1) {}
RefCountServantBase(

const RefCountServantBase&
) : _ref_count(1) {}

RefCountServantBase&
operator=(const RefCountServantBase&);

private:
ULong _ref_count;
// ...other implementation details...

};
}

The RefCountServantBase mix-in class overrides the inherited _add_ref and
_remove_ref functions it inherits from ServantBase , implementing them to
provide true reference counting. An instance of a servant class derived from
RefCountServantBase initially has a reference count of one. Invoking _add_ref
on the servant instance increases its reference count by one. Invoking _remove_ref
on the servant instance decreases its reference count by one; if the resulting refe
count equals zero, _remove_ref invokes delete on its this pointer in order to
destroy the servant. For ORBs that operate in multi-threaded environments, the
implementations of _add_ref and _remove_ref that the
RefCountServantBase class provides shall be thread-safe.

Like ServantBase , RefCountServantBase supports copy construction and the
default assignment operation. Copy construction always sets the reference count
new servant instance to one. The default assignment implementation merely retu
*this and does not affect the reference count.
1-130 C++ Language Mapping June 1999

1

ehaves
e
1.36.3 ServantBase_var Class

For the convenience of automatically managing servant reference counts, the
PortableServer namespace also provides the ServantBase_var class. This class b
similarly to _var classes for object references (seeSection 1.3.1, “Object Referenc
Types,” on page 1-7).

// C++
namespace PortableServer
{

class ServantBase_var
{
public:

ServantBase_var() : _ptr(0) {}
ServantBase_var(ServantBase* p) : _ptr(p) {}
ServantBase_var(const ServantBase_var& b)

: _ptr(b._ptr)
{

if (_ptr != 0) _ptr->_add_ref();
}
~ServantBase_var()
{

if (_ptr != 0) _ptr->_remove_ref();
}

ServantBase_var& operator=(ServantBase* p)
{

if (_ptr != 0) _ptr->_remove_ref();
_ptr = p;
return *this;

}
ServantBase_var&
operator=(const ServantBaseBase_var& b)
{

if (_ptr != b._ptr) {
if (_ptr != 0) _ptr->_remove_ref();
if ((_ptr = b._ptr) != 0)

_ptr->_add_ref();
}
return *this;

}

ServantBase* operator->() const { return _ptr; }

ServantBase* in() const { return _ptr; }
ServantBase*& inout() { return _ptr; }
ServantBase*& out()
{

if (_ptr != 0) _ptr->_remove_ref();
_ptr = 0;
C++ Language Mapping Implementing Interfaces June 1999 1-131

1

n here.

n and

s that
t

rvant

.
if
f the

e
s if

return _ptr;
}
ServantBase* _retn()
{

ServantBase* retval = _ptr;
_ptr = 0;
return retval;

}

private:
ServantBase* _ptr;

};
}

The implementation shown above for the ServantBase_var is intended only as an
example that conveys required semantics. Variations of this implementation are
possible as long as they provide the same semantics as the implementation show

1.36.4 Servant Memory Management Considerations

Portable memory management of servants requires an exact specification of whe
how a servant may be deleted. This specification supports but does not require
reference counting:

• When reference counting is used, the implementation of _remove_ref is assumed
to delete the servant when its reference count drops to zero. The POA ensure
a servant will not be deleted while invocations are currently outstanding on tha
servant by maintaining a reference to the servant until the invocations have
completed. For example, the POA may increment the reference count of the se
before invoking the implementation (but after preinvoke) and decrement the
reference count after the invocation (but before postinvoke).

• If reference counting is not used, some application code must explicitly call
delete on a heap-allocated servant for that servant's memory to be reclaimed
Beware that explicit deletion of a servant will cause memory access violations
that servant is still in use by some other part of the application. For example, i
same servant instance was obtained from POA::reference_to_servant or
POA::id_to_servant (perhaps in another thread), the caller that obtained th
servant instance may still be using it. Also, explicit deletion may cause problem
the same servant instance is registered in multiple POAs.

For each POA, ServantActivator , or ServantLocator operation that either passes a
Servant as a parameter or returns a Servant , the following rules described caller
and callee memory management responsibilities:

• ServantActivator::incarnate —returns a Servant . The POA may use
this Servant until it is passed to etherealize .

• ServantActivator::etherealize —has an in Servant argument. The
POA assumes that etherealize consumes the Servant argument, and does not
access a Servant in any way after it has been passed to etherealize . A
conforming implementation of etherealize may delete its Servant argument
1-132 C++ Language Mapping June 1999

1

s

he

e

ds

ent

ent
if the type of the Servant uses the default reference counting inherited from
ServantBase and the Servant instance has been heap-allocated. If the
application uses reference counting, the Servant is consumed by invoking
_remove_ref on that Servant .

• ServantLocator::preinvoke —returns a Servant . The POA may use this
Servant until it is passed to postinvoke .

• ServantLocator::postinvoke —has an in Servant argument. The POA
assumes that postinvoke consumes the Servant argument, and does not acces
a Servant in any way after it has been passed to postinvoke . A conforming
implementation of postinvoke may delete its Servant argument if the type of
the Servant uses the default reference counting inherited from ServantBase
and the Servant instance has been heap-allocated. If the application uses
reference counting, the Servant is consumed by invoking _remove_ref on that
Servant .

• POA::get_servant —returns a Servant . The POA invokes _add_ref once
on the Servant before returning it. If the application uses reference counting, t
caller of get_servant is responsible for invoking _remove_ref once on the
returned Servant when it is finished with it. A conforming caller need not invok
_remove_ref on the returned Servant if the type of the Servant uses the
default reference counting inherited from ServantBase .

• POA::set_servant —has an in Servant argument. The implementation of
set_servant will invoke _add_ref at least once on the Servant argument
before returning. When the POA no longer needs the Servant , it will invoke
_remove_ref on it the same number of times.

• POA::activate_object —has an in Servant argument. The implementation
of activate_object will invoke _add_ref at least once on the Servant
argument before returning. When the POA no longer needs the Servant , it will
invoke _remove_ref on it the same number of times.

• POA::activate_object_with_id —has an in Servant argument. The
implementation of activate_object_with_id will invoke _add_ref at least
once on the Servant argument before returning. When the POA no longer nee
the Servant , it will invoke _remove_ref on it the same number of times.

• POA::servant_to_id —has an in Servant argument. If this operation causes
the object to be activated, _add_ref is invoked at least once on the Servant
argument before returning. Otherwise, the POA does not increment or decrem
the reference count of the Servant passed to this function.

• POA::servant_to_reference —has an in Servant argument. If this
operation causes the object to be activated, _add_ref is invoked at least once on
the Servant argument before returning. Otherwise, the POA does not increm
or decrement the reference count of the Servant passed to this function.

• POA::reference_to_servant —returns a Servant . The POA invokes
_add_ref once on the Servant before returning it. If the application uses
reference counting, the caller of reference_to_servant is responsible for
invoking _remove_ref once on the returned Servant when it is finished with it.
C++ Language Mapping Implementing Interfaces June 1999 1-133

1

,

he

o

nt,
t

ed.

 to
A conforming caller need not invoke _remove_ref on the returned Servant if
the type of the Servant uses the default reference counting inherited from
ServantBase .

• POA::id_to_servant —returns a Servant . The POA invokes _add_ref
once on the Servant before returning it. If the application uses reference
counting, the caller of id_to_servant is responsible for invoking
_remove_ref once on the returned Servant when it is finished with it. A
conforming caller need not invoke _remove_ref on the returned Servant if the
type of the Servant uses the default reference counting inherited from
ServantBase .

The following operations do not receive or return Servants in their signatures, but
have behavior that may require invocations of _add_ref or _remove_ref :

• _this —invoked on a Servant to obtain an object reference for an object
implemented by that Servant . If this operation causes the object to be activated
_add_ref is invoked at least once on the Servant argument before returning.
Otherwise, the POA does not increment or decrement the reference count of t
Servant passed to this function.

• POA::deactivate_object —upon activation, _add_ref is invoked on the
Servant . Therefore, the act of deactivation must cause _remove_ref to be
invoked. If the POA has no ServantActivator associated with it, the POA
implementation calls _remove_ref when all operation invocations have
completed. If there is a ServantActivator , the Servant is consumed by the call t
ServantActivator::etherealize instead.

• POA::destroy —upon activation of a servant or registration of a default serva
_add_ref is invoked on the Servant . Therefore, the destruction of a POA mus
cause _remove_ref to be invoked. The POA implementation invokes
_remove_ref on any default servant. If the POA has no ServantActivator
associated with it, the POA implementation calls _remove_ref on each
Servant in the Active Object Map when all operation invocations have complet
If there is a ServantActivator , each Servant is consumed by the call to
ServantActivator::etherealize instead.

• POAManager::deactivate —upon activation of a servant or registration of a
default servant, _add_ref is invoked on the Servant . Therefore, the destruction
of a POA must cause _remove_ref to be invoked. If etherealize_objects
is true the POA implementation invokes _remove_ref on any default servant. If
etherealize_objects is true and a managed POA does not have a
ServantActivator associated with it, the POA implementation invokes
_remove_ref on each Servant in that POA's Active Object Map after all
dispatched operations have completed. If there is a ServantActivator , each
Servant is consumed by the call to ServantActivator::etherealize instead.

Note that in those cases where the caller becomes responsible for invoking
_remove_ref on a Servant returned to it, the caller can assign the return value
a ServantBase_var instance for automatic reference count management.
1-134 C++ Language Mapping June 1999

1

the
A

es

 the

 the

is
h the

 must
1.36.5 Skeleton Operations

All skeleton classes provide a _this() member function. This member function has
three purposes:

1. Within the context of a request invocation on the target object represented by
servant, it allows the servant to obtain the object reference for the target CORB
object it is incarnating for that request. This is true even if the servant incarnat
multiple CORBA objects. In this context, _this() can be called regardless of the
policies used to create the dispatching POA.

2. Outside the context of a request invocation on the target object represented by
servant, it allows a servant to be implicitly activated if its POA allows implicit
activation. This requires the activating POA to have been created with the
IMPLICIT_ACTIVATION policy. If the POA was not created with the
IMPLICIT_ACTIVATION policy, the PortableServer::WrongPolicy exception is
thrown. The POA used for implicit activation is gotten by invoking
_default_POA() on the servant.

3. Outside the context of a request invocation on the target object represented by
servant, it will return the object reference for a servant that has already been
activated, as long as the servant is not incarnating multiple CORBA objects. Th
requires the POA with which the servant was activated to have been created wit
UNIQUE_ID and RETAIN policies. If the POA was created with the
MULTIPLE_ID or NON_RETAIN policies, the PortableServer::WrongPolicy
exception is thrown. The POA is gotten by invoking _default_POA() on the
servant.

For example, for interface A defined as follows:

// IDL
interface A
{

short op1();
void op2(in long val);

};

The return value of _this() is a typed object reference for the interface type
corresponding to the skeleton class. For example, the _this() function for the
skeleton for interface A would be defined as follows:

// C++
class POA_A : public virtual ServantBase
{

public:
A_ptr _this();
...

};

The _this() function follows the normal C++ mapping rules for returned object
references, so the caller assumes ownership of the returned object reference and
eventually call CORBA::release() on it.
C++ Language Mapping Implementing Interfaces June 1999 1-135

1

 OMG

ass.
tub
tions.
of

res
The _this() function can be virtual if the C++ environment supports covariant
return types, otherwise the function must be non-virtual so the return type can be
correctly specified without compiler errors. Applications use _this() the same way
regardless of which of these implementation approaches is taken.

Assuming A_impl is a class derived from POA_A that implements the A interface,
and assuming that the servant’s POA was created with the appropriate policies, a
servant of type A_impl can be created and implicitly activated as follows:

// C++
A_impl my_a;
A_var a = my_a._this();

1.36.6 Inheritance-Based Interface Implementation

Implementation classes can be derived from a generated base class based on the
IDL interface definition. The generated base classes are known as skeleton classes, and
the derived classes are known as implementation classes. Each operation of the
interface has a corresponding virtual member function declared in the skeleton cl
The signature of the member function is identical to that of the generated client s
class. The implementation class provides implementations for these member func
The object adapter typically invokes the methods via calls to the virtual functions
the skeleton class.

Assume that IDL interface A is defined as follows:

// IDL
interface A
{

short op1();
void op2(in long val);

};

For IDL interface A as shown above, the IDL compiler generates an interface classA.
This class contains the C++ definitions for the typedefs, constants, exceptions,
attributes, and operations in the OMG IDL interface. It has a form similar to the
following:

// C++
class A : public virtual Object
{

public:
virtual Short op1() = 0;
virtual void op2(Long val) = 0;
...

};

Some ORB implementations might not use public virtual inheritance from
CORBA::Object , and might not make the operations pure virtual, but the signatu
of the operations will be the same.
1-136 C++ Language Mapping June 1999

1

o the
tion
ding
e

ns to
ase

.

s
n

le
pes
w in

.

On the server side, a skeleton class is generated. This class is partially opaque t
programmer, though it will contain a member function corresponding to each opera
in the interface. For the POA, the name of the skeleton class is formed by prepen
the string “POA_” to the fully-scoped name of the corresponding interface, and th
class is either directly or indirectly derived from the servant base class
PortableServer::ServantBase . The PortableServer::ServantBase
class must be a virtual base class of the skeleton to allow portable implementatio
multiply inherit from both skeleton classes and implementation classes for other b
interfaces without error or ambiguity.

The skeleton class for interface A shown above would appear as follows:

// C++
class POA_A : public virtual PortableServer::ServantBase
{

public:
// ...server-side implementation-specific detail
// goes here...
virtual Short op1() throw(SystemException) = 0;
virtual void op2(Long val) throw(SystemException) = 0;
...

};

If interface A were defined within a module rather than at global scope, e.g., Mod::A ,
the name of its skeleton class would be POA_Mod::A . This helps to separate server-
side skeleton declarations and definitions from C++ code generated for the client

To implement this interface using inheritance, a programmer must derive from thi
skeleton class and implement each of the operations in the OMG IDL interface. A
implementation class declaration for interface A would take the form:

// C++
class A_impl : public POA_A
{

public:
Short op1() throw(SystemException);
void op2(Long val) throw(SystemException);
...

};

Note that the presence of the _this() function implies that C++ servants must only
be derived directly from a single skeleton class. Direct derivation from multiple
skeleton classes could result in ambiguity errors due to multiple definitions of
_this() . This should not be a limitation, since CORBA objects have only a sing
most-derived interface. Servants that are intended to support multiple interface ty
can utilize the delegation-based interface implementation approach, described belo
“Delegation-Based Interface Implementation”, or can be registered as DSI-based
servants, as described in Section 1.38, “Mapping of DSI to C++,” on page 1-144
C++ Language Mapping Implementing Interfaces June 1999 1-137

1

rchy
 may
le,
e
e.

ng
ation,

g
gh

 The
 the

plate

te tie
ed on
d in
1.36.7 Delegation-Based Interface Implementation

Inheritance is not always the best solution for implementing servants. Using
inheritance from the OMG IDL–generated classes forces a C++ inheritance hiera
into the application. Sometimes, the overhead of such inheritance is too high, or it
be impossible to compile correctly due to defects in the C++ compiler. For examp
implementing objects using existing legacy code might be impossible if inheritanc
from some global class were required, due to the invasive nature of the inheritanc

In some cases delegation can be used to solve this problem. Rather than inheriti
from a skeleton class, the implementation can be coded as required for the applic
and a wrapper object will delegate upcalls to that implementation. This section
describes how this can be achieved in a type-safe manner using C++ templates.

For the examples in this section, the OMG IDL interface from Section 1.36.6,
“Inheritance-Based Interface Implementation,” on page 1-136 will again be used:

// IDL
interface A
{

short op1();void op2(in long val);
};

In addition to generating a skeleton class, the IDL compiler generates a delegatin
class called a tie. This class is partially opaque to the application programmer, thou
like the skeleton, it provides a method corresponding to each OMG IDL operation.
name of the generated tie class is the same as the generated skeleton class with
addition that the string “_tie” is appended to the end of the name. For example:

// C++
template<class T>
class POA_A_tie : public POA_A
{

public:
...

};

An instance of this template class performs the task of delegation. When the tem
is instantiated with a class type that provides the operations of A, then the POA_A_tie
class will delegate all operations to an instance of that implementation class. A
reference or pointer to the actual implementation object is passed to the appropria
constructor when an instance of the tie class is created. When a request is invok
it, the tie servant will just delegate the request by calling the corresponding metho
the implementation object.

// C++
template<class T>
class POA_A_tie : public POA_A
{

public:
POA_A_tie(T& t)
1-138 C++ Language Mapping June 1999

1

: _ptr(&t), _poa(POA::_nil()), _rel(0) {}
POA_A_tie(T& t, POA_ptr poa)

: _ptr(&t),
_poa(POA::_duplicate(poa)), _rel(0) {}

POA_A_tie(T* tp, Boolean release = 1)
: _ptr(tp), _poa(POA::_nil()), _rel(release) {}

POA_A_tie(T* tp, POA_ptr poa,
Boolean release = 1)

: _ptr(tp), _poa(POA::_duplicate(poa)),
_rel(release) {}

~POA_A_tie()
{

CORBA::release(_poa);
if (_rel) delete _ptr;

}

// tie-specific functions
T* _tied_object() { return _ptr; }
void _tied_object(T& obj)
{

if (_rel) delete _ptr;
_ptr = &obj;
_rel = 0;

}
void _tied_object(T* obj, Boolean release = 1)
{

if (_rel) delete _ptr;
_ptr = obj;
_rel = release;

}
Boolean _is_owner() { return _rel; }
void _is_owner(Boolean b) { _rel = b; }

// IDL operations
Short op1() throw(SystemException)
{

return _ptr->op1();
}
void op2(Long val) throw(SystemException)
{

_ptr->op2(val);
}

// override ServantBase operations
POA_ptr _default_POA()
{

if (!CORBA::is_nil(_poa)) {
return PortableServer::POA::_duplicate(_poa);

} else {
// return root POA

}

C++ Language Mapping Implementing Interfaces June 1999 1-139

1

ree
tics in

ound

inted
the

t

n.

ined

mory
ther,

e tie
e tie

, such
}

private:
T* _ptr;
POA_ptr _poa;
Boolean _rel;

// copy and assignment not allowed
POA_A_tie(const POA_A_tie&);
void operator=(const POA_A_tie&);

};

It is important to note that the tie example shown above contains sample
implementations for all of the required functions. A conforming implementation is f
to implement these operations as it sees fit, as long as they conform to the seman
the paragraphs described below. A conforming implementation is also allowed to
include additional implementation-specific functions if it wishes.

The T& constructors cause the tie servant to delegate all calls to the C++ object b
to reference t . Ownership for the object referred to by t does not become the
responsibility of the tie servant.

The T* constructors cause the tie servant to delegate all calls to the C++ object po
to by tp . The release parameter dictates whether the tie takes on ownership of
C++ object pointed to by tp ; if release is TRUE, the tie adopts the C++ object,
otherwise it does not. If the tie adopts the C++ object being delegated to, it will
delete it when its own destructor is invoked, as shown above in the
~POA_A_tie() destructor.

The _tied_object() accessor function allows callers to access the C++ object
being delegated to. If the tie was constructed to take ownership of the C++ objec
(release was TRUE in the T* constructor), the caller of _tied_object() should
never delete the return value.

The first _tied_object() modifier function calls delete on the current tied
object if the tie’s release flag is TRUE, and then points to the new tie object passed i
The tie’s release flag is set to FALSE. The second _tied_object() modifier
function does the same, except that the final state of the tie’s release flag is determ
by the value of the release argument.

The _is_owner() accessor function returns TRUE if the tie owns the C++ object it
is delegating to, or FALSE if it does not. The _is_owner() modifier function allows
the state of the tie’s release flag to be changed. This is useful for ensuring that me
leaks do not occur when transferring ownership of tied objects from one tie to ano
or when changing the tied object a tie delegates to.

For delegation-based implementations it is important to note that the servant is th
object, not the C++ object being delegated to by the tie object. This means that th
servant is used as the argument to those POA operations that require a Servant
argument. This also means that any operations that the POA calls on the servant
1-140 C++ Language Mapping June 1999

1

y

e

bject
ct,

bject
ts,
f a

tice,

ject

f the
ll

as ServantBase::_default_POA() , are provided by the tie servant, as shown b
the example above. The value returned by _default_POA() is supplied to the tie
constructor.

It is also important to note that by default, a delegation-based implementation (th
“tied” C++ instance) has no access to the _this() function, which is available only
on the tie. One way for this access to be provided is by informing the delegation o
of its associated tie object. This way, the tie holds a pointer to the delegation obje
and vice-versa. However, this approach only works if the tie and the delegation o
have a one-to-one relationship. For a delegation object tied into multiple tie objec
the object reference by which it was invoked can be obtained within the context o
request invocation by calling
PortableServer::Current::get_object_id() , passing its return value to
PortableServer::POA::id_to_reference() , and then narrowing the
returned object reference appropriately.

In the tie class shown above, all the operations are shown as being inline. In prac
it is likely that they will be defined out of line, especially for those functions that
override inherited virtual functions. Either approach is allowed by conforming
implementations.

The use of templates for tie classes allows the application developer to provide
specializations for some or all of the template’s member functions for a given
instantiation of the template. This allows the application to control how the tied ob
is invoked. For example, the POA_A_tie<T>::op2() operation is normally defined
as follows:

// C++
template<class T>
void
POA_A_tie<T>::op2(Long val) throw(SystemException)
{

_ptr->op2(val);
}

This implementation assumes that the tied object supports an op2() operation with
the same signature and the ability to throw CORBA system exceptions. However, i
application wants to use legacy classes for tied object types, it is unlikely they wi
support these capabilities. In that case, the application can provide its own
specialization. For example, if the application already has a class named Foo that
supports a log_value() function, the tie class op2() function can be made to call
it if the following specialization is provided:

// C++
void
POA_A_tie<Foo>::op2(Long val) throw(SystemException)
{

_tied_object()->log_value(val);
}

C++ Language Mapping Implementing Interfaces June 1999 1-141

1

ta

plate
e. For
ing”

the
the

h is
ave

en

ata
y
Portable specializations like the one shown above should not access tie class da
members directly, since the names of those data members are not standardized.

For C++ implementations that do not support namespaces or the definition of tem
classes inside other classes, tie template classes must be defined at global scop
these environments, the names of tie template classes shall be formed by “flatten
the normal tie name, i.e., replacing all occurrences of “:: ” with “ _”. For example, in
such an environment the name of the tie template class for interface A::B::C would be
POA_A_B_C_tie .

1.37 Implementing Operations

The signature of an implementation member function is the mapped signature of
OMG IDL operation. Unlike the client side, the server-side mapping requires that
function header include the appropriate exception (throw) specification. This
requirement allows the compiler to detect when an invalid exception is raised, whic
necessary in the case of a local C++-to-C++ library call (otherwise the call would h
to go through a wrapper that checked for a valid exception). For example:

// IDL
interface A
{

exception B {};
void f() raises(B);

};

// C++
class MyA : public virtual POA_A
{

public:
void f() throw(A::B, SystemException);
...

};

Since all operations and attributes may throw CORBA system exceptions,
CORBA::SystemException must appear in all exception specifications, even wh
an operation has no raises clause.

Within a member function, the “this” pointer refers to the implementation object’s d
as defined by the class. In addition to accessing the data, a member function ma
implicitly call another member function defined by the same class. For example:

// IDL
interface A
{

void f();
void g();

};
1-142 C++ Language Mapping June 1999

1

lled
a

t
// C++
class MyA : public virtual POA_A
{

public:
void f() throw(SystemException);
void g() throw(SystemException);

private:
long x_;

};

void
MyA::f() throw(SystemException)
{

this->x_ = 3;
this->g();

}

However, when a servant member function is invoked in this manner, it is being ca
simply as a C++ member function, not as the implementation of an operation on
CORBA object. In such a context, any information available via the POA_Current
object refers to the CORBA request invocation that performed the C++ member
function invocation, not to the member function invocation itself.

1.37.1 Skeleton Derivation From Object

In several existing ORB implementations, each skeleton class derives from the
corresponding interface class. For example, for interface Mod::A , the skeleton class
POA_Mod::A is derived from class Mod::A . These systems therefore allow an objec
reference for a servant to be implicitly obtained via normal C++ derived-to-base
conversion rules:

// C++
MyImplOfA my_a; // declare impl of A
A_ptr a = &my_a; // obtain its object reference

// by C++ derived-to-base
// conversion

Such code can be supported by a conforming ORB implementation, but it is not
required, and is thus not portable. The equivalent portable code invokes _this() on
the implementation object in order to implicitly register it if it has not yet been
registered, and to get its object reference:

// C++
MyImplOfA my_a; // declare impl of A
A_ptr a = my_a._this(); // obtain its object

// reference
C++ Language Mapping Implementing Operations June 1999 1-143

1

++

ake

sed
e

t
quire
1.38 Mapping of DSI to C++

The Common Object Request Broker: Architecture and Specifications, Dynamic
Skeleton Interface chapter, DSI: Language Mapping section contains general
information about mapping the Dynamic Skeleton Interface to programming
languages.

This section contains the following information:

• Mapping of the Dynamic Skeleton Interface’s ServerRequest to C++
• Mapping of the Portable Object Adapter’s Dynamic Implementation Routine to C

1.38.1 Mapping of ServerRequest to C++

The ServerRequest pseudo object maps to a C++ class in the CORBA namespace
which supports the following operations and signatures:

// C++
class ServerRequest
{

public:
const char* operation() const;
void arguments(NVList_ptr& parameters);
Context_ptr ctx();
void set_result(const Any& value);
void set_exception(const Any& value);

};

Note that, as with the rest of the C++ mapping, ORB implementations are free to m
such operations virtual and modify the inheritance as needed.

All of these operations follow the normal memory management rules for data pas
into skeletons by the ORB. That is, the DIR is not allowed to modify or change th
string returned by operation() , in parameters in the NVList returned from
arguments() , or the Context returned by ctx() . Similarly, data allocated by the
DIR and handed to the ORB (the NVList parameters) are freed by the ORB rather
than by the DIR.

1.38.2 Handling Operation Parameters and Results

The ServerRequest provides parameter values when the DIR invokes the
arguments() operation. The NVList provided by the DIR to the ORB includes the
TypeCodes and direction Flags (inside NamedValues) for all parameters,
including out ones for the operation. This allows the ORB to verify that the correc
parameter types have been provided before filling their values in, but does not re
it to do so. It also relieves the ORB of all responsibility to consult an Interface
Repository, promoting high-performance implementations.
1-144 C++ Language Mapping June 1999

1

mic

SI

e

 by

s
The NVList provided to the ORB then becomes owned by the ORB. It becomes
deallocated after the DIR returns. This allows the DIR to pass the out values,
including the return side of inout values, to the ORB by modifying the NVList after
arguments() has been called. Therefore, if the DIR stores the NVList_ptr into an
NVList_var , it should pass it to the arguments() function by invoking the
_retn() function on it, in order to force it to release ownership of its internal
NVList_ptr to the ORB.

1.38.3 Mapping of PortableServer Dynamic Implementation Routine

In C++, DSI servants inherit from the standard DynamicImplementation class.
This class inherits from the ServantBase class and is also defined in the
PortableServer namespace. The Dynamic Skeleton Interface (DSI) is
implemented through servants that are members of classes that inherit from dyna
skeleton classes.

// C++
namespace PortableServer
{

class DynamicImplementation : public virtual ServantBase
{

public:
Object_ptr _this();
virtual void invoke(

ServerRequest_ptr request
) = 0;

virtual RepositoryId
_primary_interface(

const ObjectId& oid,
POA_ptr poa

) = 0;
};

}

The _this() function returns a CORBA::Object_ptr for the target object. Unlike
_this() for static skeletons, its return type is not interface-specific because a D
servant may very well incarnate multiple CORBA objects of different types. If
DynamicImplementation::_this() is invoked outside of the context of a
request invocation on a target object being served by the DSI servant, it raises th
PortableServer::WrongPolicy exception.

The invoke() method receives requests issued to any CORBA object incarnated
the DSI servant and performs the processing necessary to execute the request.

The _primary_interface() method receives an ObjectId value and a
POA_ptr as input parameters and returns a valid RepositoryId representing the
most-derived interface for that oid .

It is expected that the invoke() and _primary_interface() methods will be
invoked only by the POA in the context of serving a CORBA request. Invoking thi
method in other circumstances may lead to unpredictable results.
C++ Language Mapping Mapping of DSI to C++ June 1999 1-145

1

+

1.39 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableServer::POA::ObjectId type, as object identifiers. However, because C+
programmers will often want to use strings as object identifiers, the C++ mapping
provides several conversion functions that convert strings to ObjectId and vice-
versa:

// C++
namespace PortableServer
{

char* ObjectId_to_string(const ObjectId&);
WChar* ObjectId_to_wstring(const ObjectId&);

ObjectId* string_to_ObjectId(const char*);
ObjectId* wstring_to_ObjectId(const WChar*);

}

These functions follow the normal C++ mapping rules for parameter passing and
memory management.

If conversion of an ObjectId to a string would result in illegal characters in the
string (such as a NUL), the first two functions throw the CORBA::BAD_PARAM
exception.

1.40 Mapping for PortableServer::ServantManager

1.40.1 Mapping for Cookie

Since PortableServer::ServantLocator::Cookie is an IDL native type, its type
must be specified by each language mapping. In C++, Cookie maps to void* :

// C++
namespace PortableServer
{

class ServantLocator {
...
typedef void* Cookie;

};
}

For the C++ mapping of the PortableServer::ServantLocator::preinvoke()
operation, the Cookie parameter maps to a Cookie& , while for the postinvoke()
operation, it is passed as a Cookie .
1-146 C++ Language Mapping June 1999

1

roach.

for
 an

s.
essary.

efore

s
ted
on-
d, it

s

t the
ot

e or
s for
1.40.2 ServantManagers and AdapterActivators

Portable servants that implement the PortableServer::AdapterActivator ,
the PortableServer::ServantActivator , or
PortableServer::ServantLocator interfaces are implemented just like any
other servant. They may use either the inheritance-based approach or the tie app

1.40.3 Server Side Mapping for Abstract Interfaces

The only circumstances under which an IDL compiler should generate C++ code
abstract interfaces for the server side are when either an interface is derived from
abstract interface, or when a valuetype supports an abstract interface indirectly
through one or more intermediate regular interface types. Abstract interfaces by
themselves cannot be directly implemented or instantiated by portable application
Because of this, standard C++ skeleton classes for abstract interfaces are not nec

The requirements for the C++ server-side mapping for abstract interfaces are ther
quite simple:

• The IDL compiler shall ensure that POA skeletons for interfaces derived from
abstract interfaces somehow include pure virtual functions for the IDL operation19
defined in the base abstract interface(s). These functions can either be genera
directly into the POA skeleton class, or can be generated into an implementati
specific base class inherited by the POA skeleton. If the latter approach is use
must be done in a way that does not require special constructor invocations by
application-supplied servant classes (for example, if it were a virtual base clas
without a default constructor, it would require the most derived servant class to
explicitly initialize it in its own constructor member initialization lists).

1.41 C++ Definitions for CORBA

This section provides a partial set of C++ definitions for the CORBA module. The
definitions appear within the C++ namespace named CORBA.

// C++
namespace CORBA { ... }

Any implementations shown here are merely sample implementations: they are no
required definitions for these types. Furthermore, in some cases these types do n
define the complete interfaces of their IDL counterparts; if any type is missing on
more operations, those operations are assumed to follow normal C++ mapping rule
their signatures, parameter passing rules, memory management rules, etc.

19. This refers only to the operations defined in IDL, not to the C++-specific _duplicate,
_narrow, and _nil functions supplied by all abstract interface C++ classes.
C++ Language Mapping C++ Definitions for CORBA June 1999 1-147

1

1.41.1 Primitive Types

typedef unsigned char Boolean;
typedef unsigned char Char;
typedef wchar_t WChar;
typedef unsigned char Octet;
typedef short Short;
typedef unsigned short UShort;
typedef long Long;
typedef ... LongLong;
typedef unsigned long ULong;
typedef ... ULongLong;
typedef float Float;
typedef double Double;
typedef long double LongDouble;

typedef Boolean& Boolean_out;
typedef Char& Char_out;
typedef WChar& WChar_out;
typedef Octet& Octet_out;
typedef Short& Short_out;
typedef UShort& UShort_out;
typedef Long& Long_out;
typedef LongLong& LongLong_out;
typedef ULong& ULong_out;
typedef ULongLong& ULongLong_out;
typedef Float& Float_out;
typedef Double& Double_out;
typedef LongDouble& LongDouble_out;

1.41.2 String_var and String_out Class

class String_var
{

public:
String_var();
String_var(char *p);
String_var(const char *p);
String_var(const String_var &s);
~String_var();

String_var &operator=(char *p);
String_var &operator=(const char *p);
String_var &operator=(const String_var &s);

operator char*();
operator const char*() const;
1-148 C++ Language Mapping June 1999

1

cter
const char* in() const;
char*& inout();
char*& out();
char* _retn();

char &operator[](ULong index);
char operator[](ULong index) const;

};

class String_out
{

public:
String_out(char*& p);
String_out(String_var& p);
String_out(String_out& s);
String_out& operator=(String_out& s);
String_out& operator=(char* p);
String_out& operator=(const char* p)

operator char*&();
char*& ptr();

private:
// assignment from String_var disallowed
void operator=(const String_var&);

};

1.41.3 WString_var and WString_out

The WString_var and WString_out types are identical to String_var and
String_out , respectively, except that they operate on wide string and wide chara
types.

1.41.4 Fixed Class

class Fixed
{

public:
// Constructors
Fixed(int val = 0);
Fixed(unsigned val);
Fixed(Long val);
Fixed(ULong val);
Fixed(LongLong val);
Fixed(ULongLong val);
Fixed(Double val);
Fixed(LongDouble val);
Fixed(const Fixed& val);
Fixed(const char *);
~Fixed();
C++ Language Mapping C++ Definitions for CORBA June 1999 1-149

1

// Conversions
operator LongLong() const;
operator LongDouble() const;
Fixed round(UShort scale) const;
Fixed truncate(UShort scale) const;

// Operators
Fixed& operator=(const Fixed& val);
Fixed& operator+=(const Fixed& val);
Fixed& operator-=(const Fixed& val);
Fixed& operator*=(const Fixed& val);
Fixed& operator/=(const Fixed& val);

Fixed& operator++();
Fixed operator++(int);
Fixed& operator--();
Fixed operator--(int);
Fixed operator+() const;
Fixed operator-() const;
Boolean operator!() const;

// Other member functions
UShort fixed_digits() const;
UShort fixed_scale() const;

};

istream& operator>>(istream& is, Fixed& val);
ostream& operator<<(ostream& os, const Fixed& val);

Fixed operator + (const Fixed& val1, const Fixed& val2);
Fixed operator - (const Fixed& val1, const Fixed& val2);
Fixed operator * (const Fixed& val1, const Fixed& val2);
Fixed operator / (const Fixed& val1, const Fixed& val2);

Boolean operator > (const Fixed& val1, const Fixed& val2);
Boolean operator < (const Fixed& val1, const Fixed& val2);
Boolean operator >= (const Fixed& val1, const Fixed& val2);
Boolean operator <= (const Fixed& val1, const Fixed& val2);
Boolean operator == (const Fixed& val1, const Fixed& val2);
Boolean operator != (const Fixed& val1, const Fixed& val2);

1.41.5 Any Class

class Any
{

public:
Any();
Any(const Any&);
1-150 C++ Language Mapping June 1999

1

Any(TypeCode_ptr tc, void *value,
Boolean release = FALSE);

~Any();

Any &operator=(const Any&);

// special types needed for boolean, octet, char,
// and bounded string insertion
// these are suggested implementations only
struct from_boolean {

from_boolean(Boolean b) : val(b) {}
Boolean val;

};
struct from_octet {

from_octet(Octet o) : val(o) {}
Octet val;

};

struct from_char {
from_char(Char c) : val(c) {}
Char val;

};
struct from_wchar {

from_char(WChar c) : val(c) {}

WChar val;
};
struct from_string {

from_string(char* s, ULong b,
Boolean n = FALSE) :

val(s), bound(b), nocopy(n) {}
from_string(const char* s, ULong b) :

val(const_cast<char*>(s)), bound(b),
nocopy(0) {}

char *val;
ULong bound;
Boolean nocopy;

};
struct from_wstring {

from_wstring(WChar* s, ULong b,
Boolean n = FALSE) :

val(s), bound(b), nocopy(n) {}
from_wstring(const WChar*, ULong b) :

val(const_cast<WChar*>(s)), bound(b),
nocopy(0) {}

WChar *val;
ULong bound;
Boolean nocopy;

};
struct from_fixed {

from_fixed(const Fixed& f, UShort d, UShort s)
C++ Language Mapping C++ Definitions for CORBA June 1999 1-151

1

: val(f), digits(d), scale(s) {}
const Fixed& val;
UShort digits;
UShort scale;

};

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_wchar);
void operator<<=(from_octet);
void operator<<=(from_string);
void operator<<=(from_wstring);
void operator<<=(from_fixed);

// special types needed for boolean, octet,
// char extraction
// these are suggested implementations only
struct to_boolean {

to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;

};
struct to_char {

to_char(Char &c) : ref(c) {}
Char &ref;

};
struct to_wchar {

to_wchar(WChar &c) : ref(c) {}
WChar &ref;

};

struct to_octet {
to_octet(Octet &o) : ref(o) {}
Octet &ref;

};
struct to_object {

to_object(Object_out obj) : ref(obj) {}
Object_ptr &ref;

};
struct to_string {

to_string(const char *&s, ULong b)
: val(s), bound(b) {}

const char *&val;
ULong bound;

// the following constructor is deprecated
to_string(char *&s, ULong b) : val(s), bound(b) {}

};
struct to_wstring {

to_wstring(const WChar *&s, ULong b)
: val(s), bound(b) {}

const WChar *&val;
1-152 C++ Language Mapping June 1999

1

ULong bound;

// the following constructor is deprecated
to_wstring(WChar *&s, ULong b)

: val(s), bound(b) {}
};
struct to_fixed {

to_fixed(Fixed& f, UShort d, UShort s)
: val(f), digits(d), scale(s) {}

Fixed& val;
UShort digits;
UShort scale;

};
struct to_abstract_base {

to_abstract_base(AbstractBase_ptr& base)
: ref(base) {}
AbstractBase_ptr& ref;

};

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
Boolean operator>>=(to_wchar) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_object) const;
Boolean operator>>=(to_string) const;
Boolean operator>>=(to_wstring) const;
Boolean operator>>=(to_fixed) const;
Boolean operator>>=(to_abstract_base) const;

void replace(TypeCode_ptr, void *value,
Boolean release = FALSE);

TypeCode_ptr type() const;
void type(TypeCode_ptr);
const void *value() const;

private:
// these are hidden and should not be implemented
// so as to catch erroneous attempts to insert
// or extract multiple IDL types mapped to unsigned

char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char&) const;

};

void operator<<=(Any&, Short);
void operator<<=(Any&, UShort);
void operator<<=(Any&, Long);
void operator<<=(Any&, ULong);
void operator<<=(Any&, Float);
void operator<<=(Any&, Double);
C++ Language Mapping C++ Definitions for CORBA June 1999 1-153

1

void operator<<=(Any&, LongLong);
void operator<<=(Any&, ULongLong);
void operator<<=(Any&, LongDouble);
void operator<<=(Any&, const Any&); // copying
void operator<<=(Any&, Any*); // non-copying
void operator<<=(Any&, const char*);
void operator<<=(Any&, const WChar*);

Boolean operator>>=(const Any&, Short&);
Boolean operator>>=(const Any&, UShort&);
Boolean operator>>=(const Any&, Long&);
Boolean operator>>=(const Any&, ULong&);
Boolean operator>>=(const Any&, Float&);
Boolean operator>>=(const Any&, Double&);
Boolean operator>>=(const Any&, LongLong&);
Boolean operator>>=(const Any&, ULongLong&);
Boolean operator>>=(const Any&, LongDouble&);
Boolean operator>>=(const Any&, const Any*&);
Boolean operator>>=(const Any&, const char*&);
Boolean operator>>=(const Any&, const WChar*&);

1.41.6 Any_var Class

class Any_var
{

public:
Any_var();
Any_var(Any *a);
Any_var(const Any_var &a);
~Any_var();

Any_var &operator=(Any *a);
Any_var &operator=(const Any_var &a);

Any *operator->();

const Any& in() const;
Any& inout();
Any*& out();
Any* _retn();

// other conversion operators for parameter passing
};
1-154 C++ Language Mapping June 1999

1

1.41.7 Exception Class

// C++
class Exception
{

public:
Exception(const Exception &);
virtual ~Exception();
Exception &operator=(const Exception &);

virtual void _raise() const = 0;

protected:
Exception();

};

1.41.8 SystemException Class

// C++
enum CompletionStatus { COMPLETED_YES, COMPLETED_NO,

COMPLETED_MAYBE };
class SystemException : public Exception
{

public:
SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

CompletionStatus completed() const;
void completed(CompletionStatus);

virtual void _raise() const = 0;

static SystemException* _downcast(Exception*);
static const SystemException* _downcast(

const Exception*
);

};
C++ Language Mapping C++ Definitions for CORBA June 1999 1-155

1

1.41.9 UserException Class

// C++
class UserException : public Exception
{

public:
UserException();
UserException(const UserException &);
~UserException();
UserException &operator=(const UserException &);

virtual void _raise() const = 0;

static UserException* _downcast(Exception*);
static const UserException* _downcast(

const Exception*
);

};

1.41.10 UnknownUserException Class

// C++
class UnknownUserException : public UserException
{

public:
Any &exception();

static UnknownUserException* _downcast(Exception*);
static const UnknownUserException* _downcast(

const Exception*
);
virtual void raise();

};
1-156 C++ Language Mapping June 1999

1

1.41.11 release and is_nil

// C++
namespace CORBA {

void release(Object_ptr);
void release(Environment_ptr);
void release(NamedValue_ptr);
void release(NVList_ptr);
void release(Request_ptr);
void release(Context_ptr);
void release(TypeCode_ptr);
void release(POA_ptr);
void release(ORB_ptr);

Boolean is_nil(Object_ptr);
Boolean is_nil(Environment_ptr);
Boolean is_nil(NamedValue_ptr);
Boolean is_nil(NVList_ptr);
Boolean is_nil(Request_ptr);
Boolean is_nil(Context_ptr);
Boolean is_nil(TypeCode_ptr);
Boolean is_nil(POA_ptr);
Boolean is_nil(ORB_ptr);
...

}

1.41.12 Object Class

// C++
class Object
{

public:
static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
InterfaceDef_ptr _get_interface();
Boolean _is_a(const char* logical_type_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);
ULong _hash(ULong maximum);
void _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags

);
C++ Language Mapping C++ Definitions for CORBA June 1999 1-157

1

void _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags

);
Request_ptr _request(const char* operation);
Policy_ptr _get_policy(PolicyType policy_type);
DomainManagerList* _get_domain_managers();
Object_ptr _set_policy_overrides(
const PolicyList& policies,
SetOverrideType set_or_add

);
};

1.41.13 Environment Class

// C++
class Environment
{

public:
void exception(Exception*);
Exception *exception() const;
void clear();

static Environment_ptr _duplicate(Environment_ptr ev);
static Environment_ptr _nil();

};

1.41.14 NamedValue Class

// C++
class NamedValue
{

public:
const char *name() const;
Any *value() const;
Flags flags() const;

static NamedValue_ptr _duplicate(NamedValue_ptr nv);
static NamedValue_ptr _nil();

};
1-158 C++ Language Mapping June 1999

1

1.41.15 NVList Class

// C++
class NVList
{

public:
ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(const char*, const Any&,

Flags);
NamedValue_ptr add_item_consume(

char*,
Flags

);
NamedValue_ptr add_value_consume(

char*,
Any *,
Flags

);
NamedValue_ptr item(ULong);
void remove(ULong);

static NVList_ptr _duplicate(NVList_ptr nv);
static NVList_ptr _nil();

};

1.41.16 ExceptionList Class

// C++
class ExceptionList
{

public:
ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
void remove(ULong index);

};
C++ Language Mapping C++ Definitions for CORBA June 1999 1-159

1

1.41.17 ContextList Class

class ContextList
{

public:
ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
void remove(ULong index);

};

1.41.18 Request Class

// C++
class Request
{

public:
Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

Any& add_in_arg();
Any& add_in_arg(const char* name);
Any& add_inout_arg();
Any& add_inout_arg(const char* name);
Any& add_out_arg();
Any& add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any& return_value();

void invoke();
void send_oneway();
void send_deferred();
void get_response();
Boolean poll_response();

static Request_ptr _duplicate(Request_ptr req);
static Request_ptr _nil();

};
1-160 C++ Language Mapping June 1999

1

1.41.19 Context Class

// C++
class Context
{

public:
const char *context_name() const;
Context_ptr parent() const;

void create_child(const char*, Context_out);
void set_one_value(const char*, const Any&);
void set_values(NVList_ptr);

void delete_values(const char*);
void get_values(const char*, Flags, const char*,

NVList_out);

static Context_ptr _duplicate(Context_ptr ctx);
static Context_ptr _nil();

};

1.41.20 TypeCode Class

// C++
class TypeCode
{

public:
class Bounds : public UserException { ... };
class BadKind : public UserException { ... };

TCKind kind() const;
Boolean equal(TypeCode_ptr) const;
Boolean equivalent(TypeCode_ptr) const;
TypeCode_ptr get_compact_typecode() const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;
C++ Language Mapping C++ Definitions for CORBA June 1999 1-161

1

UShort fixed_digits() const;
Short fixed_scale() const;

Visibility member_visibility(ULong index) const;
ValuetypeModifier type_modifier() const;
TypeCode_ptr concrete_base_type() const;

static TypeCode_ptr _duplicate(TypeCode_ptr tc);
static TypeCode_ptr _nil();

};

1.41.21 ORB Class

// C++
class ORB
{

public:
typedef sequence<Request_ptr> RequestSeq;
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char*);
void create_list(Long, NVList_out);
void create_operation_list(OperationDef_ptr,

NVList_out);
void create_named_value(NamedValue_out);
void create_exception_list(ExceptionList_out);
void create_context_list(ContextList_out);
void get_default_context(Context_out);
void create_environment(Environment_out);
void send_multiple_requests_oneway(

const RequestSeq&
);

void send_multiple_requests_deferred(
const RequestSeq&

);
Boolean poll_next_response();

void get_next_response(Request_out);

// Obtaining initial object references
typedef char* ObjectId;
class ObjectIdList {...};
class InvalidName : public UserException {...};
ObjectIdList *list_initial_services();
Object_ptr resolve_initial_references(

const char *identifier
);
1-162 C++ Language Mapping June 1999

1

Boolean work_pending();
void perform_work();
void shutdown(Boolean wait_for_completion);
void run();

Boolean get_service_information(
ServiceType svc_type,
ServiceInformation_out svc_info

);

typedef char* ObjectId;
class ObjectIdList { ... };
Object_ptr resolve_initial_references(const char* id);
ObjectIdList* list_initial_services();

Policy_ptr create_policy(
PolicyType type,
const Any& val

);

static ORB_ptr _duplicate(ORB_ptr orb);
static ORB_ptr _nil();

};

1.41.22 ORB Initialization

// C++
typedef char* ORBid;
static ORB_ptr ORB_init(

int& argc,
char** argv,

const char* orb_identifier = ""
);

1.41.23 General T_out Types

// C++
class T_out
{

public:
T_out(T*& p) : ptr_(p) { ptr_ = 0; }
T_out(T_var& p) : ptr_(p.ptr_) {

delete ptr_;
ptr_ = 0;

}

C++ Language Mapping C++ Definitions for CORBA June 1999 1-163

1

t does
r the
 the
upport

ed to

es to
 non-

am-
T_out(T_out& p) : ptr_(p.ptr_) {}
T_out& operator=(T_out& p) {

ptr_ = p.ptr_;
return *this;

}
T_out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

// assignment from T_var not allowed
void operator=(const T_var&):

};

1.42 Alternative Mappings For C++ Dialects

1.42.1 Without Namespaces

If the target environment does not support the namespace construct but does support
nested classes, then a module should be mapped to a C++ class. If the environmen
not support nested classes, then the mapping for modules should be the same as fo
CORBA C mapping (concatenating identifiers using an underscore (“_”) character as
separator). Note that module constants map to file-scope constants on systems that s
namespaces and class-scope constants on systems that map modules to classes.

1.42.2 Without Exception Handling

For those C++ environments that do not support real C++ exception handling, referr
here as non-exception handling (non-EH) C++ environments, an Environment parame-
ter passed to each operation is used to convey exception information to the caller.

As shown in Section 1.27, “Environment,” on page 1-110, the Environment class sup-
ports the ability to access and modify the Exception it holds.

As shown in Section 1.19, “Mapping for Exception Types,” on page 1-94, both user-
defined and system exceptions form an inheritance hierarchy that normally allow typ
be caught either by their actual type or by a more general base type. When used in a
EH C++ environment, the narrowing functions provided by this hierarchy allow for ex
ination and manipulation of exceptions:
1-164 C++ Language Mapping June 1999

1

 For

gal

n-
// IDL
interface A
{

exception Broken { ... };
void op() raises(Broken);

};

// C++
Environment ev;
A_ptr obj = ...
obj->op(ev);
if (Exception *exc = ev.exception()) {

if (A::Broken *b = A::Broken::_narrow(exc)) {
// deal with user exception

} else {
// must have been a system exception
SystemException *se = SystemException::_narrow(exc);
...

}
}

Section 1.33, “ORB,” on page 1-121 specifies that Environment must be created using
ORB::create_environment , but this is overly constraining for implementations
requiring an Environment to be passed as an argument to each method invocation.
implementations that do not support real C++ exceptions, Environment may be allo-
cated as a static, automatic, or heap variable. For example, all of the following are le
declarations on a non-EH C++ environment:

// C++
Environment global_env; // global
static Environment static_env; // file static

class MyClass
{

public:
...

private:
static Environment class_env; // class static

};

void func()
{

Environment auto_env; // auto
Environment *new_env = new Environment;// heap
...

}

For ease of use, Environment parameters are passed by reference in non-EH enviro
ments:
C++ Language Mapping Alternative Mappings For C++ Dialects June 1999 1-165

1

RB

-EH

// IDL
interface A
{

exception Broken { ... };
void op() raises(Broken);

};
// C++
class A ...
{
public:

void op(Environment &);
...

};

For additional ease of use in non-EH environments, Environment should support copy
construction and assignment from other Environment objects. These additional fea-
tures are helpful for propagating exceptions from one Environment to another under
non-EH circumstances.

When an exception is “thrown” in a non-EH environment, object implementors and O
runtimes must ensure that all out and return pointers are returned to the caller as null
pointers. If non-initialized or “garbage” pointer values are returned, client application
code could experience runtime errors due to the assignment of bad pointers to T_var
types. When a T_var goes out of scope, it attempts to delete the T* given to it; if this
pointer value is garbage, a runtime error will almost certainly occur. Exceptions in non
environments need not support the virtual _raise() function, since the only useful
implementation of it in such an environment would be to abort the program.

1.43 C++ Keywords

Table 1-7 lists all C++ keywords from the 2 December 1996 Working Paper of the
ANSI (X3J16) C++ Language Standardization Committee.

Table 1-7 C++ Keywords

and and_eq asm auto bitand bitor

bool break case catch char class

compl const const_cast continue default delete

do double dynamic_cast else enum explicit

export extern false float for friend

goto if inline int long mutable

namespace new not not_eq operator or

or_eq private protected public register reinterpret_cast

return short signed sizeof static static_cast

struct switch template this throw true

try typedef typeid typename union unsigned

using virtual void volatile wchar_t while

xor xor_eq
1-166 C++ Language Mapping June 1999

Index
Symbols
_duplicate 1-8, 1-9
_narrow 1-9, 1-97
_nil 1-10
_ptr field accessor 1-28
_tie_A class 1-138
_var 1-8
‘release’ Constructor Parameter 1-44

A
A_ptr 1-7, 1-165
A_var 1-7
abstract base class 1-6
Abstract Interfaces 1-92
Abstract Valuetypes 1-83
access function 1-34
aggregate type 1-100
alias 1-49
ANSI/ISO C++ standardization committees 1-3, 1-166
Any 1-80
Any Class 1-65
Any class

helper types 1-57
any class 1-150
Any Type 1-50
any type 1-50

conversion of typed values into 1-50
Any_var 1-65
Any_var Class 1-65
ARef 1-7
Argument 1-99
array slice 1-36
Array Types 1-46, 1-81
Array_forany 1-48
Array_var 1-48
assignment operator 1-21, 1-34, 1-64
Assignment Operators 1-68
Attributes 1-99

B
BAD_PARAM exception 1-103
base exception class 1-95
base interface type 1-8
Basic Data Types 1-15
basic data types

and different platforms 1-16
mapped from OMG IDL to C++ 1-15

basic object adapter 1-136
Basic Types 1-75
boolean 1-57
boolean type 1-15, 1-16
boolean types 1-15
bounded string 1-57
bounded wstring 1-57

C
C++ 1-99

_duplicate 1-8, 1-9
_narrow 1-9, 1-97
_nil 1-10
_ptr field accessor 1-28

_tie_A class 1-138
_var 1-8
A* 1-7
A_ptr 1-7, 1-165
A_var 1-7
abstract base class 1-6
aggregate types 1-100
alias 1-49
and struct 1-27
Any class interface 1-57
any type 1-62
Any_var 1-65
ARef 1-7
arglist 1-125
arithmetic operations 1-7
array 1-46
array slice 1-36
Array_forany 1-48
Array_var 1-48
assignment operator 1-34
basic data type mapping 1-15
boolean type 1-16
catch clause 1-96
char type 1-16
char* 1-17
CompletionStatus 1-95
constant 1-13
Context interface, OMG PIDL for 1-118
conversion to void* 1-7
CORBA

Object 1-107
CORBA Boolean 1-15
CORBA Char 1-15
CORBA Double 1-15
CORBA Float 1-15
CORBA long 1-15
CORBA namespace 1-147
CORBA Octet 1-15
CORBA Short 1-15
CORBA ULong 1-15
CORBA UShort 1-15
delete 1-23
discriminant 1-33
Double 1-16
duplicate 1-8
dynamic_cast<T*> 1-97
enumeration type 1-17
Environment 1-165
Environment interface, OMG PIDL for 1-110
Float 1-16
function overloading 1-50, 1-51
generated class 1-6
implicit release 1-7
implicit widening 1-7
insertion of a string type 1-52
insertion of arrays,type-safe 1-53
is_nil operation 1-8
keywords 1-5, 1-166
keywords, list of 1-166
left-shift-assign operator 1-52
Long 1-16
C++ Language Mapping Index-1

Index
mapped for non-exception handling environments 1-164
mapped for non-namespace environments 1-164
mapped to ORB initialization operations 1-124
mapping compatability to C 1-4
modifier function 1-36
NamedValue interface, OMG PIDL for 1-111
namespace 1-3, 1-5
nested constant 1-13
NVList interface, OMG PIDL for 1-112
NVList type 1-144
Object interface, OMG PIDL for 1-125
object reference variable type 1-7
Object_ptr 1-8
Object_var 1-8
octet type 1-16
oneway 1-99
operation-specific arguments 1-99
operator< 1-51
operator-> 1-23
operator>>= 1-55
operator[] 1-41
ORB interface, OMG PIDL for 1-121
ORB_init operation 1-125
overloaded subscript operator 1-41
parameter passing 1-100
pointer type 1-7
portability of implementations 1-16
primitive type 1-148
read-write access 1-36
relational operations 1-7
release operation 1-8
release parameter 1-40
replace function 1-63
Request interface, OMG PIDL for 1-116
returning or passing null pointers 1-102
right-shift-operator 1-55
run time type information 1-97
sample interface mapping 1-11
sequence types 1-39
server 1-127
set function 1-99
setting union value 1-34
sizeof(T) 1-5
skeleton class 1-137
slice 1-47
split allocation 1-100
string union members 1-37
String_var 1-17
structured types 1-21
SystemException 1-95
T *data constructor 1-40
T_ptr* 1-42
T_var 1-21, 1-166
template 1-138
throw exception 1-142
tie class 1-138
type function 1-63
TypeCode 1-51
TypeCode and value, mismatched 1-50
TypeCode_ptr 1-64, 1-120
typedef 1-49

ULong 1-16
underscore 1-127
union members 1-33
unsafe operations 1-62
untyped value 1-62
UserException 1-94
UShort 1-16
using statement 1-4, 1-5
value function 1-63
void* 1-63

C++ definitions 1-147
C++ Type Size Requirements 1-5
catch clause 1-96
caught 1-96
char 1-57
char type 1-15, 1-16
char* 1-17
char** 1-42
Client Side Mapping 1-93
CompletionStatus 1-95
compliance viii
constant 1-14
Constructors 1-64, 1-68
Context 1-118
Context interface

OMG PIDL for 1-118
Cookie 1-146
copy constructor 1-21, 1-64
CORBA

contributors viii
namespace 1-147
Object 1-107

CORBA module
C++ definitions for 1-147
object class 1-8

core, compliance viii
Custom Marshaling 1-90

D
default constructor 1-64
Destructors 1-68
discriminant 1-33
double type 1-15
DSI 1-144
duplicate 1-9
duplicate operation 1-8
Dynamic Skeleton interface

mapped to C++ 1-144
dynamic_cast<T*> 1-97

E
enumeration type 1-17
Enums 1-17, 1-75
Environment interface

OMG PIDL for 1-110
Exception Types 1-94
exceptions 1-99
Extraction from any 1-55

F
Fixed 1-80
Index-2 C++ Language Mappings

Index
Fixed Point Constants 1-15
Fixed T_var and T_out Types 1-33
Fixed Types 1-30
float type 1-15

G
generated class 1-6
generic pointer 1-62
get function 1-99

I
Insertion into any 1-51
interface inheritance 1-7
interoperability, compliance viii
interworking

compliance viii
is 1-9
is_nil operation 1-8

L
left-shift-assign operator 1-52
long type 1-15

M
Mapping for Abstract Interfaces 1-92
Mapping for Array Types 1-46
Mapping for Basic Data Types 1-15
Mapping for Constants 1-13
Mapping for Cookie 1-146
Mapping for Enums 1-17
Mapping for Exception Types 1-94
Mapping for Fixed Types 1-30
Mapping for Interfaces 1-6
Mapping for Modules 1-5
Mapping For Operations and Attributes 1-99
Mapping for PortableServer

ServantManager 1-146
Mapping for Sequence Types 1-39
Mapping for String Types 1-17
Mapping for Struct Types 1-27
Mapping for Structured Types 1-21
Mapping for the Any Type 1-50
Mapping For Typedefs 1-49
Mapping for Union Types 1-33
Mapping for Valuetypes 1-65
Mapping for Wide String Types 1-20
Mapping of DSI to C++ 1-144
Mapping of Pseudo Objects to C++ 1-107
Memory Management 1-45
Mix-in Classes 1-73
modifier function 1-36

N
NamedValue 1-111
NamedValue interface

OMG PIDL for 1-111
namespace 1-3, 1-164
Nil Object Reference 1-10
nil object reference 1-10
null pointer 1-56, 1-102
NVList 1-112

NVList interface
OMG PIDL for 1-112

NVList type 1-144

O
Object 1-125
object class 1-8
Object interface

OMG PIDL for 1-125
object reference 1-7

union members 1-37
Object Reference Operations 1-8
object reference variable type 1-7
Object References 1-9, 1-75
Object_ptr 1-8
Object_var 1-8
octet 1-57
octet type 1-15, 1-16
OMG IDL struct

mapping to C++ 1-27
oneway 1-99
operation 1-7
Operation Parameters and Signatures 1-103
Operations 1-99
operator 1-52
operator< 1-51
operator-> 1-23
operator>>= 1-55
operator[] 1-41
ORB 1-121
ORB interface

OMG PIDL for 1-121
ORB_init operation 1-125

mapped to C++ 1-125
Out Parameter 1-10

P
pointer type 1-7
PortableServer

ServantManager 1-146
PortableServer Functions 1-146
Primitive Types 1-148
pseudo keyword 1-108
Pseudo Objects 1-107

R
readonly 1-99
Reference Counting 1-70
reference counting 1-73
release operation 1-8, 1-9
release parameter 1-40
replace function 1-63
Request 1-114
Request interface

OMG PIDL for 1-116
right-shift-operator 1-55
RTTI 1-97
Run time type information

see RTTI
C++ Language Mapping Index-3

Index
S
scoping

and C++ mapping 1-4
Sequence 1-80
Sequence T_var and T_out Types 1-46
sequence type 1-39
Sequence Types 1-39
ServantBase_var class 1-131
server 1-127
ServerRequest

mapped to C++ 1-144
Server-Side Mapping 1-127
set function 1-99
Short 1-16
short type 1-15
Signatures 1-103
sizeof(T) 1-5
skeleton class 1-136, 1-137
Skeleton Derivation From Object 1-143
Skeleton Operations 1-135
slice 1-47, 1-103
split allocation

avoiding errors with 1-100
statically-initialized 1-46
String 1-78
string type 1-17
String Types 1-17
string union members 1-37
String_var 1-17
Struct Types 1-27, 1-76
Structured Types 1-21
SystemException 1-95

T
T *data constructor 1-40
T_out Types 1-26
T_ptr* 1-42
T_var 1-21, 1-166
T_var Types 1-22
template 1-138
this pointer 1-142
throw exception 1-96, 1-142
tie class 1-138
top 1-13
type 1-55
type function 1-63

type unknown to the receiver 1-50
TypeCode 1-51, 1-120
TypeCode Replacement 1-63
TypeCode_ptr 1-64, 1-120
Typed Values 1-50
typedef 1-49
Typedefs 1-49
type-safe 1-50
Type-Specific Value Factories 1-88

U
unbounded sequence 1-21
unbounded string 1-21
Union 1-80
union member 1-33
Union Types 1-33
UnknownUserException 1-98
Unmarshaling 1-89
unsigned long type 1-15
unsigned short type 1-15
Untyped Values 1-62
UserException 1-94

V
Value Boxes 1-74
value function 1-63
ValueBase 1-70
ValueFactoryBase Class 1-85
ValueFactoryBase_var Class 1-87
Valuetype Data Members 1-66
Valuetype Factories 1-84
Valuetype Inheritance 1-83
Valuetype Members of Structs 1-91
Valuetype Operations 1-68
Valuetypes 1-65
void* 1-63

W
wchar 1-57
Wide Character 1-14
Wide String 1-14
Wide String Types 1-20
Widening to Abstract Interface 1-62
Widening to Object 1-61
WString 1-78
Index-4 C++ Language Mappings

	0.1 About CORBA Language Mapping Specifications
	0.1.1 Alignment with CORBA

	0.2 Definition of CORBA Compliance
	0.3 Acknowledgements
	0.4 References
	C++Language Mapping
	1.1 Preliminary Information
	1.1.1 Overview
	1.1.2 Scoped Names
	1.1.3 C++ Type Size Requirements
	1.1.4 CORBA Module

	1.2 Mapping for Modules
	1.3 Mapping for Interfaces
	1.3.1 Object Reference Types
	1.3.2 Widening Object References
	1.3.3 Object Reference Operations
	1.3.4 Narrowing Object References
	1.3.5 Nil Object Reference
	1.3.6 Object Reference Out Parameter
	1.3.7 Interface Mapping Example

	1.4 Mapping for Constants
	1.4.1 Wide Character and Wide String Constants
	1.4.2 Fixed Point Constants

	1.5 Mapping for Basic Data Types
	1.6 Mapping for Enums
	1.7 Mapping for String Types
	1.8 Mapping for Wide String Types
	1.9 Mapping for Structured Types
	1.9.1 T_var Types
	1.9.2 T_out Types

	1.10 Mapping for Struct Types
	1.11 Mapping for Fixed Types
	1.11.1 Fixed T_var and T_out Types

	1.12 Mapping for Union Types
	1.13 Mapping for Sequence Types
	1.13.1 Sequence Example
	1.13.2 Using the “release” Constructor Parameter
	1.13.3 Additional Memory Management Functions
	1.13.4 Sequence T_var and T_out Types

	1.14 Mapping For Array Types
	1.15 Mapping For Typedefs
	1.16 Mapping for the Any Type
	1.16.1 Handling Typed Values
	1.16.2 Insertion into any
	1.16.3 Extraction from any
	1.16.4 Distinguishing boolean, octet, char, wchar, bounded string, and bounded wstring
	1.16.5 Widening to Object
	1.16.6 Widening to Abstract Interface
	1.16.7 Handling Untyped Values
	1.16.8 TypeCode Replacement
	1.16.9 Any Constructors, Destructor, Assignment Operator
	1.16.10 The Any Class
	1.16.11 The Any_var Class

	1.17 Mapping for Valuetypes
	1.17.1 Valuetype Data Members
	1.17.2 Constructors, Assignment Operators, and Destructors
	1.17.3 Valuetype Operations
	1.17.4 Valuetype Example
	1.17.5 ValueBase and Reference Counting
	1.17.6 Reference Counting Mix-in Classes
	1.17.7 Value Boxes
	1.17.8 Abstract Valuetypes
	1.17.9 Valuetype Inheritance
	1.17.10 Valuetype Factories
	1.17.11 Custom Marshaling
	1.17.12 Another Valuetype Example
	1.17.13 Valuetype Members of Structs

	1.18 Mapping for Abstract Interfaces
	1.18.1 Abstract Interface Base
	1.18.2 Client Side Mapping

	1.19 Mapping for Exception Types
	1.19.1 UnknownUserException
	1.19.2 Any Insertion and Extraction for Exceptions

	1.20 Mapping For Operations and Attributes
	1.21 Implicit Arguments to Operations
	1.22 Argument Passing Considerations
	1.22.1 Operation Parameters and Signatures

	1.23 Mapping of Pseudo Objects to C++
	1.24 Usage
	1.25 Mapping Rules
	1.26 Relation to the C PIDL Mapping
	1.27 Environment
	1.27.1 Environment Interface
	1.27.2 Environment C++ Class
	1.27.3 Differences from C-PIDL
	1.27.4 Memory Management

	1.28 NamedValue
	1.28.1 NamedValue Interface
	1.28.2 NamedValue C++ Class
	1.28.3 Differences from C-PIDL
	1.28.4 Memory Management

	1.29 NVList
	1.29.1 NVList Interface
	1.29.2 NVList C++ Class
	1.29.3 Differences from C-PIDL
	1.29.4 Memory Management

	1.30 Request
	1.30.1 Request Interface
	1.30.2 Request C++ Class
	1.30.3 Differences from C-PIDL
	1.30.4 Memory Management

	1.31 Context
	1.31.1 Context Interface
	1.31.2 Context C++ Class
	1.31.3 Differences from C-PIDL
	1.31.4 Memory Management

	1.32 TypeCode
	1.32.1 TypeCode Interface
	1.32.2 TypeCode C++ Class
	1.32.3 Differences from C-PIDL
	1.32.4 Memory Management

	1.33 ORB
	1.33.1 ORB Interface
	1.33.2 ORB C++ Class
	1.33.3 Differences from C-PIDL
	1.33.4 Mapping of ORB Initialization Operations

	1.34 Object
	1.34.1 Object Interface
	1.34.2 Object C++ Class

	1.35 Server-Side Mapping
	1.36 Implementing Interfaces
	1.36.1 Mapping of PortableServer::Servant
	1.36.2 Servant Reference Counting Mix-In
	1.36.3 ServantBase_var Class
	1.36.4 Servant Memory Management Considerations
	1.36.5 Skeleton Operations
	1.36.6 Inheritance-Based Interface Implementation
	1.36.7 Delegation-Based Interface Implementation

	1.37 Implementing Operations
	1.37.1 Skeleton Derivation From Object

	1.38 Mapping of DSI to C++
	1.38.1 Mapping of ServerRequest to C++
	1.38.2 Handling Operation Parameters and Results
	1.38.3 Mapping of PortableServer Dynamic Implementation Routine

	1.39 PortableServer Functions
	1.40 Mapping for PortableServer::ServantManager
	1.40.1 Mapping for Cookie
	1.40.2 ServantManagers and AdapterActivators
	1.40.3 Server Side Mapping for Abstract Interfaces

	1.41 C++ Definitions for CORBA
	1.41.1 Primitive Types
	1.41.2 String_var and String_out Class
	1.41.3 WString_var and WString_out
	1.41.4 Fixed Class
	1.41.5 Any Class
	1.41.6 Any_var Class
	1.41.7 Exception Class
	1.41.8 SystemException Class
	1.41.9 UserException Class
	1.41.10 UnknownUserException Class
	1.41.11 release and is_nil
	1.41.12 Object Class
	1.41.13 Environment Class
	1.41.14 NamedValue Class
	1.41.15 NVList Class
	1.41.16 ExceptionList Class
	1.41.17 ContextList Class
	1.41.18 Request Class
	1.41.19 Context Class
	1.41.20 TypeCode Class
	1.41.21 ORB Class
	1.41.22 ORB Initialization
	1.41.23 General T_out Types

	1.42 Alternative Mappings For C++ Dialects
	1.42.1 Without Namespaces
	1.42.2 Without Exception Handling

	1.43 C++ Keywords

	Index

