C++ Language Mapping Specification

New Edition: June 1999

Copyright 1995, 1996 BNR Europe Ltd.

Copyright 1998, Borland International

Copyright 1991, 1992, 1995, 1996 Digital Equipment Corporation
Copyright 1995, 1996 Expersoft Corporation

Copyright 1996, 1997 FUJITSU LIMITED

Copyright 1996 Genesis Development Corporation

Copyright 1989, 1990, 1991, 1992, 1995, 1996 Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright 1998 Inprise Corporation

Copyright 1996, 1997 International Business Machines Corporation
Copyright 1995, 1996 ICL, plc

Copyright 1995, 1996 IONA Technologies, Ltd.

Copyright 1996, 1997 Micro Focus Limited

Copyright 1991, 1992, 1995, 1996 NCR Corporation

Copyright 1995, 1996 Novell USG

Copyright 1991,1992, 1995, 1996 by Object Design, Inc.

Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.

Copyright 1996 Sybase, Inc.

Copyright 1998 Telefénica Investigacion y Desarrollo S.A. Unipersonal
Copyright 1996 Visual Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid |
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified ve
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyrigh
the included material of any such copyright holder by reason of having used the specification set forth herein or having con
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require us
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for prote
ing themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document d
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-

MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE

OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-

LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be liable

errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including léss of profi
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the Obije
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authorize de
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to in
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--grapt
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner. RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is sub-
ject to restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at
DFARS 252.227.7013 OMG/ and Object Management are registered trademarks of the Object Management Group, Inc.
Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the
Object Management Group, Inc. X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface
0.1 About CORBA Language Mapping Specifications
0.1.1 Alignmentwith CORBA Vi
0.2 Definition of CORBA Compliance viii

0.3 Acknowledgements
0.4 References i e

1. C++Language Mappingcuiiiinnennnnnn. 1-1
1.1 Preliminary Information
1.1.1 OVerview 1-3
1.1.1.1 Key Design Decisions 1-3
11.12Compliance 1-3
1.1.1.3 C++ Implementation Requirements 1-3
1.1.1.4 C Data Layout Compatibility 1-3
1.1.1.5 No Implementation Descriptions 1-4

1.1.2 ScopedNamescivuiion..
1.1.3 C++ Type Size Requirements

114 CORBAModule 1-5

1.2 MappingforModules

1.3 Mapping forinterfaces
1.3.1 ObjectReference Types
1.3.2 Widening Object References
1.3.3 Object Reference Operations
1.3.4 Narrowing Object References

1.3.5 NilObjectReference 1-10
1.3.6 Object Reference Out Parameter 1-10
1.3.7 Interface Mapping Example 1-11
1.4 MappingforConstants 1-13
1.4.1 Wide Character and Wide String Constants ... 1-14
142 FixedPointConstants 1-15
1.5 Mapping for Basic Data Types 1-15
1.6 MappingforENUMS i 1-17
1.7 Mapping for String Types, 1-17
1.8 Mapping for Wide String Types 1-20
1.9 Mapping for Structured Types L 1-21
191 T varTypes ... 1-22
192 T oUutTypes 1-26
1.10 Mapping for Struct Types i 1-27
1.11 Mapping for Fixed Types 1-30
1.11.1 Fixed T _varand T_outTypes 1-33

C++ Language Mapping i

Contents

1.12
1.13

1.14
1.15
1.16

1.17 Mapping for Valuetypes

Mapping forUnion Types

Mapping for Sequence Types
1.13.1 Sequence Example
1.13.2 Using the “release” Constructor Parameter . ..

1.13.3 Additional Memory Management Functions . .

1.13.4 Sequence T_varand T_outTypes
Mapping For Array Types,
Mapping For Typedefs
Mapping forthe Any Type

1.16.1 Handling Typed Values
1.16.2 Insertionintoany
1.16.3 Extractionfromany

1.16.4 Distinguishing boolean, octet, char, wchar,
bounded string, and bounded wstring

1.16.5 Wideningto Object
1.16.6 Widening to Abstract Interface
1.16.7 Handling Untyped Values

1.16.8 TypeCode Replacement

1.16.9 Any Constructors, Destructor,
Assignment Operator

1.16.10 The AnyClass
1.16.11 The Any_varClass

1.17.1 Valuetype DataMembers

1.17.2 Constructors, Assignment Operators,
and Destructors

1.17.3 Valuetype Operations
1.17.4 Valuetype Example

1.17.5 ValueBase and Reference Counting

1.17.5.1 CORBA Module Additions
1.17.6 Reference Counting Mix-in Classes

1.17.7 Value BOXeS

1.17.7.1 Parameter Passing for Underlying
Boxed Type
1.17.7.2 Basic Types, Enums, and Object
References
1.17.7.3Struct Types oo
1.17.7.4 String and WString Types
1.17.7.5 Union, Sequence, Fixed, and Any Types
11776 Array TYPES . . .o oo

1.17.8 Abstract Valuetypes

1.17.9 Valuetype Inheritance

1.17.10 Valuetype Factories

C++ Language Mapping

Contents

1.18

1.19

1.20
1.21
1.22

1.23
1.24
1.25
1.26
1.27

1.28

1.29

1.30

1.17.10.1 ValueFactoryBase Class 1-85
1.17.10.2 ValueFactoryBase varClass 1-87
1.17.10.3 Type-Specific Value Factories 1-88
1.17.10.4 Unmarshaling Issues 1-90
1.17.11 Custom Marshaling 1-90
1.17.12 Another Valuetype Example 1-90
1.17.13 Valuetype Members of Structs 1-91
Mapping for Abstract Interfaces 1-92
1.18.1 AbstractInterfaceBase 1-92
1.18.2 Client Side Mapping 1-94
Mapping for Exception Types 1-94
1.19.1 UnknownUserException 1-98
1.19.2 Any Insertion and Extraction for Exceptions .. 1-99
Mapping For Operations and Attributes 1-99
Implicit Arguments to Operations 1-100
Argument Passing Considerations 1-100
1.22.1 Operation Parameters and Signatures 1-104
Mapping of Pseudo Objectsto C++ 1-107
UsSage ... e 1-108
MappingRules 1-108
Relationtothe CPIDLMapping 1-109
Environment 1-110
1.27.1 Environmentinterface 1-111
1.27.2 EnvironmentC++Class.................. 1-111
1.27.3 Differencesfrom C-PIDL 1-111
1.27.4 Memory Management 1-111
NamedValue 1-111
1.28.1 NamedValue Interface 1-112
1.28.2 NamedValueC++Class 1-112
1.28.3 Differencesfrom C-PIDL 1-112
1.28.4 Memory Management 1-112
NVLISt .. e 1-112
1.29.1 NVlistInterface 1-113
1.29.2 NVListC++Classvvn.. 1-113
1.29.3 Differencesfrom C-PIDL 1-114
1.29.4 Memory Management 1-114
Request. 1-114
1.30.1 Requestinterface 1-116
1.30.2 RequestC++Class 1-117
1.30.3 Differencesfrom C-PIDL 1-118

C++ Language Mapping iii

Contents

1.31

1.32

1.33

1.34

1.35
1.36

1.37

1.38

1.39
1.40

1.30.4 Memory Management 1-118
Context 1-119
1.31.1 ContextiInterface 1-119
131.2 ContextC++Class 1-120
1.31.3 Differencesfrom C-PIDL 1-120
1.31.4 Memory Management 1-120
TypeCode 1-120
1.32.1 TypeCodelnterface...................... 1-121
1.32.2 TypeCodeC++Class 1-121
1.32.3 Differencesfrom C-PIDL 1-122
1.32.4 Memory Management 1-122
ORB . 1-122
1.33.1 ORBlnterface 1-122
1332 ORBC++Class ..., 1-123
1.33.3 Differencesfrom C-PIDL 1-124
1.33.4 Mapping of ORB Initialization Operations ... 1-125
Object 1-126
1.34.1 ObjectiInterface 1-126
1.34.2 ObjectC++Class.............. ... 1-127
Server-Side Mappingo 1-128
Implementing Interfaces 1-128
1.36.1 Mapping of PortableServer::Servant 1-129
1.36.2 Servant Reference Counting Mix-In 1-131
1.36.3 ServantBase varClass................... 1-132
1.36.4 Servant Memory Management Considerations. 1-133
1.36.5 SkeletonOperations 1-136

1.36.6 Inheritance-Based Interface Implementation . . 1-137
1.36.7 Delegation-Based Interface Implementation .. 1-139

Implementing Operations 1-143
1.37.1 Skeleton Derivation From Object. 1-144

Mapping of Dynamic Skeleton Interfaceto C++........ 1-145
1.38.1 Mapping of ServerRequestto C++ 1-145

1.38.2 Handling Operation Parameters and Results .. 1-145
1.38.3 Mapping of PortableServer Dynamic

Implementation Routine 1-146
PortableServer Functions 1-147
Mapping for PortableServer::ServantManager 1-147

1.40.1 Mapping for Cookie 1-147
1.40.2 ServantManagers and AdapterActivators 1-148

C++ Language Mapping

Contents

1.40.3 Server Side Mapping for Abstract Interfaces .. 1-148

1.41 C++ Definitionsfor CORBA 1-148
1.41.1 Primitive Types. 1-149
1.41.2 String_var and String_ outClass 1-149
1.41.3 WString_var and WString_out 1-150
1.41.4 FixedClasscouiiiiiinn.. 1-150
1415 AnyClassc0 .. 1-151
1416 Any varClassoiiiii.. 1-155
1.41.7 ExceptionClass 1-156
1.41.8 SystemExceptionClass 1-156
1.41.9 UserExceptionClass 1-157
1.41.10 UnknownUserException Class 1-157
l41.11releaseandis nil 1-158
1.41.12 ObjectClass 1-158
1.41.13 EnvironmentClass 1-159
1.41.14 NamedValue Class 1-160
14115 NVLIistClasso 1-160
1.41.16 ExceptionListClass 1-161
1.41.17 ContextListClass 1-161
1.41.18 RequestClasst 1-161
14119 ContextClass 1-162
1.41.20 TypeCode Class 1-162
14121 ORBClass 1-163
1.41.22 ORB Initialization 1-164
1.41.23 General T_ outTypes, 1-165

1.42 Alternative Mappings For C++ Dialects 1-165
1.42.1 Without Namespaces 1-165
1.42.2 Without Exception Handling 1-165

1.43 CH+Keywordsii i 1-167

C++ Language Mapping v

Contents

\Y

C++ Language Mapping

Preface

0.1 About CORBA Language Mapping Specifications

The CORBA Language Mapping specifications contain language mapping information
for the following languages:

» Ada

e C

e C++

« COBOL
IDL to Java
e Java to IDL
» Smalltalk

Each language is described in a separate stand-alone volume.

0.1.1 Alignment with CORBA

The following table lists each language mapping and the version of CORBA that this
language mapping is aligned with.

Language Mapping Aligned with CORBA version
Ada CORBA 2.0
C CORBA 2.1
C++ CORBA 2.3
COBOL CORBA 2.1

C++ Language Mapping June 1999 vii

Language Mapping Aligned with CORBA version

IDL to Java CORBA 2.3
Java to IDL CORBA 2.3
Smalltalk CORBA 2.0

0.2 Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to theORBAspecifications to be called CORBA-compliant. For instance,

if a vendor supports C++, their ORB must comply with the OMG IDL to C++ binding
specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to emmon Object Request
Broker: Architecture and Specificatipmterworking Architecturechapter.

As described in th©®MA Guide the OMG’s Core Object Model consists of a core and
components. Likewise, the body 6ORBAspecifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBAspecifications are divided into these volumes:

1. TheCommon Object Request Broker: Architecture and Specificatibith
includes the following chapters:

* CORBA Core, as specified in Chapters 1-11
« CORBA Interoperability , as specified in Chapters 12-16
« CORBA Interworking , as specified in Chapters 17-21

2. The Language Mapping Specifications, which are organized into the following
stand-alone volumes:

* Mapping of OMG IDL to the Ada programming language

* Mapping of OMG IDL to the C programming language

* Mapping of OMG IDL to the C++ programming language

* Mapping of OMG IDL to the COBOL programming language
* Mapping of OMG IDL to the Java programming language

« Mapping of Java programming language to OMG/IDL

* Mapping of OMG IDL to the Smalltalk programming language

0.3 Acknowledgements

The following companies submitted parts of the specifications that were approved by
the Object Management Group to beco@@RBA(including the Language Mapping
specifications):

viii C++ Language Mapping June 1999

* BNR Europe Ltd.

» Defense Information Systems Agency

« Expersoft Corporation

¢ FUJITSU LIMITED

» Genesis Development Corporation

» Gensym Corporation

* IBM Corporation

 ICL plc

* Inprise Corporation

» IONA Technologies Ltd.

« Digital Equipment Corporation

» Hewlett-Packard Company

» HyperDesk Corporation

* Micro Focus Limited

* MITRE Corporation

* NCR Corporation

* Novell USG

« Object Design, Inc.

« Objective Interface Systems, Inc.

¢ OC Systems, Inc.

* Open Group - Open Software Foundation
« Siemens Nixdorf Informationssysteme AG
* Sun Microsystems Inc.

* SunSoft, Inc.

» Sybase, Inc.

 Telefénica Investigacion y Desarrollo S.A. Unipersonal
« Visual Edge Software, Ltd.

In addition to the preceding contributors, the OMG would like to acknowledge Mark
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping specification.

0.4 References

The following list of references applies @ORBAand/or the Language Mapping
specifications:

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.2,
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.

C++ Language Mapping References June 1999 ix

COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.
IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro-
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), S.
(Martin) O’Donnell, June 1994.

RPC Runtime Support For 118N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.

C++ Language Mapping June 1999

C++Language Mapping

Note —The C++ Language Mapping specification is aligned with CORBA version 2.3.

The OMG documents used to update this chapter were ptc/98-09-03 and

ptc/99-03-04.

This chapter explains how OMG IDL constructs are mapped to the constructs of the
C++ programming language. It provides mapping information for:

Interfaces
Constants
Basic data types

Enums

Types (string, structure, struct, union, sequence, array, typedefs, any, exception)

Operations and attributes

Arguments

Contents

This chapter contains the following sections.

Section Title Page
“Preliminary Information” 1-3
“Mapping for Modules” 1-5
“Mapping for Interfaces” 1-6
“Mapping for Constants” 1-13

C++ Language Mapping June 1999

1-1

Section Title Page
“Mapping for Basic Data Types” 1-15
“Mapping for Enums” 1-17
“Mapping for String Types” 1-17
“Mapping for Wide String Types” 1-20
“Mapping for Structured Types” 1-21
“Mapping for Struct Types” 1-27
“Mapping for Union Types” 1-33
“Mapping for Sequence Types” 1-39
“Mapping For Array Types” 1-46
“Mapping For Typedefs” 1-49
“Mapping for the Any Type” 1-50
“Mapping for Exception Types” 1-94
“Mapping For Operations and Attributes” 1-99
“Implicit Arguments to Operations” 1-99
“Argument Passing Considerations” 1-100
“Mapping of Pseudo Objects to C++” 1-107
“Usage” 1-108
“Mapping Rules” 1-108
“Relation to the C PIDL Mapping” 1-109
“Environment” 1-110
“NamedValue” 1-111
“NVList” 1-112
“Request” 1-114
“Context” 1-118
“TypeCode” 1-120
“ORB” 1-121
“Object” 1-125
“Server-Side Mapping” 1-127
“Implementing Interfaces” 1-127
“Implementing Operations” 1-142
“Mapping of DSI to C++" 1-144
“PortableServer Functions” 1-146

C++ Language Mapping

June 1999

Section Title Page
“Mapping for PortableServer::ServantManager” 1-146
“C++ Definitions for CORBA” 1-147
“Alternative Mappings For C++ Dialects” 1-164
“C++ Keywords” 1-166

1.1 Preliminary Information
1.1.1 Overview

1.1.1.1 Key Design Decisions

The design of the C++ mapping was driven by a number of considerations, including a
design that achieves reasonable performance, portability, efficiency, and usability for
OMG IDL-to-C++ implementations. Several other considerations are outlined in this
section.

1.1.1.2 Compliance

The C++ mapping tries to avoid limiting the implementation freedoms of ORB
developers. For each OMG IDL and CORBA construct, the C++ mapping explains the
syntax and semantics of using the construct from C++. A client or server program
conforms to this mapping (is CORBA-C++ compliant) if it uses the constructs as
described in the C++ mapping chapters. An implementation conforms to this mapping
if it correctly executes any conforming client or server program. A conforming client
or server program is therefore portable across all conforming implementations. For
more information about CORBA compliance, refer to the Preface, “Definition of
CORBA Compliance” on page viii.

1.1.1.3 C++ Implementation Requirements

The mapping proposed here assumes that the target C++ environment supports all the
features described ifhe Annotated C++ Reference Many&RM) by Ellis and

Stroustrup as adopted by the ANSI/ISO C++ standardization committees, including
exception handling. In addition, it assumes that the C++ environment supports the
namespace construct, but it does provide work-arounds for C++ compilers that do

not supportnamespace .

1.1.1.4 C Data Layout Compatibility

Some ORB vendors feel strongly that the C++ mapping should be able to work directly
with the CORBA C mapping. This mapping makes every attempt to ensure
compatibility between the C and C++ mappings, but it does not mandate such

C++ Language Mapping Preliminary Information June 1999 1-3

compatibility. In addition to providing better interoperability and portability, the C++
call style solves the memory management problems seen by C programmers who use
the C call style. Therefore, the OMG has adopted the C++ call style for OMG IDL.
However, to provide continuity for earlier applications, an implementation might
choose to support the C call style as an option. If an implementation supports both call
styles, it is recommended that the C call style be phased out.

Note that the mapping in the C Language Mapping chapter has been modified to
achieve compatibility between the C and C++ mappings.

1.1.1.5 No Implementation Descriptions

This mapping does not contain implementation descriptions. It avoids details that
would constrain implementations, but still allows clients to be fully source-compatible
with any compliant implementation. Some examples show possible implementations,
but these are not required implementations.

1.1.2 Scoped Names

Scoped names in OMG IDL are specified by C++ scopes:
* OMG IDL modules are mapped to C++ namespaces.
« OMG IDL interfaces are mapped to C++ classes (as described in Section 1.3,
“Mapping for Interfaces,” on page 1-6).
« All OMG IDL constructs scoped to an interface are accessed via C++ scoped
names. For example, if a typeode were defined in interfacprinter , then the
type would be referred to gsinter::mode

These mappings allow the corresponding mechanisms in OMG IDL and C++ to be
used to build scoped names. For instance:

/I DL
module M

{
struct E {

long L;
h
h

is mapped into:

Il C++
namespace M

{
struct E {

Long L;
k
}

andE can be referred outside bfas M::E . Alternatively, a C++using statement
for namespac@&lcan be used so thRtcan be referred to simply &

C++ Language Mapping June 1999

/I C++

using namespace M;
E e;

eL=3;

Another alternative is to employusing statement only foM::E :

/I C++
using M::E;
E e;
elL=3;

To avoid C++ compilation problems, every use in OMG IDL of a C++ keyword as an
identifier is mapped into the same name preceded by the prefix “_cxx_.” For example,
an IDL interface named “try” would be named “_cxx_try” when its name is mapped
into C++. For consistency, this rule also applies to identifiers that are derived from IDL
identifiers. For example, an IDL interface “try” generates the names “_cxx_try var”
and “cxx_try_ptr,” that is, the IDL compiler behaves as if the interface were names
“cxx_try” and then applies the normal mapping rules.

The complete list of C++ keywords can be found in Section 1.43, “C++ Keywords,” on
page 1-166.

1.1.3 C++ Type Size Requirements

The sizes of the C++ types used to represent OMG IDL types are implementation-
dependent. That is, this mapping makes no requirements as<gzab&T) for

anything except basic types (see Section 1.5, “Mapping for Basic Data Types,” on
page 1-15) and string (see Section 1.7, “Mapping for String Types,” on page 1-17).

1.1.4 CORBA Module

The mapping relies on some predefined types, classes, and functions that are logically
defined in a module name@ORBA. The modulds automatically accessible from a

C++ compilation unit that includes a header file generated from an OMG IDL
specification. In the examples presented in this document, CORBA definitions are
referenced without explicit qualification for simplicity. In practice, fully scoped names

or C++using statements for thEORBAnamespace would be required in the
application source. SéEhe Common Object Request Broker: Application and
SpecificationsAppendix Afor standard OMG IDL tags.

1.2 Mapping for Modules

As shown in Section 1.1.2, “Scoped Names,” on page 1-4, a module defines a scope,
and as such is mapped to a Qiamespace with the same name:

/I IDL
module M

{

C++ Language Mapping Mapping for Modules June 1999 1-5

1-6

/I definitions

J3

Il C++
namespace M

/I definitions

}

Because namespaces were only recently added to the C++ language, few C++
compilers currently support them. Alternative mappings for OMG IDL modules that do
not require C++ namespaces are in Section 1.42, “Alternative Mappings For C++
Dialects,” on page 1-164.

1.3 Mapping for Interfaces

An interface is mapped to a C++ class that contains public definitions of the types,
constants, operations, and exceptions defined in the interface.

A CORBA-C++—compliant program cannot
 create or hold an instance of an interface class, or
« use a pointerA*) or a referenceA&) to an interface class.

The reason for these restrictions is to allow a wide variety of implementations. For
example, interface classes could not be implemented as abstract base classes if
programs were allowed to create or hold instances of them. In a sense, the generated
class is like a namespace that one cannot enterwsing statement. This example
shows the behavior of the mapping of an interface:

/I DL
interface A

{
k

/I C++

/I Conformant uses

A::S s; // declare a struct variable
s.field = 3; // field access

struct S { short field; };

/I Non-conformant uses:

/I one cannot declare an instance of an interface class...
A a;

/I ...nor declare a pointer to an interface class...

A*p;

/I ...nor declare a reference to an interface class.

void f(A &r);

C++ Language Mapping June 1999

1.3.1 Object Reference Types

The use of an interface type in OMG IDL denotes an object reference. Because of the
different ways an object reference can be used and the different possible
implementations in C++, an object reference maps to two C++ types. For an interface
A, these types are nam@dvar andA_ptr . For historical reasons, the typ®Ref is
defined as a synonym féx_ptr , but usage of thRef names is not portable and is

thus deprecated. To facilitate template-based programming, typedefs #ortre
andA_var types are also provided in the interface class (see Section 1.3.7, “Interface
Mapping Example,” on page 1-11). The typedefAoptr is namedA::_ptr_type

and the typedef foA_var is hamedA::_var_type

An operation can be performed on an object by using an arrow)(6bn a reference
to the object. For example, if an interface defines an operafionith no parameters
andobj is a reference to the interface type, then a call would be wadberop()

The arrow operator is used to invoke operations on bothptre and_var object
reference types.

Client code frequently will use the object reference variable thpear) because a
variable will automatically release its object reference when it is deallocated or when
assigned a new object reference. The pointer tpet() provides a more primitive

object reference, which has similar semantics to a C++ pointer. Indeed, an
implementation may choose to defideptr asA*, but is not required to. Unlike C++
pointers, however, conversion void* , arithmetic operations, and relational

operations, including test for equality, are all non-compliant. A compliant
implementation need not detect these incorrect uses because requiring detection is not
practical.

For many operations, mixing data of tyfevar andA_ptr is possible without any
explicit operations or casts. However, one needs to be careful in doing so because of
the implicit release performed when the variable is deallocated. For example, the
assignment statement in the code below will result in the object reference hetd by

be released at the end of the block containing the declarati@n of

Il C++

A var a;

A_ptr p =// ...somehow obtain an objref...
a=p;

1.3.2 Widening Object References

OMG IDL interface inheritance does not require that the corresponding C++ classes
are related, though that is certainly one possible implementation. However, if interface
B inherits from interface A, the following implicit widening operations for B must be
supported by a compliant implementation:

e B_ptr toA_ptr
« B_ptr to Object_ptr
* B_var toA_ptr
* B_var to Object_ptr

C++ Language Mapping Mapping for Interfaces June 1999 1-7

Implicit widening from aB_var to A_var orObject_var is not supported; instead,
widening betweenvar types for object references requires a call daplicate

(described in Section 1.3.3, “Object Reference Operations,” on pagé Ar8attempt

to implicitly widen from one var type to another must cause a compile-time éror.
Assignment between twovar objects of the same type is supported, but widening
assignments are not and must cause a compile-time error. Widening assignments may
be done usingduplicate . The same rules apply for object reference types that are
nested in a complex type, such as a structure or sequence.

/I C++

B _ptrbp=...

A_ptr ap = bp; /I implicit widening

Object_ptr objp = bp; /I implicit widening

objp = ap; /I implicit widening

B_var bv = bp; /I bv assumes ownership of bp

ap = byv; /l implicit widening, bv retains
/I ownership of bp

obp = byv; // implicit widening, bv retains
/I ownership of bp

A_var av = by; Il illegal, compile-time error

A_var av = B::_duplicate(bv);// av, bv both refer to bp

B_var bv2 = by; /l implicit _duplicate

A_var avz;

av2 = av; /I implicit _duplicate

1.3.3 Object Reference Operations

Conceptually, th®bject class in theCORBA module is the base interface type for all
CORBA objects; therefore, any object reference can be widened to the type
Object_ptr . As with other interfaces, the CORBA namespace also defines the type
Object_var

CORBA defines three operations on any object referethgglicate, release , and

is_nil . Note that these are operations on the object reference, not the object
implementation. Because the mapping does not require that object references to
themselves be C++ objects, the ™ syntax cannot be employed to express the usage
of these operations. Also, for convenience these operations are allowed to be
performed on a nil object reference.

1.WhenT_ptr is mapped td*, itis impossible in C++ to provide implicit widening
betweenl _var types while also providing the necessary duplication semantics for
T_ptr types.

2. This can be achieved by derivingRllvar types for object references from a basar
class, then making the assignment operator ¥@r private within eacil_var type.

C++ Language Mapping June 1999

Therelease andis_nil operations depend only on tyfdject, so they can be
expressed as regular functions within the CORBA namespace as follows:

/I C++
void release(Object_ptr obj);
Boolean is_nil(Object_ptr obj);

Therelease operation indicates that the caller will no longer access the reference so
that associated resources may be deallocated. If the given object reference is nil,
release does nothing. Thes_nil operation returns TRUE if the object reference
contains the special value for a nil object reference as defined by the ORB. Neither the
release operation nor thés_nil operation may throw CORBA exceptions.

The duplicate operation returns a new object reference with the same static type as
the given reference. The mapping for an interface therefore includes a static member
function named_duplicate in the generated class. For example:

/I IDL
interface A {};

/I C++
class A
{
public:
static A_ptr _duplicate(A_ptr obj);
k

If the given object reference is nilduplicate will return a nil object reference.
The duplicate operation can throw CORBA system exceptions.

1.3.4 Narrowing Object References

The mapping for an interface defines a static member function nanatbw that
returns a new object reference given an existing reference. Hikglicate , the
_narrow function returns a nil object reference if the given reference is nil. Unlike
_duplicate , the parameter tonarrow is a reference of an object of any interface
type Object_ptr). If the actual (runtime) type of the parameter object can be
widened to the requested interface’s type, theswrrow will return a valid object
reference; otherwise,narrow will return a nil object reference. For example,
suppose A, B, C, and D are interface types, and D inherits from C, which inherits from
B, which in turn inherits from A. If an object reference to a C object is widened to an
A_ptr variable calledap, then:

e A::_narrow(ap) returns a valid object reference

e B::_narrow(ap) returns a valid object reference

o C::_narrow(ap) returns a valid object reference

« D::_narrow(ap) returns a nil object reference

C++ Language Mapping Mapping for Interfaces June 1999 1-9

Narrowing to A, B, and C all succeed because the object supports all those interfaces.
TheD::_narrow returns a nil object reference because the object does not support
the D interface.

For another example, suppose A, B, C, and D are interface types. C inherits from B,
and both B and D inherit from A. Now suppose that an object of type C is passed to a
function as an A. If the function cal&:_narrow or C::._narrow , a new object
reference will be returned. A call @::_narrow will fail and return nil.

If successful, the narrow function creates a new object reference and does not
consume the given object reference, so the caller is responsible for releasing both the
original and new references.

The _narrow operation can throw CORBA system exceptions.

1.3.5 Nil Object Reference

The mapping for an interface defines a static member function namitd that
returns a nil object reference of that interface type. For each interface A, the following
call is guaranteed to retuifRUE

/I C++
Boolean true_result = is_nil(A::_nil());

A compliant application need not cafllease on the object reference returned from
the nil function.

As described in Section 1.3.1, “Object Reference Types,” on page 1-7, object
references may not be compared usipgrator==; thereforejs_nil is the only
compliant way an object reference can be checked to see if it is nil.

The _nil function may not throw any CORBA exceptions.

A compliant program cannot attempt to invoke an operation through a nil object
reference, since a valid C++ implementation of a nil object reference is a null pointer.

1.3.6 Object Reference Out Parameter

When a_var is passed as ayut parameter, any previous value it refers to must be
implicitly released. To give C++ mapping implementations enough hooks to meet this
requirement, each object reference type results in the generation ofiarntype

which is used solely as tlwait parameter type. For example, interféceesults in the
object reference typA_ptr , the helper typé _var , and theout parameter type

A_out . The general form for object referenceut types is shown below.

1-10 C++ Language Mapping June 1999

/I C++
class A out
{
public:
A_out(A_ptr& p) : ptr_(p) { ptr_= A::_nil(); }
A_out(A_var& p) : ptr_(p.ptr_) {
release(ptr_); ptr_ = A::_nil();
}

A_out(A out& a) : ptr_(a.ptr) {}

A_out& operator=(A_out& a) {
ptr_ = a.ptr_; return *this;

}

A_out& operator=(const A_var& a) {
ptr_ = A::_duplicate(A_ptr(a)); return *this;
}

A_out& operator=(A_ptr p) { ptr_ = p; return *this; }
operator A_ptr&() { return ptr_; }

A_ptr& ptr() { return ptr_; }

A_ptr operator->() { return ptr_; }

private:
A_ptr& ptr_;
h

The first constructor binds the reference data member with thege& argument.

The second constructor binds the reference data member wigh fpite object

reference held by th&_var argument, and then callslease() on the object
reference. The third constructor, the copy constructor, binds the reference data member
to the samé_ptr object reference bound to the data member of its argument.
Assignment from anothek_out copies theA_ptr referenced by the argument

A_out to the data member. The overloaded assignment operatdr for simply

assigns thé_ptr object reference argument to the data member. The overloaded
assignment operator féy_var duplicates théd_ptr held by theA_var before

assigning it to the data member. Note that assignment does not cause any previously-
held object reference value to be released; in this regard_that type behaves

exactly as ad_ptr . TheA_ptr& conversion operator returns the data member. The
ptr() member function, which can be used to avoid having to rely on implicit
conversion, also returns the data member. The overloaded arrow opepatatdr-

>()) returns the data member to allow operations to be invoked on the underlying
object reference after it has been properly initialized by assignment.

1.3.7 Interface Mapping Example

The example below shows one possible mapping for an interface. Other mappings are
also possible, but they must provide the same semantics and usage as this example.

C++ Language Mapping Mapping for Interfaces June 1999 1-11

/I \DL
interface A

{
A op(in A argl, out A arg?);
¥

/I C++
class A;
typedef A *A_ptr;
class A var;
class A : public virtual Object
{
public:
typedef A_ptr _ptr_type;
typedef A_var _var_type;

static A_ptr _duplicate(A_ptr obj);
static A_ptr _narrow(Object_ptr obj);
static A_ptr _nil();

virtual A_ptr op(A_ptr argl, A_out arg2) = 0;

protected:

AQ);
virtual ~A();

private:
A(const A&);
void operator=(const A&);

k

class A_var : public _var
{
public:
A_var() : ptr_(A::_nilQ) {}
A_var(A_ptrp) : ptr_(p) {
A _var(const A_var &a) : ptr_(A::_duplicate(A_ptr(a){}
~A var() { free(); }

A_var &operator=(A_ptr p) {
reset(p); return *this;

}
A_var &operator=(const A_var& a) {
if (this != &a) {
free();
ptr_ = A::_duplicate(A_ptr(a));
}
return *this;
}

A_ptrin() const { return ptr_; }
A_ptr& inout() { return ptr_; }

1-12 C++ Language Mapping June 1999

A_ptr& out() {
reset(A::_nil();
return ptr_;

}
A_ptr _retn() {

/l yield ownership of managed object reference

A_ptrval = ptr_;
ptr_ = A:_nil();
return val;

}

operator const A_ptr&() const { return ptr_; }

operator A_ptr&() { return ptr_; }
A_ptr operator->() const { return ptr_; }

protected:
A_ptr ptr_;
void free() { release(ptr_); }
void reset(A_ptr p) { free(); ptr_=p; }

private:

/I hidden assignment operators for var types

void operator=(const _var &);

k

The definition for theA_out type is the same as the one shown in Section 1.3.6,

“Object Reference Out Parameter,” on page 1-10.

1.4 Mapping for Constants

OMG IDL constants are mapped directly to a C++ constant definition that may or may
not define storage depending on the scope of the declaration. In the following example,
a top-level IDL constant maps to a file-scope C++ constant whereas a nested constant
maps to a class-scope C++ constant. This inconsistency occurs because C++ file-scope
constants may not require storage (or the storage may be replicated in each compilation
unit), while class-scope constants always take storage. As a side effect, this difference
means that the generated C++ header file might not contain values for constants

defined in the OMG IDL file.

/I IDL
const string name = "testing";

interface A

{
k

const float pi = 3.14159;

C++ Language Mapping Mapping for Constants

June 1999 1-13

1-14

Il C++
static const char *const name = "testing";

class A

{
public:
static const Float pi;

k

In certain situations, use of a constant in OMG IDL must generate the constant’s value
instead of the constant's namé&or example,

/I IDL
interface A

{

const long n = 10;
typedef long V[n];
¥

/I C++
class A

{
public:
static const long n;
typedef long V[10];

k

1.4.1 Wide Character and Wide String Constants

The mappings for wide character and wide string constants is identical to character and
string constants, except that IDL literals are preceded iwyC++. For example, IDL
constant:

const wstring ws = “Hello World”;

would map to

static const WChar *const ws = L"Hello World”;

in C++.

3. Arecent change made to the C++ language by the ANSI/ISO C++ standardization commit-
tees allows static integer constants to be initialized within the class declaration, so for some
C++ compilers, the code generation issues described here may not be a problem.

C++ Language Mapping June 1999

1.4.2 Fixed Point Constants

Because C++ does not have a native fixed point type, IDL fixed point literals are
mapped to C++ strings without the trailing 'd' or 'D' in order to guarantee that there is
no loss of precision. For example:

/I IDL
const fixed F = 123.456D;

/I C++
const Fixed F = "123.456";

1.5 Mapping for Basic Data Types

The basic data types have the mappings shown in TalleNete that the mapping of
the OMG IDLboolean type defines only the values 1 (TRUE) and 0 (FALSE); other
values produce undefined behavior.

Table 1-1 Basic Data Type Mappings

OMG IDL C++ C++ Out Type
short CORBA::Short CORBA::Short_out

long CORBA::Long CORBA::Long_out

long long CORBA::LongLong CORBA::LongLong_out
unsigned short CORBA::UShort CORBA::UShort_out
unsigned long CORBA::ULong CORBA::ULong_out
unsigned long long CORBA::ULongLong CORBA::ULongLong_out
float CORBA::Float CORBA::Float_out
double CORBA::Double CORBA::Double_out

long double CORBA::LongDouble CORBA::LongDouble_out
char CORBA::Char CORBA::Char_out

wchar CORBA::WChar CORBA::WChar_out
boolean CORBA::Boolean CORBA::Boolean_out
octet CORBA::Octet CORBA::Octet_out

4.This mapping assumes t2MORBA::LongLong , CORBA::ULongLong , and
CORBA::LongDouble are mapped directly to native numeric C++ types (e.g.,
CORBA::LongLong to a 64-bit integer type) that support the required IDL semantics and
can be manipulated via built-in operators. An alternate mapping to C++ classes that provides
appropriate creation, conversion, and manipulation operators will be provided in a future
version of this specification.

C++ Language Mapping Mapping for Basic Data Types June 1999 1-15

1-16

Each OMG IDL basic type is mapped to a typedef in the CORBA module. This is
because some types, suchshert andlong , may have different representations on
different platforms, and the CORBA definitions will reflect the appropriate
representation. For example, on a 64-bit machine where a long integer is 64 bits, the
definition of CORBA::Long would still refer to a 32-bit integer. Requirements for the
sizes of basic types are shownTihe Common Object Request Broker: Architecture
and SpecificationOMG IDL Syntax and SemantichapterBasic Typesection.

Typesboolean, char , andoctet may all map to the same underlying C++ type. This
means that these types may not be distinguishable for the purposes of overloading.

Typewchar maps towvchar_t in standard C++ environments or, for nonstandard C++
environments, may also map to one of the integer types. This meamghzat may
not be distinguishable from integer types for purposes of overloading.

All other mappings for basic types are distinguishable for the purposes of overloading.
That is, one can safely write overloaded C++ functionsStorrt , UShort , Long,
ULong, LongLong , ULongLong, Float , Double , andLongDouble .

The _out types for the basic types are used to tgpe parameters within operation
sighatures, as described in Section 1.22, “Argument Passing Considerations,” on
page 1-100. For the basic types, eaolt type is atypedef to a reference to the
corresponding C++ type. For example, 8teort_out is defined in theCORBA
namespace as follows:

/I C++
typedef Short& Short_out;

The out types for the basic types are provided for consistency with otiter
parameter types.

Programmers concerned with portability should use the CORBA types. However, some
may feel that using these types with the CORBA qualification impairs readability. If
the CORBA module is mapped to a namespace, a @sirg statement may help this
problem. On platforms where the C++ data type is guaranteed to be identical to the
OMG IDL data type, a compliant implementation may generate the native C++ type.

For theBoolean type, only the values 1 (representifBUE) and O (representing

FALSE) are defined; other values produce undefined behavior. Since many existing
C++ software packages and libraries already provide their own preprocessor macro
definitions of TRUEandFALSE, this mapping does not require that such definitions be
provided by a compliant implementation. Requiring definitionsTiRiJEand FALSE

could cause compilation problems for CORBA applications that make use of such
packages and libraries. Instead, we recommend that compliant applications simply use
the values 1 and 0 directly

5.Examples and descriptions in this specification stilllR&/EandFALSEfor purposes of
clarity.

C++ Language Mapping June 1999

Alternatively, for those C++ compilers that supportboel type, the keywordsue
andfalse may be used.

IDL type boolean may be mapped to C++ signed, unsigned, or pihar . This
mapping is legal for both classic and ANSI C++ environments. In addition, in an ANSI
C++ environment, IDLboolean can be mapped to C+ool . Mappings to C++

types other than a character typebool are illegal.

1.6 Mapping for Enums

An OMG IDL enum maps directly to the corresponding C++ type definition. The only
difference is that the generated C++ type may need an additional constant that is large
enough to force the C++ compiler to use exactly 32 bits for values declared to be of the
enumerated type.

/I IDL
enum Color { red, green, blue };

/I C++
enum Color { red, green, blue };

In addition, an_out type used to typeut parameters within operation signatures is
generated for each enumerated type. For e@Galor shown above, th€olor_out
type is defined in the same scope as follows:

/I C++
typedef Color& Color_out;

The_out types for enumerated types are generated for consistency withoother
parameter types.

1.7 Mapping for String Types

As in the C mapping, the OMG IDL string type, whether bounded or unbounded, is
mapped tachar* in C++. String data is NUL-terminated. In addition, G®@RBA
module defines a clasdring_var that contains @har* value and automatically
frees the pointer whenString_var object is deallocated. WherSaring_var is
constructed or assigned fronchar* , thechar* is consumed and thus the string
data may no longer be accessed through it by the caller. Assignment or construction
from aconst char* or from anothefString_var causes a copy. The

String_var class also provides operations to convert to and floan* values, as
well as subscripting operations to access characters within the string. The full
definition of theString_var interface is given in “String_var Class” on

page Section 1.41.2, “String_var and String_out Class,” on page 1-148.

C++ does not have a built-in type that would provide a “close match” for IDL-bounded
strings. As a result, the programmer is responsible for enforcing the bound of bounded
strings at run time. Implementations of the mapping are under no obligation to prevent
assignment of a string value to a bounded string type if the string value exceeds the
bound. Implementations may choose to (at run time) detect attempts to pass a string

C++ Language Mapping Mapping for Enums June 1999 1-17

1-18

value that exceeds the bound as a parameter across an interface. If an implementatior
chooses to detect this error, it must raig@A®d PARAM system exception to signal
the error.

Because its mapping thar* , the OMG IDL string type is the only non-basic type
for which this mapping makes size requirements. For dynamic allocation of strings,
compliant programs must use the following functions fromQRERBAramespace:

/I C++

namespace CORBA {
char *string_alloc(ULong len);
char *string_dup(const char*);
void string_free(char *);

}

The string_alloc function dynamically allocates a string, or returns a null pointer
if it cannot perform the allocation. It allocaten+1 characters so that the resulting
string has enough space to hold a trailing NUL charactersfrimg_dup function
dynamically allocates enough space to hold a copy of its string argument, including the
NUL character, copies its string argument into that memory, and returns a pointer to
the new string. If allocation fails, a null pointer is returned. 3tneg_free

function deallocates a string that was allocated wfiting_alloc or

string_dup . Passing a null pointer giring_free is acceptable and results in no
action being performed. These functions allow ORB implementations to use special
memory management mechanisms for strings if necessary, without forcing them to
replace globabperator new andoperator new(]

The string_alloc , string_dup , andstring_free functions may not throw
exceptions.

Note that a static array ehar in C++ decays to ahar* ©, so care must be taken
when assigning one to&tring_var , since theString_var will assume the

pointer points to data allocated \s&ing_alloc and thus will eventually attempt
to string_free it:
Il C++

/I The following is an error, since the char* should point to
/I data allocated via string_alloc so it can be consumed
String_var s = "static string";// error

/I The following are OK, since const char* are copied,
/I not consumed
const char* sp = "static string";

6. This has changed in ANSI/ISO C++, where string literals are const char*, not char*. How-
ever, since most C++ compilers do not yet implement this change, portable programs must
heed the advice given here.

C++ Language Mapping June 1999

S = sp;
s = (const char*)"static string too";

When aString_var is passed as ayut parameter, any previous value it refers to
must be implicitly freed. To give C++ mapping implementations enough hooks to meet
this requirement, the string type also results in the generatioswing_out type

in the CORBAhamespace, which is used solely as the swirigparameter type. The
general form for thé&tring_out type is shown below.

/I C++
class String_out
{
public:
String_out(char*& p) : ptr_(p) { ptr_=20;}
String_out(String_var& p) : ptr_(p.ptr_) {
string_free(ptr_); ptr_ =0;
}
String_out(String_out& s) : ptr_(s.ptr_) {}
String_out& operator=(String_out& s) {
ptr_ = s.ptr_; return *this;
}
String_out& operator=(char* p) {
ptr_ = p; return *this;
}
String_out& operator=(const char* p) {
ptr_ = string_dup(p); return *this;
}
operator char*&() { return ptr_; }
char*& ptr() { return ptr_; }
private:
char*& ptr_;
/[assignment from String_var disallowed
void operator=(const String_var&);
k

The first constructor binds the reference data member witbhheg& argument.

The second constructor binds the reference data member withalte held by the
String_var argument, and then caksring_free() on the string. The third
constructor, the copy constructor, binds the reference data member to thehagme
bound to the data member of its argument. Assignment from arfstitireg_out

copies thechar* referenced by the argumeBtring_out to thechar* referenced

by the data member. The overloaded assignment operatohdor simply assigns
thechar* argument to the data member. The overloaded assignment operator for
const char* duplicates the argument and assigns the result to the data member.
Note that assignment does not cause any previously-held string to be freed; in this
regard, theString_out type behaves exactly axhar* . Thechar*& conversion
operator returns the data member. Pti€) member function, which can be used to
avoid having to rely on implicit conversion, also returns the data member.

C++ Language Mapping Mapping for String Types June 1999 1-19

Assignment fronString_var to aString_out is disallowed because of the
memory management ambiguities involved. Specifically, it is not possible to determine
whether the string owned by tis#ring var should be taken over by the

String_out without copying, or if it should be copied. Disallowing assignment from
String_var forces the application developer to make the choice explicitly:

/I C++
void
A::op(String_out arg)
{
String_var s = string_dup("some string");
arg =s; /I disallowed; either
arg = string_dup(s); I/l 1: copy, or
arg = s._retn(); Il 2: adopt
}

On the line marked with the comment “1,” the application writer is explicitly copying
the string held by th&tring_var and assigning the result to taeg argument.
Alternatively, the application writer could use the technique shown on the line marked
with the comment “2” in order to force ti8#ring_var to give up its ownership of

the string it holds so that it may be returned indhge argument without incurring
memory management errors.

A compliant mapping implementation shall provide overloagdgerator<<
(insertion) andbperator>> (extraction) operators for usir§fring_var and
String_out directly with C++ iostreams.

1.8 Mapping for Wide String Types

1-20

Both bounded and unbounded wide string types are mappe@RBA::WChar* in

C++. In addition, theCORBA module definedVString_var andWString_out

classes. Each of these classes provides the same member functions with the same
semantics as thegtring counterparts, except of course they deal with wide strings
and wide characters.

Dynamic allocation and deallocation of wide strings must be performed via the
following functions:

/I C++
namespace CORBA {
...
WChar *wstring_alloc(ULong len);
WChar *wstring_dup(const WChar* ws);
void wstring_free(WChar?*);

h

These functions have the same semantics as the same functionsshinthetype,
except they operate on wide strings.

C++ Language Mapping June 1999

1

A compliant mapping implementation provides overloadpdrator<< (insertion)
andoperator>> (extraction) operators for usinyString_var and
WString_out directly with C++ iostreams.

1.9 Mapping for Structured Types

The mapping fostruct, union , andsequence is a C++ struct or class with a default
constructor, a copy constructor, an assignment operator, and a destructor. The default
constructor initializes object reference members to appropriately-typed nil object
references, and string members and wide string members to the empty"strigugd(

L™ , respectively). All other members are initialized via their default constructors. The
copy constructor performs a deep-copy from the existing structure to create a new
structure, including callingduplicate on all object reference members and
performing the necessary heap allocations for all string members and wide string
members. The assignment operator first releases all object reference members and
frees all string members and wide string members, and then performs a deep-copy to
create a new structure. The destructor releases all object reference members and free:
all string members and wide string members.

The mapping for OMG IDL structured types (structs, unions, arrays, and sequences)
can vary slightly depending on whether the data structuireid-lengthor variable-
length A type isvariable-lengthif it is one of the following types:

* The typeany

« A bounded or unbounded string or wide string

« A bounded or unbounded sequence

« An object reference or reference to a transmissible pseudo-object

« A valuetype

« A struct or union that contains a member whose type is variable-length

< An array with a variable-length element type

« A typedef to a variable-length type

The reason for treating fixed- and variable-length data structures differently is to allow
more flexibility in the allocation obut parameters and return values from an
operation. This flexibility allows a client-side stub for an operation that returns a
sequence of strings (for example, to allocate all the string storage in one area that is
deallocated in a single call).

As a convenience for managing pointers to variable-length data types, the mapping also
provides a managing helper class for each variable-length type. This type, which is
named by adding the suffix “_var” to the original type’s name, automatically deletes
the pointer when an instance is destroyed. An object of Typar behaves similarly

to the structured typ€&, except that members must be accessed indirectly. For a struct,
this means using an arrow-¥'") instead of a dot (*”).

// 1DL

struct S { string name; float age; };
void f(out S p);

C++ Language Mapping Mapping for Structured Types June 1999 1-21

1-22

/I C++

S a;

S var b;

f(b);

a = b; // deep-copy

cout << "names " << a.name << ", " << b->name << end|;

To facilitate template-based programming,satlct , union , andsequence
classes contain nested public typedefs for their associateat types. For example,
for an IDL sequence namedSeq, the mappedequence classSeq contains a
_var_type typedef as follows:

Il C++
class Seq_var;
class Seq
{
public:
typedef Seq_var _var_type;
...

k

1.9.1 T var Types

The general form of th& var types is shown below.

/I C++
class T var
{
public:
T_var();
T_var(T *);
T_var(const T_var &);
~T_var();

T_var &operator=(T *);
T_var &operator=(const T_var &);

T* operator->();
const T* operator->() const;

[* in parameter type */ in() const;
[* inout parameter type */ inout();
[* out parameter type */ out();

[* return type */ _retn();

/I other conversion operators to support
[/l parameter passing

C++ Language Mapping June 1999

1

The default constructor create§ avar containing a null'*. Compliant applications
may not attempt to convertTa var created with the default constructor intd*anor
use its overloadedperator-> without first assigning to it a vali@™* or another
valid T_var . Due to the difficulty of doing so, compliant implementations are not
required to detect this error. Conversion of a fular to aT_out is allowed,
however, so that & var can legally be passed as a@ut parameter. Conversion of a
null T_var to aT*& is also allowed so as to be compatible with earlier versions of
this specification.

The T* constructor creates® var that, when destroyed, witlelete the storage
pointed to by the* parameter. The parameter to this constructor should never be a
null pointer. Compliant implementations are not required to detect null pointers passed
to this constructor.

The copy constructor deep-copies any data pointed to by ther constructor
parameter. This copy will be destroyed whenThegar is destroyed or when a new
value is assigned to it. Compliant implementations may, but are not required to, utilize
some form of reference counting to avoid such copies.

The destructor usedelete to deallocate any data pointed to by Thevar , except
for strings and array types, which are deallocated usingttimg_free and
T free (for array typeT) deallocation functions, respectively.

The T* assignment operator results in the deallocation of any old data pointed to by
the T_var before assuming ownership of tiie¢ parameter.

The normal assignment operator deep-copies any data pointed to Dyvere
assignment parameter. This copy will be destroyed wheii thar is destroyed or
when a new value is assigned to it.

The overloadedperator-> returns ther* held by theT _var , but retains
ownership of it. Compliant applications may not call this function unles$ thar
has been initialized with a valid non-ndlt or T var .

In addition to the member functions described aboveTthar types must support
conversion functions that allow them to fully support the parameter passing modes
shown in “Basic Argument and Result Passing” on page 1-104. The form of these
conversion functions is not specified so as to allow different implementations, but the
conversions must be automatic (i.e., they must require no explicit application code to
invoke them).

Because implicit conversions can sometimes cause problems with some C++ compilers
and with code readability, thE var types also support member functions that allow
them to be explicitly converted for purposes of parameter passing.

To pass & _var as an: an application can call the ...

in parameter in() member function of th&_var
inout parameter inout() member function

out parameter out() member function

C++ Language Mapping Mapping for Structured Types June 1999 1-23

To obtain a return value from tfie var , an application can call theetn()
function.

For eachT_var type, the return types of each of these functions match the types
shown in version 2.3 ofhe Common Object Request Broker: Architecture and
SpecificationsMapping: OLE Automation and CORBhapterMapping of
Automation Types to OMG IDL Typeble for than, inout , out and return modes for
underlying typeT respectively.

ForT_var types that retur*& from theout() member function, theut()

member function callgelete on theT* owned by thel _var , sets it equal to the

null pointer, and then returns a reference to it. This is to allow for proper management
of the T* owned by a_var when passed as amut parameter, as described in

Section 1.22, “Argument Passing Considerations,” on page 1-100. An example
implementation of such aout() function is shown below:

Il C++
T*& T_var::out()
{
/[assume ptr__is the T* data member of the T_var
delete ptr_;
ptr_=0;
return ptr_;

}

Similarly, for T_var types whose corresponding types returned from IDL

operations a3* (see “Basic Argument and Result Passing” on page 1-104), the
_retn() function stores the value of ti¢ owned by thel_var into a temporary
pointer, sets th@&* to the null pointer value, and then returns the temporary. The
T_var thus yields ownership of if* to the caller of retn() without calling

delete on it, and the caller becomes responsible for eventually deleting the returned
T*. An example implementation of such eetn() function is shown below:

Il C++

T* T _var::_retn()

{
/[assume ptr_is the T* data member of the T_var
T* tmp = ptr_;
ptr_=0;

7.A leading underscore is needed on thetn() function to keep it from clashing with
user-defined member names of constructed types, but leading underscores are not needed for
thein() ,inout() ,andout() functions because their names are IDL keywords, so
users can’'t define members with those names.

1-24 C++ Language Mapping June 1999

return tmp;

}

This allows, for example, a method implementation to storé as a potential return
value in aT_var so that it will be deleted if an exception is thrown, and yet be able to
acquire control of th@™* to be able to return it properly:

/I C++

T vart=new T;// t owns pointerto T

if (exceptional_condition) {
/I t owns the pointer and will delete it
/I as the stack is unwound due to throw
throw AnException();

}

return t._retn(); /I _retn() takes ownership of
/I pointer from t

After _retn() is invoked on & _var instance, its interndl* pointer is null, so
invoking either of its overloadedperator-> functions without first assigning a
valid non-nullT* to theT_var will attempt to de-reference the null pointer, which is
illegal in C++.

TheT_var types are also produced for fixed-length structured types for reasons of
consistency. These types have the same semanticsvas types for variable-length
types. This allows applications to be coded in term$ ofar types regardless of
whether the underlying types are fixed- or variable-length.

EachT_var type must be defined at the same level of nesting astitpe.

T_var types do not work with a pointer to constdnsince they provide no

constructor nopperator= taking aconst T* parameter. Since C++ does not

allow delete to be called on aonst T* & theT var object would normally have

to copy the const object; instead, the absence ofdhst T* constructor and
assignment operators will result in a compile-time error if such an initialization or
assignment is attempted. This allows the application developer to decide if a copy is
really wanted or not. Explicit copying ebnst T* objects intol_var types can be
achieved via the copy constructor far

8.This too has changed in ANSI/ISO C++, but it not yet widely implemented by C++ compilers.

C++ Language Mapping Mapping for Structured Types June 1999 1-25

1-26

Il C++
constT *t=..;
T_var tv = new T(*t);

1.9.2 T out Types

When aT_var is passed as asut parameter, any previous value it referred to must
be implicitly deleted. To give C++ mapping implementations enough hooks to meet
this requirement, each var type has a correspondifg out type which is used
solely as theut parameter type. The general form forout types for variable-

length types is shown below.

/I C++

class T_out

{

public:
T out(T*& p) : ptr_(p) { ptr_=0;}
T out(T_var& p) : ptr_(p.ptr_) {
delete ptr_;
ptr_=0;
}

T_out(const T_out& p) : ptr_(p.ptr_) {}
T_out& operator=(const T_out& p) {
ptr_ = p.ptr_;
return *this;

}
T_out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

/I assignment from T_var not allowed
void operator=(const T_var&):

h

The first constructor binds the reference data member witfi*®eargument and sets

the pointer to the null pointer value. The second constructor binds the reference data
member with the pointer held by tHe var argument, and then caltielete on the

pointer (orstring_free() in the case of th8tring_out type orT_free() in

the case of & var for an array typd). The third constructor, the copy constructor,
binds the reference data member to the same pointer referenced by the data member o
the constructor argument. Assignment from anofheyut copies ther* referenced

by theT _out argument to the data member. The overloaded assignment operator for
T* simply assigns the pointer argument to the data member. Note that assignment does

C++ Language Mapping June 1999

not cause any previously-held pointer to be deleted; in this regard, the type
behaves exactly asT . TheT*& conversion operator returns the data member. The
ptr() member function, which can be used to avoid having to rely on implicit
conversion, also returns the data member. The overloaded arrow opepataitdr-

>()) allows access to members of the data structure pointed to By ttheta member.
Compliant applications may not call the overloadpérator->() unless the

T _out has been initialized with a valid non-ndit .

Assignment to & out from instances of the correspondifgvar type is disallowed
because there is no way to determine whether the application developer wants a copy
to be performed, or whether thevar should yield ownership of its managed pointer

so it can be assigned to tieout . To perform a copy of & var to aT_out , the
application should useew:

Il C++
T vart=..;
my_out = new T(t.in());// heap-allocate a copy

Thein() function called ort typically returns a&onst T&, suitable for invoking the
copy constructor of the newly-allocat@dinstance.

Alternatively, to make th& _var vyield ownership of its managed pointer so it can be
returned in ar_out parameter, the application should use Thear::_retn()
function:

Il C++
T vart=..;
my_out = t._retn();// t yields ownership, no copy

Note that thel _out types are not intended to serve as general-purpose data types to
be created and destroyed by applications; they are used only as types within operation
signatures to allow necessary memory management side-effects to occur properly.

1.10 Mapping for Struct Types

An OMG IDL struct maps to C++ struct, with each OMG IDL struct member mapped

to a corresponding member of the C++ struct. This mapping allows simple field access
as well as aggregate initialization of most fixed-length structs. To facilitate such
initialization, C++ structs must not have user-defined constructors, assignment
operators, or destructors, and each struct member must be of self-managed type. With
the exception of strings and object references, the type of a C++ struct member is the
normal mapping of the OMG IDL member’s type.

For a string, wide string, or object reference member, the name of the C++ member’s
type is not specified by the mapping; therefore, a compliant program cannot create an
object of that type. The behavioof the type is the same as the normal mapping

(char* for string,WChar* for wide string, andA_ptr for an interface A) except the
type’s copy constructor copies the member’s storage and its assignment operator
releases the member’s old storage. These types must also provid@ the

inout() ,out() ,and_retn() functions that their correspondifigvar types

provide to allow them to support the parameter passing modes specified in Table 1-3

C++ Language Mapping Mapping for Struct Types June 1999 1-27

on page 1-104. A compliant mapping implementation also provides overloaded
operator<< (insertion) andperator>> (extraction) operators for using string
members and wide string members directly with C++ iostreams.

For anonymous sequence members (required for recursive structures), a type name is
required for the member. This name is generated by prepending an underscore to the
member name, and appending “_seq”. For example:

/I IDL
struct node {

long value;

sequence<node, 2> operand;
h

This results in the following C++ code:

/I C++

struct node {
typedef ... operand_seq;
Long value;
_operand_seq operand;

k

In the C++ code shown above, the “...” in theperand_seq typedef refers to an
implementation-specific sequence type. The name of this type is not standardized.

Assignment between a string, wide string, or object reference member and a
corresponding_var type String_var , WString_var , orA_var) always results

in copying the data, while assignment with a pointer does not. The one exception to the
rule for assignment is whencanst char* orconst WChar* is assigned to a

member, in which case the storage is copied.

When the old storage must not be freed (for example, it is part of the function’s
activation record), one can access the member directly as a pointer usimqgrthe
field accessor. This usage is dangerous and generally should be avoided.

/I IDL
struct FixedLen { float x, y, z; };

Il C++
FixedLen x1 ={1.2, 2.4, 3.6};

9.Those implementations concerned with data layout compatibility with the C mapping in this
manual will also want to ensure that the sizes of these members match those of their C
mapping counterparts.

1-28 C++ Language Mapping June 1999

FixedLen_var x2 = new FixedLen;
x2->y = x1.z;

The example above shows usage of ThendT_var types for a fixed-length struct.
When it goes out of scopg? will automatically free the heap-allocatEkedLen
object usingdelete

The following examples illustrate mixed usageTodndT_var types for variable-
length types, using the following OMG IDL definition:

// IDL
interface A;
struct Variable { string name; };

/I C++
Variable strl; I/ strl.name is initially
empty
Variable_var str2 = new Variable;// str2->name is
[initially empty

char *non_const;

const char *const2;

String_var string_var;

const char *const3 = "string 1";
const char *const4 = "string 2";

strl.name = const3; /I 1: free old storage, copy
str2->name = const4; /I 2: free old storage, copy

In the example above, theame components of variabledrl andstr2 both start

out as empty strings. On the line markeaddnst3 is assigned to theame

component oftrl . This results in the previowsdrl.name being freed, and since
const3 points to const data, the contentscohst3 being copied. In this case,
strl.name started out as an empty string, so it must be freed before the copying of
const3 takes place. Line 2 is similar to line 1, except gte2 is aT_var type.

Continuing with the example:

Il C++
non_const = strl.name; // 3: no free, no copy
const2 = str2->name; I/l 4: no free, no copy

On the line marked trl.name is assigned toon_const . Sincenon_const is

a pointer typedhar*), strl.name is not freed, nor are the data it points to copied.
After the assignmenstrl.name andnon_const effectively point to the same
storage, wittstrl.name retaining ownership of that storage. Line 4 is identical to
line 3, even thouglkonst2 is a pointer to const chastr2->name is neither freed
nor copied becausmnst2 is a pointer type.

C++ Language Mapping Mapping for Struct Types June 1999 1-29

Il C++
strl.name = non_const; /I 5: free, no copy
strl.name = const2; /I 6: free old storage, copy

Line 5 involves assignment ofchar* to strl.name , which results in the old
strl.name being freed and the value of then_const pointer, but not the data it
points to, being copied. In other words, after the assignstehhame points to the
same storage a®n_const points to. Line 6 is the same as line 5 except that because
const2 is aconst char* |, the data it points to are copied.

/I C++

str2->name = strl.name; /[7: free old storage, copy
strl.name = string_var; /1 8: free old storage, copy
string_var = str2->name; /I 9: free old storage,copy

On line 7, assignment is performed to a member from another member, so the original
value is of the left-hand member is freed and the new value is copied. Similarly, lines
8 and 9 involve assignment to or frongaing_var , so in both cases the original
value of the left-hand side is freed and the new value is copied.

/I C++
strl.name._ptr = str2.name; /I 10: no free, no copy

Finally, line 10 uses theptr field accessor, so no freeing or copying takes place.
Such usage is dangerous and generally should be avoided.

ORB implementations concerned with single-process interoperability with the C
mapping may overloadperator new() andoperator delete() for structs so

that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementation or
not, compliant programs usesw to dynamically allocate structs adélete to free

them.

1.11 Mapping for Fixed Types

1-30

The C++ mapping fofixed is defined by the following class:

/I C++

class Fixed

{

public:

/I Constructors
Fixed(int val = 0);
Fixed(unsigned val);
Fixed(Long val);
Fixed(ULong val);
Fixed(LongLong val);
Fixed(ULongLong val);
Fixed(Double val);
Fixed(LongDouble val);
Fixed(const Fixed& val);

C++ Language Mapping June 1999

Fixed(const char*);
~Fixed();

/I Conversions

operator LongLong() const;
operator LongDouble() const;
Fixed round(UShort scale) const;
Fixed truncate(UShort scale) const;

/I Operators

Fixed& operator=(const Fixed& val);
Fixed& operator+=(const Fixed& val);
Fixed& operator-=(const Fixed& val);
Fixed& operator*=(const Fixed& val);
Fixed& operator/=(const Fixed& val);

Fixed& operator++();
Fixed operator++(int);
Fixed& operator--();

Fixed operator--(int);
Fixed operator+() const;
Fixed operator-() const;
Boolean operator!() const;

/I Other member functions
UShort fixed_digits() const;
UShort fixed_scale() const;

k

istream& operator>>(istream& is, Fixed& val);
ostreamé& operator<<(ostream& os, const Fixed& val);

Fixed operator + (const Fixed& vall, const Fixed& val2);
Fixed operator - (const Fixed& vall, const Fixed& val2);
Fixed operator * (const Fixed& vall, const Fixed& val2);
Fixed operator / (const Fixed& vall, const Fixed& val2);

Boolean operator > (const Fixed& vall, const Fixed& val2);
Boolean operator < (const Fixed& vall, const Fixed& val2);
Boolean operator >= (const Fixed& vall, const Fixed& val2);
Boolean operator <= (const Fixed& vall, const Fixed& val2);
Boolean operator == (const Fixed& vall, const Fixed& val2);
Boolean operator != (const Fixed& vall, const Fixed& val2);

TheFixed class is used directly by the C++ mapping for IDL fixed-point constant
values and for all intermediate results of arithmetic operations on fixed-point values.
For fixed-point parameters of IDL operations or members of IDL structured datatypes,
the implementation may use thé&xed type directly, or alternatively, may use a
different type, with an effectively constant digits and scale, that provides the same C++
interface and can be implicitly converted from/to Bieed class. The name(s) of this
alternative class is not defined by this mapping. Since fixed-point types used as

C++ Language Mapping Mapping for Fixed Types June 1999 1-31

1-32

parameters of IDL operations must be named via antiipedef declaration, the
mapping must use thgpedef to define the type of the operation parameter to make
sure that server-side operation signatures are portable. Here is an example of the

mapping:

/I IDL
typedef fixed<5,2> F;

interface A

{
J3

Il C++
typedef Implementation_Defined_Class F;

void op(in F arg);

class A

{
public:

void op(const F& arg);

k

The Fixed class has a number of constructors to guarantee that a fixed value can be
constructed from any of the IDL standard integer and floating point types. The
Fixed(char*) constructor converts a string representation of a fixed-point literal
into a real fixed-point value, with the trailing 'd" or 'D' optional. Hieed class also
provides conversion operators back to tlemgLong andLongDouble types. For
conversion to integral types, digits to the right of the decimal point are truncated. If the
magnitude of the fixed-point value does not fit in the target conversion type, then the
DATA_CONVERSION system exception is thrown.

Theround andtruncate functions convert a fixed value to a new value with the
specified scale. If the new scale requires the value to lose precision on the right, the
round function will round away from zero values that are halfway or more to the next
absolute value for the new fixed precision. Thacate function always truncates

the value towards zero. For example:

Il C++

Fixed f1 ="0.1";

Fixed f2 = "0.05";

Fixed f3 = "-0.005;

In this examplefl.round(0) andfl.truncate(0) both return 0,
f2.round(1) returns 0.1f2.truncate(1) returns 0.0f3.round(2) returns
-0.01 andf3.truncate(2) returns 0.00.

C++ Language Mapping June 1999

1

The fixed_digits andfixed_scale functions return the smallest digits and
scale value that can hold the complete fixed-point value. If the implementation uses
alternative classes for operation parameters and structured type members, then
fixed_digits andfixed_scale return the constant digits and scale values
defined by the source IDL fixed-point type.

Arithmetic operations on thEixed class must calculate the result exactly, using an
effective double precision (62 digit) temporary value. The results are then truncated at
run time to fit in a maximum of 31 digits using the method defined in version 2.3 of
The Common Object Request Broker: Architecture and Specifica@dn& IDL

Syntax and SemantichapterSemanticsection to determine the new digits and scale.

If the result of any arithmetic operation produces more than 31 digits to the left of the
decimal point, thddDATA_ CONVERSION exception will be thrown. If a fixed-point

value, used as an actual operation parameter or assigned to a member of an IDL
structured datatype, exceeds the maximum absolute value implied by the digits and
scale, theDATA_CONVERSION exception will be thrown.

The stream insertion and extraction operators << and >> convert a fixed-point value
to/from a stream. The exact definition of these operators may vary depending on the
level of standardization of the C++ environment. These operators insert and extract
fixed-point values into the stream using the same format as for C++ floating point
types. In particular, the trailing ‘d’ or ‘D’ from the IDL fixed-point literal

representation is not inserted or extracted from the stream. These operators use all
format controls appropriate to floating point defined by the stream classes except that
they never use the scientific format.

1.11.1 Fixed T_var and T_out Types

Because fixed-point types are always passed by reference as operation parameters an
returned by value, there is no need forvar type for a fixed-point type. For each

IDL fixed-point typedef a correspondingout type is defined as a reference to the
fixed-point type:

/I IDL
typedef fixed<5,2> F;

/I C++
typedef Implementation_Defined_Name F;
typedef F& F_out;

1.12 Mapping for Union Types

Unions map to C++ classes with access functions for the union members and
discriminant. Some member functions only provide read access to a member. Such
functions are called “accessor functions” or “accessors” for short. For example:

/I C++
Long x() const;

C++ Language Mapping Mapping for Union Types June 1999 1-33

1-34

Here,x() is an accessor that returns the value of the memladéra union (of type
Long in this example).

Other member functions only provide write access to a union member. Such functions
are called “modifier functions” or “modifiers” for short. For example:

/I C++
void x(Long val);

Here,x() is a modifier that sets the value of the member a union (of typd.ong
in this example).

Still other union member functions provide read-write access to a union member by
returning a reference to that member. Such functions are called “reference functions”
or “referents” for short. For example:

/] C++
S& w();

Here,w() is a referent to the member(of typeS) of a union.

The default union constructor performs no application-visible initialization of the
union. It does not initialize the discriminator, nor does it initialize any union members
to a state useful to an application. (The implementation of the default constructor can
do whatever type of initialization it wants to, but such initialization is implementation-
dependent. No compliant application can count on a union ever being properly
initialized by the default constructor alone.) Assigning, copying, and the destruction of
default-constructed unions are safe. Assignment from or copying a default-constructed
union results in the target of the assignment or copy being initialized the same as a
default-constructed union.

It is therefore an error for an application to access the union before setting it, but ORB
implementations are not required to detect this error due to the difficulty of doing so.
The copy constructor and assignment operator both perform a deep-copy of their
parameters, with the assignment operator releasing old storage if necessary. The
destructor releases all storage owned by the union.

The union discriminant accessor and modifier functions have the ndn® both be
brief and to avoid name conflicts with the union members. Thdiscriminator
modifier can only be used to set the discriminant to a value within the same union
member. In addition to thed accessor and modifier, a union with an implicit default
member provides adefault() modifier function that sets the discriminant to a
legal default value. A union has an implicit default member if it does not have a default
case and not all permissible values of the union discriminant are listed. Assigning,
copying, and the destruction of a union immediately after callaefault() are
safe. Assignment from or copying of such a union results in the target of the
assignment or copy having the same safe state as it would dfatault() function
were invoked.

Setting the union value through a modifier function automatically sets the discriminant
and may release the storage associated with the previous value. Attempting to get a
value through an accessor that does not match the current discriminant results in

C++ Language Mapping June 1999

1

undefined behavior. If a modifier for a union member with multiple legal discriminant
values is used to set the value of the discriminant, the union implementation is free to
set the discriminant to any one of the legal values for that member. The actual
discriminant value chosen under these circumstances is implementation-dependent.
Calling a referent for a member that does not match the current discriminant results in
undefined behavior.

The following example helps illustrate the mapping for union types:

// 1DL

typedef octet Bytes[64];

struct S { long len; };

interface A;

valuetype Val;

union U switch (long) {
case 1: long x;
case 2: Bytes y;
case 3: string z;

case 4:
case 5: S w;
case 6: Val v;
default: A obj;
h
/I C++

typedef Octet Bytes[64];
typedef Octet Bytes_slice;
class Bytes _forany { ... };
struct S { Long len; };
typedef ... A_ptr;
class val ... ;
class U
{
public:

u(;

U(const U&);

~U0);

U &operator=(const U&);

void _d(Long);
Long _d() const;

void x(Long);
Long x() const;

void y(Bytes);
Bytes_slice *y() const;

void z(char*); /I free old storage, no copy

void z(const char*); /I free old storage,
void z(const String_var &);// free old storage, copy

C++ Language Mapping Mapping for Union Types June 1999 1-35

1-36

const char *z() const;

void w(const S &); /[deep copy
const S &w() const; /I read-only access
S &w(); /l read-write access
void v(Val*); /I _remove_ref old valuetype,
/I _add_ref argument
Val* v() const; /l no _add_ref of return value
void obj(A_ptr); Il release old objref,
/[duplicate
A_ptr obj() const; // no duplicate

b

Accessor and modifier functions for union members provide semantics similar to that
of struct data members. Modifier functions perform the equivalent of a deep-copy of
their parameters, and their parameters should be passed by value (for small types) or
by reference to const (for larger types). Referents can be used for read-write access, but
are only provided for the following typestruct , union , sequence , any, andfixed .

The reference returned from a reference function continues to denote that member only
for as long as the member is active. If the active member of the union is subsequently
changed, the reference becomes invalid, and attempts to read or write the member via
the reference result in undefined behavior.

For an array union member, the accessor returns a pointer to the array slice, where the
slice is an array with all dimensions of the original except the first (array slices are
described in detail in Section 1.14, “Mapping For Array Types,” on page 1-46). The
array slice return type allows for read-write access for array members via regular
subscript operators. For members of an anonymous array type, supporting typedefs for
the array must be generated directly into the union. For example:

/I IDL
union U switch (long) {
default: long array[20][20];

I3

Il C++
class U
{
public:
...
void array(long arg[20][20]);
typedef long _array_slice[20];
_array_slice * array();
...

C++ Language Mapping June 1999

1

The name of the supporting array slice typedef is created by prepending an underscore
and appending “_slice” to the union member name. In the example above, the array
member named “array” results in an array slice typedef called “_array_slice” nested in
the union class.

For string union members, tlobar* modifier results in the freeing of old storage
before ownership of the pointer parameter is assumed, whileotiet char*

modifier and theString_var modifier!? both result in the freeing of old storage
before the parameter’s storage is copied. The accessor for a string member returns a
const char* to allow examination but not modification of the string storslge.

For object reference union members, object reference parameters to modifier functions
are duplicated after the old object reference is released. An object reference return
value from an accessor function is not duplicated because the union retains ownership
of the object reference.

For anonymous sequence union members (required for recursive unions), a type name
is required. This name is generated by prepending an underscore to the member name
and appending “_seq”. For example:

/I IDL
union node switch (long) {
case 0: long value;
case 1: sequence<node, 2> operand;

I3

This results in the following C++:

Il C++
class node {
public:
typedef ... _operand_seq;

/I Member functions dealing with the operand
/I member use _operand_seq for its type.

k

In the C++ code shown above, the “..." in theperand_seq typedef refers to an
implementation-specific sequence type. The name of this type is not standardized.

10.A separate modifier fdtring_var is needed because it can automatically convert to
both achar* and aconst char* ; since unions provide modifiers for both of these
types, an attempt to set a string member of a union fiStniag_var would otherwise
result in an ambiguity error at compile time.

11.A return type o€har* allowing read-write access could mistakenly be assigned to a
String_var , resulting in théString_var and the union both assuming ownership for
the string’s storage.

C++ Language Mapping Mapping for Union Types June 1999 1-37

The restrictions for using thed discriminator modifier function are shown by the
following examples, based on the definition of the uribshown above:

/I C++

S s={10};

Uu,

u.w(s); /I member w selected

u._d4); /I OK, member w selected
u._d(5); /I OK, member w selected
u._d(1); /I error, different member selected
A ptra=..;

u.obj(a); /I member obj selected

u._d(7); /I OK, member obj selected
u._d(1); /I error, different member selected
s = u.w(); Il error, member w not active

As shown here, neither thel modifier function nor thav referent can be used to
implicitly switch between different union members. The following shows an example
of how the_default() member function is used:

// 1DL
union Z switch(boolean) {
case TRUE: short s;

h

Il C++

Z1z;

z._default(); Il implicit default member selected
Boolean disc = z._d(); // disc == FALSE

uUu; // union U from previous example
u._default(); Il error, no _default() provided

For unionz, calling the_default() modifier function causes the union’s value to be
composed solely of the discriminator valueFéfLSE, since there is no explicit default
member. For unioty, calling _default() causes a compilation error becalkkas

an explicitly declared default case and thus default() member function. A
_default() member function is only generated for unions with implicit default
members.

ORB implementations concerned with single-process interoperability with the C
mapping may overloadperator new() andoperator delete() for unions so

that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementation or
not, compliant programs usew to dynamically allocate unions awdlete to free

them.

1-38 C++ Language Mapping June 1999

1.13 Mapping for Sequence Types

A sequence is mapped to a C++ class that behaves like an array with a current length
and a maximum length. For a bounded sequence, the maximum length is implicit in the

sequence’s type and cannot be explicitly controlled by the programmer. For an

unbounded sequence, the initial value of the maximum length can be specified in the
sequence constructor to allow control over the size of the initial buffer allocation. The

programmer may always explicitly modify the current length of any sequence.

For an unbounded sequence, setting the length to a larger value than the current lengtt
may reallocate the sequence data. Reallocation is conceptually equivalent to creating a

new sequence of the desired new length, copying the old sequence eleenents

throughlength-linto the new sequence, and then assigning the old sequence to be the
same as the new sequence. Setting the length to a smaller value than the current lengtl
does not affect how the storage associated with the sequence is manipulated. Note,

however, that the elements orphaned by this reduction are no longer accessible and tha
their values cannot be recovered by increasing the sequence length to its original value

For a bounded sequence, attempting to set the current length to a value larger than the
maximum length given in the OMG IDL specification produces undefined behavior.

For each different typedef naming an anonymous sequence type, a compliant mapping
implementation provides a separate C++ sequence type. For example:

// IDL
typedef sequence<long> LongSeq;
typedef sequence<LongSeq, 3> LongSeqSeq;

/I C++
class LongSeq // unbounded sequence
{
public:
LongSeq(); /I default constructor
LongSeq(ULong max); // maximum constructor
LongSeq(/I T *data constructor
ULong max,
ULong length,
Long *value,

Boolean release = FALSE
);
LongSeq(const LongSeq&);

~LongSeq();
3
class LongSeqSeq // bounded sequence
{
public:
LongSeqSeq(); /I default constructor
LongSeqSeq(/I T *data constructor

ULong length,

C++ Language Mapping Mapping for Sequence Types June 1999

1-39

1-40

LongSeq *value,

Boolean release = FALSE
);
LongSeqSeq(const LongSeqSeq&);
~LongSeqSeq();

h

For both bounded and unbounded sequences, the default constructor (as shown in the
example above) sets the sequence length equal to 0. For bounded sequences, the
maximum length is part of the type and cannot be set or modified, while for unbounded
sequences, the default constructor also sets the maximum length to 0. Default
constructors for bounded and unbounded sequences need not allocate buffers
immediately.

Unbounded sequences provide a constructor that allows only the initial value of the
maximum length to be set (the “maximum constructor” shown in the example above).
This allows applications to control how much buffer space is initially allocated by the
sequence. This constructor also sets the length to O amdi¢lase flag to TRUE

The “T *data ” constructor (as shown in the example above) allows the length and
contents of a bounded or unbounded sequence to be set. For unbounded sequences, |
also allows the initial value of the maximum length to be set. For this constructor,
ownership of the buffer is determined by tledease parameter-FALSE means the

caller owns the storage for the buffer and its elements, WiRl@Emeans that the
sequence assumes ownership of the storage for the buffer and its elements. If

release is TRUE the buffer is assumed to have been allocated using the sequence
allocbuf function, and the sequence will pass ifreebuf when finished with it.
Theallocbuf andfreebuf functions are described on Section 1.13.3, “Additional
Memory Management Functions,” on page 1-45.

The copy constructor creates a new sequence with the same maximum and length as
the given sequence, copies each of its current elements @eothroughlength—J,
and sets theelease flag to TRUE

The assignment operator deep-copies its parameter, releasing old storage if necessary
It behaves as if the original sequence is destroyed via its destructor and then the source
sequence copied using the copy constructor.

If release=TRUE , the destructor destroys each of the current elements (#ers
throughlength—J, and destroys the underlying sequence buffer.

For an unbounded sequence, if a reallocation is necessary due to a change in the lengtl
and the sequence was created usingelease=TRUE parameter in its constructor,

the sequence will deallocate the old storage for all elements and the buffer. If

release is FALSE under these circumstances, old storage will not be freed for either
the elements or for the buffer before the reallocation is performed. After reallocation,
therelease flag is always set td RUE

For an unbounded sequence, thaximum() accessor function returns the total
number of sequence elements that can be stored in the current sequence buffer. This
allows applications to know how many items they can insert into an unbounded

C++ Language Mapping June 1999

sequence without causing a reallocation to occur. For a bounded sequence,
maximum() always returns the bound of the sequence as given in its OMG IDL type
declaration.

Thelength() functions can be used to access and modify the length of the
sequence. Increasing the length of a sequence adds new elements at the tail. The
newly-added elements behave as if they are default-constructed when the sequence
length is increased. However, a sequence implementation may delay actual default
construction until a newly-added element is first accessed. For sequences of strings and
wide strings, default element construction requires initialization of each element to the
empty string or wide string. For sequences of object references, default element
construction requires initialization of each element to a suitably-typed nil reference.
For sequences of valuetypes, default element construction requires initialization of
each element to a null pointer. The elements of sequences of other complex types, suct
as structs and sequences, are initialized by their default constructors. Union sequences
elements do not have any application-visible initialization; in particular, a default-
constructed union element is not safe for marshaling or access. Sequence elements of
basic type, such ddlLong, have undefined default values.

The overloaded subscript operatoopdrator[]) return the item at the given index.
The non-const version must return something that can serve as an Ivalue (i.e.,
something that allows assignment into the item at the given index), while the const
version must allow read-only access to the item at the given index.

The overloaded subscript operators may not be used to access or modify any element
beyond the current sequence length. Before either foroperator]] is used on a
sequence, the length of the sequence must first be set usitempgti®ULong)

modifier function, unless the sequence was constructed usifig*ttega constructor.

For strings, wide strings, and object referenoggrator|] for a sequence must

return a type with the same semantics as the types used for string, wide string, and
object reference members of structs and arrays, so that assignment to the string, wide
string, or object reference sequence membepp&ator=() will release old

storage when appropriate. Note that whatever these special return types are, they mus
honor the setting of theelease parameter in th@ *data constructor with respect

to releasing old storage. A compliant mapping implementation also provides
overloadedperator<< (insertion) andperator>> (extraction) operators for

using string sequence elements and wide string sequence elements directly with C++
iostreams.

Therelease() accessor function returns the state of the sequence release flag.

The overloadedet_buffer() accessor and reference functions allow direct access

to the buffer underlying a sequence. This can be very useful when sending large blocks
of data as sequences, such as sending image data as a sequence of octet, and the pe
element access provided by the overloaded subscript operators is not sufficient.

The non-consget_buffer() reference function allows read-write access to the
underlying buffer. If itsorphan argument i$~ALSE (the default), the sequence returns

a pointer to its buffer, allocating one if it has not yet done so. The size of the buffer can
be determined using thmaximum() accessor. For bounded sequences, the size of the

C++ Language Mapping Mapping for Sequence Types June 1999 1-41

1-42

returned buffer is equal to the sequence bound. The number of elements in the buffer
can be determined from the sequelaegth() accessor. The sequence maintains
ownership of the underlying buffer. Elements in the returned buffer may be directly
replaced by the caller. For sequences of strings, wide strings, and object references, the
caller must use the sequerredease() accessor to determine whether elements
should be freed (usinstring_free ,wstring_free , or CORBA::release for

string, wide strings, and object references, respectively) before being directly assigned
to. Because the sequence maintains a notion of the length and size of the buffer, the
caller ofget_buffer() shall not lengthen or shorten the sequence by directly

adding elements to the buffer or directly removing elements from the buffer. Changing
the length of the sequence shall be performed only by invoking the sequence

length() modifier function.

Alternatively, if theorphan argument tayet_buffer() is TRUE the sequence

yields ownership of the buffer to the callerotphan is TRUEand the sequence does

not own its buffer (i.g itsrelease flag is FALSE), the return value is a null pointer.

If the buffer is taken from the sequence using this formeofbuffer() , the

sequence reverts to the same state it would have if constructed using its default
constructor. The caller becomes responsible for eventually freeing each element of the
returned buffer (for strings, wide string, and object references), and then freeing the
returned buffer itself usinfreebuf

The consget_buffer() accessor function allows read-only access to the sequence
buffer. The sequence returns its buffer, allocating one if one has not yet been allocated.
No direct modification of the returned buffer by the caller is permitted.

For the non-congget_buffer() reference function with aarphan argument of
FALSE, and for the congiet_buffer() accessor function, the return value remains
valid until another non-const member function of the sequence is invoked, or until the
sequence is destroyed, whichever occurs first.

Thereplace() function allows the buffer underlying a sequence to be replaced. The
parameters toeplace() are identical in type, order, and purpose to those fof the
*data constructor for the sequence.

Access to the underlying sequences buffers seems to imply that a sequence
implementation must use contiguous memory to hold the elements, but this need not be
the case. A compliant sequence implementation could keep its elements in several
separate memory buffers and relocate them to a single buffer only if the application
called theget_buffer() accessors. In fact, for applications that never invoke these
accessors, such an implementation would very likely be better suited to handling large
sequences than one using a large single contiguous buffer.

For theT *data sequence constructor and for the buffer parameter of the

replace() function, the type of for strings, wide strings, and object references is
char* , CORBA::WChar*, andT_ptr , respectively. In other words, string buffers are
passed ashar** , wide string buffers a€ORBA::WChar** , and object reference
buffers asT_ptr* . The return type of the non-corgtt_buffer() reference
function for sequences of stringsdsar** , CORBA::WChar** for sequences of
wide strings, and_ptr* for sequences of object references. The return type of the

C++ Language Mapping June 1999

constget_buffer()
const*

accessor function for sequences of stringsoisst char*

, const CORBA::WChar* const* for sequences of wide strings, and
const T _ptr* for sequences of object reference.

1.13.1 Sequence Example

The example below shows full declarations for both a bounded and an unbounded
sequence.

//'1DL

typedef sequence<T> V1, /l unbounded sequence
typedef sequence<T, 2> V2; /I bounded sequence

/I C++

class V1 // unbounded sequence

{

public:

V1();

V1(ULong max);

V1(ULong max, ULong length, T *data,
Boolean release = FALSE);

V1(const V1&);

~V1();

V1 &operator=(const V1&);

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[J(ULong index);
const T &operator[](ULong index) const;

Boolean release() const;

void replace(ULong max, ULong length, T *data,
Boolean release = FALSE);

T* get_buffer(Boolean orphan = FALSE);
const T* get_buffer() const;

C++ Language Mapping Mapping for Sequence Types June 1999

1-43

class V2 // bounded sequence
{
public:
V2();
V2(ULong length, T *data, Boolean release = FALSE);
V2(const V2&);
~V2();

V2 &operator=(const V2&);
ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[]J(ULong index) const;

Boolean release() const;

void replace(ULong length, T *data,
Boolean release = FALSE);

T* get_buffer(Boolean orphan = FALSE);
const T* get_buffer() const;

k

1.13.2 Using the “release” Constructor Parameter

Consider the following example:

/I IDL
typedef sequence<string, 3> StringSeq;

Il C++

char *static_arr[] = {"one", "two", "three"};
char **dyn_arr = StringSeq::allocbuf(3);
dyn_arr[0] = string_dup("one");
dyn_arr[1] = string_dup("two");
dyn_arr[2] = string_dup("three");

StringSeq seql(3, static_arr);
StringSeq seq2(3, dyn_arr, TRUE);

seql[1l] ="2" I/l no free, no copy
char *str = string_dup("2");
seq2[1] = str; /I free old storage, no copy

In this example, botseql andseg2 are constructed using user-specified data, but
only seg2 is told to assume management of the user memory (because of the
release=TRUE parameter in its constructor). When assignment occurs into

1-44 C++ Language Mapping June 1999

1

seql[l] , the right-hand side is not copied, nor is anything freed because the
sequence does not manage the user memory. When assignment occeegdfith |,
however, the old user data must be freed before ownership of the right-hand side can
be assumed, sineq2 manages the user memory. Wheag2 goes out of scope, it

will call string_free for each of its elements and then dedebuf on the buffer

given to it in its constructor.

When therelease flag is set toTRUEand the sequence element type is either a
string or an object reference type, the sequence will individually release each element

before releasing the contents buffer. It will release strings ssiimg_free ,and it
will release object references using teease function from theCORBA
namespace.

In general, assignment should never take place into a sequence element via
operator(] unlessrelease=TRUE due to the possibility for memory management
errors. In particular, a sequence constructed veilsase=FALSE should never be
passed as ainout parameter because previous versions of this specification provided
no means for the callee to determine the setting of the seqtedaase flag, and

thus the callee always had to assumeittlaase was set td RUE Code that creates

a sequence witrelease=FALSE and then knowingly and correctly manipulates it in
that state, as shown wideql in the example above, is compliant, but care should
always be taken to avoid memory leaks under these circumstances.

As with otherout and return valuesqut and return sequences must not be assigned to
by the caller without first copying them. This is more fully explained in Section 1.22,
“Argument Passing Considerations,” on page 1-100.

When a sequence is constructed wélease=TRUE , a compliant application should
make no assumptions about the continued lifetime of the data buffer passed to the
constructor, since a compliant sequence implementation is free to copy the buffer and
immediately free the original pointer.

1.13.3 Additional Memory Management Functions

ORB implementations concerned with single-process interoperability with the C
mapping may overloadperator new() andoperator delete() for sequences

so that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementation or
not, compliant programs usew to dynamically allocate sequences alalete to

free them.

Sequences also provide additional memory management functions for their buffers. For
a sequence of type T, the following static member functions are provided in the
sequence class public interface:

C++ Language Mapping Mapping for Sequence Types June 1999 1-45

Il C++
static T *allocbuf(ULong nelems);
static void freebuf(T *);

Theallocbuf function allocates a vector of T elements that can be passedTo the
*data constructor and to theplace() member function. The length of the vector
is given by thenelems function argument. Thellocbuf function initializes each
element using its default constructor, except for strings and wide strings, which are
initialized to pointers to empty string, and object references, which are initialized to
suitably-typed nil object references. A null pointer is returnedidcbuf for some
reason cannot allocate the requested vector.

Vectors allocated bgllocbuf should be freed using tHeebuf function. The

freebuf function ensures that the destructor for each element is called before the buffer
is destroyed, except for string and wide string elements, which are freed using
string_free() andwstring_free() , respectively, and object reference

elements, which are freed usiG@PRBA::release() . Thefreebuf function will

ignore null pointers passed to it. Neittadlocbuf norfreebuf may throw

CORBA exceptions.

1.13.4 Sequence T_var and T_out Types

In addition to the regular operations defined Tovar andT_out types, thel_var
andT_out for a sequence type also supports an overloagedator[] that

forwards requests to thaperator(] of the underlying sequend®@.This subscript
operator should have the same return type as that of the corresponding operator on the
underlying sequence type.

1.14 Mapping For Array Types

1-46

Arrays are mapped to the corresponding C++ array definition, which allows the
definition of statically-initialized data using the array. If the array element is a string,
wide string, or an object reference, then the mapping uses the same type as for
structure members. That is, the default constructor for string elements and wide string
elements initializes them to the empty stritiy @ndL™ , respectively), and

assignment to an array element that is a string, wide string, or object reference will
release the storage associated with the old value.

// IDL

typedef float F[10];

typedef string V[10];

typedef string M[1][2][3];

void op(out F p1, out V p2, out M p3);

12.Note that sinc€_var andT_out types do not handieonst T* |, there is no need to pro-
vide the const version afperator(] for Sequence_var andSequence_out types.

C++ Language Mapping June 1999

/I C++

typedef Float F[10];

typedef ... V[10]; // underlying type not shown
because

typedef ... M[1][2][3]; /I it is implementation-dependent
Ffl; F_var f2;

Vvl; V_var vz,

M m1; M_var m2,

f(f2, v2, m2);

f1[0] = f2[1];

v1[1] = v2[1]; /I free old storage, copy
m1[0][1][2] = m2[0][1][2]; /I free old storage, copy

In the above example, the last two assignments result in the storage associated with the
old value of the left-hand side being automatically released before the value from the
right-hand side is copied.

As shown in Table 1-3 on page 1-1@4it and return arrays are handled via pointer to
arrayslice, where a slice is an array with all the dimensions of the original specified
except the first one. As a convenience for application declaration of slice types, the
mapping also provides a typedef for each array slice type. The name of the slice
typedef consists of the name of the array type followed by the suffix “ slice”. For
example:

// DL
typedef long LongArray[4][5];

Il C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];

Both theT_var type and thd _out type for an array should overloagerator[]

instead ofoperator-> . The use of array slices also means thaflthear type and

the T_out type for an array should have a constructor and assignment operator that
each take a pointer to array slice as a parameter, ratherthdmeT_var for the
previous example would be:

/I C++

class LongArray_var

{

public:

LongArray_var();
LongArray_var(LongArray_slice*);
LongArray_var(const LongArray_var &);
~LongArray_var();
LongArray_var &operator=(LongArray_slice*);
LongArray_var &operator=(const LongArray_var &);

LongArray_slice &operator[](ULong index);
const LongArray_slice &operator[](Ulong index) const;

C++ Language Mapping Mapping For Array Types June 1999 1-47

1-48

const LongArray_slice* in() const;
LongArray_slice* inout();
LongArray_slice* out();
LongArray_slice* _retn();

/I other conversion operators to support
/I parameter passing

k

Because arrays are mapped into regular C++ arrays, they present special problems for
the type-saf@any mapping described in “Mapping for the Any Type” on page 1-50. To
facilitate their use with thany mapping, a compliant implementation must also

provide for each array type a distinct C++ type whose name consists of the array name
followed by the suffix_forany . These types must be distinct so as to allow functions

to be overloaded on them. Lilkaray_var types,Array_forany types allow

access to the underlying array type, but unhkeay var ,theArray forany type

does notdelete the storage of the underlying array upon its own destruction. This is
because th&ny mapping retains storage ownership, as described in Section 1.16.3,
“Extraction from any,” on page 1-55.

The interface of thérray forany type is identical to that of therray var type,
but it may not be implemented as a typedef toAtray_var type by a compliant
implementation since it must be distinguishable from other types for purposes of
function overloading. Also, thArray_forany constructor taking an

Array_slice* parameter also takesBaolean nocopyparameter, which defaults
to FALSE
Il C++
class Array_forany
{

public:

Array_forany(Array_slice*, Boolean nocopy = FALSE);

3
The nocopyflag allows for a non-copying insertion of &mnray_slice* into an
Any.

EachArray forany type must be defined at the same level of nesting #sriay
type.

For dynamic allocation of arrays, compliant programs must use special functions
defined at the same scope as the array type. For Brthg following functions will be
available to a compliant program:

/I C++

T_slice *T_alloc();

T_slice *T_dup(const T_slice*);

void T_copy(T_slice* to, const T_slice* from);
void T_free(T_slice *);

C++ Language Mapping June 1999

1

TheT _alloc function dynamically allocates an array, or returns a null pointer if it
cannot perform the allocation. TAHe dup function dynamically allocates a new array
with the same size as its array argument, copies each element of the argument array
into the new array, and returns a pointer to the new array. If allocation fails, a null
pointer is returned. Th& copy function copies the contents of tfrem array to the

to array. If either argument is a null pointér,copy does not attempt a copy and
results in no action being performed. Thefree function deallocates an array that
was allocated witil_alloc or T_dup. Passing a null pointer b free is

acceptable and results in no action being performed.TThédoc , T_dup, and

T_free functions allow ORB implementations to utilize special memory management
mechanisms for array types if necessary, without forcing them to replace global
operator new andoperator new[] .

TheT alloc , T _dup, T_copy, andT_free functions may not throw CORBA
exceptions.

1.15 Mapping For Typedefs

A typedef creates an alias for a type. If the original type maps to several types in C++,
then the typedef creates the corresponding alias for each type. The example below
illustrates the mapping.

/I IDL

typedef long T;

interface A1,

typedef A1 A2;

typedef sequence<long> S1;
typedef S1 S2;

Il C++
typedef Long T;

/I ...definitions for Al...

typedef A1 A2;
typedef A1 ptr A2_ptr;
typedef Al_var A2_var;

/I ...definitions for S1...
class S1{... }

typedef S1 S2;
typedef S1_var S2_var;

For a typedef of an IDL type that maps to multiple C++ types, such as arrays, the
typedef maps to all of the same C++ types and functions that its base type requires. For
example:

C++ Language Mapping Mapping For Typedefs June 1999 1-49

/I IDL
typedef long array[10];
typedef array another_array;

/I C++

/I ...C++ code for array not shown...
typedef array another_array;

typedef array_var another_array_var;
typedef array_slice another_array_slice;
typedef array_forany another_array_forany;

inline another_array_slice *another_array_alloc() {
return array_alloc();
}

inline another_array_slice*

another_array_dup(another_array_slice *a) {
return array_dup(a);

}

inline void

another_array copy(another_array_slice* to,
const another_array_slice* from)

{

}

array_copy(to, from);

inline void another_array_free(another_array_slice *a) {
array_free(a);
}

1.16 Mapping for the Any Type

1-50

A C++ mapping for the OMG IDL typany must fulfill two different requirements:
®* Handling C++ types in a type-safe manner.

* Handling values whose types are not known at implementation compile time.

The first item covers most normal usage of éing type—the conversion of typed
values into and out of aany. The second item covers situations such as those
involving the reception of a request or response containirapgrthat holds data of a
type unknown to the receiver when it was created with a C++ compiler.

1.16.1 Handling Typed Values

To decrease the chances of creatinguayn with a mismatchedypeCode and value,

the C++ function overloading facility is utilized. Specifically, for each distinct type in
an OMG IDL specification, overloaded functions to insert and extract values of that
type are provided by each ORB implementation. Overloaded operators are used for

C++ Language Mapping June 1999

1

these functions so as to completely avoid any name space pollution. The nature of
these functions, which are described in detail below, is that the appropye€ode
is implied by the C++ type of the value being inserted into or extracted froamghe

Since the type-safany interface described below is based upon C++ function
overloading, it requires C++ types generated from OMG IDL specifications to be
distinct. However, there are special cases in which this requirement is not met:

< As noted in Section 1.5, “Mapping for Basic Data Types,” on page 1-15, the
boolean , octet, char, andwchar OMG IDL types are not required to map to
distinct C++ types, which means that a separate means of distinguishing them
from each other for the purpose of function overloading is necessary. The means
of distinguishing these types from each other is described in Section 1.16.4,
“Distinguishing boolean, octet, char, wchar, bounded string, and bounded
wstring,” on page 1-57.

« Since all strings and wide strings are mappedhr* andWChar*,
respectively, regardless of whether they are bounded or unbounded, another
means of creating or setting any with a bounded string or wide string value is
necessary. This is described in Section 1.16.4, “Distinguishing boolean, octet,
char, wchar, bounded string, and bounded wstring,” on page 1-57.

* In C++, arrays within a function argument list decay into pointers to their first
elements. This means that function overloading cannot be used to distinguish
between arrays of different sizes. The means for creating or settisngyamhen
dealing with arrays is described below and in Section 1.14, “Mapping For Array
Types,” on page 1-46.

1.16.2 Insertion into any

To allow a value to be set in amy in a type-safe fashion, an ORB implementation
must provide the following overloaded operator function for each separate OMG IDL
type I.

/I C++
void operator<<=(Any&, T);
This function signature suffices for types that are normally passed by value:

® Short , UShort , Long, ULong, LongLong , ULongLong , Float , Double ,
LongDouble

® Enumerations
® Unbounded strings and wide stringh#&r* andWChar* passed by value)
® Object referencesl(ptr)

® Pointers tovaluetype s (T*)

For values of typd that are too large to be passed by value efficiently, such as structs,
unions, sequencedny, and exceptions, two forms of the insertion function are
provided.

C++ Language Mapping Mapping for the Any Type June 1999 1-51

Il C++
void operator<<=(Any&, const T&);// copying form
void operator<<=(Any&, T*); /I non-copying form

Note that the copying form is largely equivalent to the first form shown, as far as the
caller is concerned.

These “left-shift-assign” operators are used to insert a typed value itoyaas
follows.

Il C++

Long value = 42;
Any a;

a <<= value;

In this case, the version operator<<= overloaded for typéong must be able to
set both the value and tigpeCode properly for theany variable.

Setting a value in aany usingoperator<<= means that:

® For the copying version aiperator<<= , the lifetime of the value in thany is
independent of the lifetime of the value passedgderator<<= . The
implementation of thany may not store its value as a reference or pointer to the
value passed toperator<<=

® For the noncopying version operator<<= , the inserted* is consumed by the
any. The caller may not use tfi¢ to access the pointed-to data after insertion,
since theany assumes ownership of it, and it may immediately copy the pointed-to
data and destroy the original.

* With both the copying and non-copying versionopérator<<= , any previous
value held by thé\ny is properly deallocated. For example, if the
Any(TypeCode_ptr,void*, TRUE) constructor was called to create they,
the Any is responsible for de-allocating the memory pointed to byvdhd*
before copying the new value.

Copying insertion of a string type or wide string type causes one of the following
functions to be invoked:

/I C++
void operator<<=(Any&, const char*);
void operator<<=(Any&, const WChar?*);

Since all string types are mappedctmar* , and all wide string types are mapped to
WChar*, these insertion functions assume that the values being inserted are
unbounded. Section 1.16.4, “Distinguishing boolean, octet, char, wchar, bounded
string, and bounded wstring,” on page 1-57 describes how bounded strings and
bounded wide strings may be correctly inserted intésaypn Note that insertion of

wide strings in this manner depends on standard C++, in wigblar_t is a distinct

type. Code that must be portable across standard and older C++ compilers must use the
Any::from_wstring helper. Noncopying insertion of both bounded and unbounded
strings can be achieved using they::from_string helper type. Similarly,

noncopying insertion of bounded and unbounded wide strings can be achieved using

1-52 C++ Language Mapping June 1999

1

the Any::from_wstring helper type. Both of these helper types are described in
Section 1.16.4, “Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring,” on page 1-57.

Note that the following code has undefined behavior in nonstandard C++
environments:

Il C++

Anya-=..;

WChar wc;

a >>= Wc; /I undefined behavior

This code may erroneously extract an integer type in environments wbleage t is
not a distinct type.

Becausevaluetype s may be represented legally using null pointers, a conforming
application may insert a nwhluetype pointer into anAny.

Type-safe insertion of arrays uses fkreay forany types described in

Section 1.14, “Mapping For Array Types,” on page 1-46. Compliant implementations
must provide a version aiperator<<= overloaded for eacArray_forany type.

For example:

/I IDL
typedef long LongArray[4][5];

/I C++

typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];
class LongArray forany { ... };

void operator<<=(Any &, const LongArray_forany &);

The Array_forany types are always passeddperator<<= by reference to
const. Thenocopyflag in theArray forany constructor is used to control whether
the inserted value is copieddcopy== FALSE) or consumedrocopy== TRUB.
Because th@ocopyflag defaults td~ALSE, copying insertion is the default.

Because of the type ambiguity between an array ahd aT*, it is highly
recommended that portable code expli¢flyse the appropriaterray forany type
when inserting an array into amy :

// IDL
struct S{... };
typedef S SA[5];

13.A mapping implementor may use the new C++ keyword “explicit” to prevent implicit con-
versions through tharray_forany constructor, but this feature is not yet widely available
in current C++ compilers.

C++ Language Mapping Mapping for the Any Type June 1999 1-53

Il C++

struct S{... };

typedef S SA[5];
typedef S SA_slice;
class SA forany {... };

SAs;

/I ...initialize s...

Any a;

a<<=s; /l'line 1

a <<= SA_forany(s); /l'line 2

Line 1 results in the invocation of the noncopyoperator<<=(Any&, S*) due

to the decay of th&A array type into a pointer to its first element, rather than the
invocation of the copyin@A_forany insertion operator. Line 2 explicitly constructs
the SA _forany type and thus results in the desired insertion operator being invoked.

The noncopying version afperator<<= for object references takes the address of
theT_ptr type.

// 1DL

interface T { ... };

Il C++

void operator<<=(Any&, T_ptr); Il copying
void operator<<=(Any&, T_ptr*); /I non-copying

The noncopying object reference insertion consumes the object reference pointed to by
T_ptr* ; therefore after insertion the caller may not access the object referred to by
T_ptr since theany may have duplicated and then immediately released the original
object reference. The caller maintains ownership of the storage for flie itself.

The noncopying version aperator<<= for valuetype s takes the address of the
T* pointer type.

// IDL

valuetype T { ... };

/I C++

void operator<<=(Any&, T*); /I copying
void operator<<=(Any&, T**); // non-copying

The noncopying/aluetype insertion consumes thaluetype pointed to by the
pointer thatT** points to. After insertion, the caller may not accessvitieetype
instance pointed to by the pointer tfidt points to. The caller maintains ownership of
the storage for the pointed-1¢5 itself.

In general, the copying versions gferator<<= are also supported on the

Any var type. Note that due to the conversion operators that coAmgrtvar to
Anyé& for parameter passing, only thosgerator<<= functions defined as member
functions ofany need to be explicitly defined fakny_var .

1-54 C++ Language Mapping June 1999

1.16.3 Extraction from any

To allow type-safe retrieval of a value from amy, the mapping provides the
following operators for each OMG IDL type

/| C++
Boolean operator>>=(const Any&, T&);

This function signature suffices for primitive types that are normally passed by value.
For values of typd that are too large to be passed by value efficiently (such as structs,
unions, sequences, Any, valuetypes, and exceptions) this function may be prototyped as
follows:

/I C++
Boolean operator>>=(const Any&, T*&); // deprecated
Boolean operator>>=(const Any&, const T*&);

The non-constant version of the operator will be deprecated in a future version of the
mapping and should not be used.

The first form of this function is used only for the following types:

® Short , UShort , Long, ULong, LongLong , ULongLong, Float , Double ,
LongDouble

® Enumerations

® Unbounded strings and wide string®ifst char* andconst WChar* passed
by reference (i.egonst char*& andconst WChar*&)

® Object referencesr(ptr)
For all other types, the second form of the function is used.

All versions ofoperator>>= implemented as member functions of clasy, such
as those for primitive types, should be marked@sst .

This “right-shift-assign” operator is used to extract a typed value froangras
follows:

/I C++

Long value;

Any a,;

a <<= Long(42);
if (a >>= value) {

}

/I ... use the value ...

14.Note that extraction of wide strings in this manner depends on standard C++, in which
wchar_t is a distinct type. Code that must be portable across standard and older C++ com-
pilers must use this_wstring helper type.

C++ Language Mapping Mapping for the Any Type June 1999 1-55

1-56

In this case, the version operator>>= for typeLong must be able to determine
whether theAny truly does contain a value of tyheng and, if so, copy its value into
the reference variable provided by the caller and refRUE If the Any does not
contain a value of typkeong, the value of the caller’s reference variable is not
changed, andperator>>= returnsFALSE

For non-primitive types, such as struct, union, sequence, exception, and Any, extraction
is done by pointer taonst (valuetypes are extracted by pointer to naonst
becausevaluetype operations do not supparonst). For example, consider the
following IDL struct:

// 1DL
struct MyStruct {
long Imem;
short smem;
h
Such a struct could be extracted fromaany as follows:
/I C++
Any a;

/... ais somehow given a value of type MyStruct ...
const MyStruct *struct_ptr;

if (a >>= struct_ptr) {

/I ... use the value ...

}

If the extraction is successful, the caller’s pointer will point to storage managed by the
any, andoperator>>= will return TRUE The caller must not try tdelete or
otherwise release this storage. The caller also should not use the storage after the
contents of theny variable are replaced via assignment, insertion, oraplkace

function, or after theny variable is destroyed. Care must be taken to avoid using
T_var types with these extraction operators, since they will try to assume
responsibility for deleting the storage owned by dhg.

If the extraction is not successful, the value of the caller’s pointer is set equal to the
null pointer, ancoperator>>= returnsFALSE. Note that becausaluetype s may
legally be represented as null pointers, however, a pointEretdracted from any,
whereT is avaluetype , may be null even when extraction is successful ifAhg

holds a nullvaluetype pointer.

Correct extraction of array types relies on #lreay forany types described in
Section 1.14, “Mapping For Array Types,” on page 1-46.

/I IDL
typedef long A[20];
typedef A B[30][40][50];

Il C++
typedef Long A[20];

C++ Language Mapping June 1999

typedef Long A_slice;
class A forany{...};
typedef A B[30][40][50];
typedef A B_slice[40][50];
class B forany {... };

Boolean operator>>=(const Any &, A_forany&);// for type A
Boolean operator>>=(const Any &, B_forany&); /I for
type B

The Array_forany types are always passeddperator>>= by reference.

For strings, wide strings, and arrays, applications are responsible for checking the
TypeCode of theany to be sure that they do not overstep the bounds of the array,
string, or wide string object when using the extracted value.

The operator>>= is also supported on theny var type. Note that due to the
conversion operators that convéry var toconst Any& for parameter passing,
only thoseoperator>>= functions defined as member functionsaofy need to be
explicitly defined forAny_var .

1.16.4 Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring

Since theboolean , octet , char , andwchar OMG IDL types are not required to
map to distinct C++ types, another means of distinguishing them from each other is
necessary so that they can be used with the typeasgfénterface. Similarly, since

both bounded and unbounded strings maghiar* , both bounded and unbounded
wide strings map t&/Char*, and all fixed-point types map to tiéxed class,

another means of distinguishing them must be provided. This is done by introducing
several new helper types nested indhg class interface. For example, this can be
accomplished as shown next.

/I C++
class Any
{
public:
Il special helper types needed for boolean, octet,
char,
/l and bounded string insertion
struct from_boolean {
from_boolean(Boolean b) : val(b) {}
Boolean val;
h
struct from_octet {
from_octet(Octet o) : val(o) {}
Octet val;
h
struct from_char {
from_char(Char c) : val(c) {}

C++ Language Mapping Mapping for the Any Type June 1999 1-57

Char val;
3
struct from_wchar {
from_wchar(WChar wc) : val(wc) {}
WChar val;
3
struct from_string {
from_string(char* s, ULong b,
Boolean n = FALSE) :
val(s), bound(b), nocopy(n) {}
from_string(const char* s, ULong b) :
val (const_cast<char*>(s)), bound(b),
nocopy (0) {}
char *val;
ULong bound;
Boolean nocopy;
%
struct from_wstring {
from_wstring(WChar* s, ULong b,
Boolean n = FALSE) :
val(s), bound(b), nocopy(n) {}
from_wstring(const WChar* s, ULong b) :
val(const_cast<WChar*>(s)), bound(b),
nocopy(0) {}
WChar *val,
ULong bound;
Boolean nocopy;
2
struct from_fixed {
from_fixed(const Fixed& f, UShort d, UShort s)
: val(f), digits(d), scale(s) {}
const Fixed& val;
UShort digits;
UShort scale;

3

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_wchar);
void operator<<=(from_octet);
void operator<<=(from_string);
void operator<<=(from_wstring);
void operator<<=(from_fixed);

1-58 C++ Language Mapping June 1999

/I special helper types needed for boolean, octet,
/I char, and bounded string extraction
struct to_boolean {
to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;
J3
struct to_char {
to_char(Char &c) : ref(c) {}
Char &ref;
h
struct to_wchar {
to_wchar(WChar &wc) : ref(wc) {}
WChar &ref;
3
struct to_octet {
to_octet(Octet &0) : ref(o) {}
Octet &ref;
3
struct to_string {
to_string(const char *&s, ULong b)
. val(s), bound(b) {}
const char *&val;
ULong bound;

/I the following constructor is deprecated

to_string(char *&s, ULong b) : val(s), bound(b) {}

3
struct to_wstring {
to_wstring(const WChar *&s, ULong b)
. val(s), bound(b) {}
const WChar *&val;
ULong bound;

/I the following constructor is deprecated
to_wstring(WChar *&s, ULong b)
:val(s), bound(b) {}
3
struct to_fixed {
to_fixed(Fixed& f, UShort d, UShort s)
: val(f), digits(d), scale(s) {}
Fixed& val;
UShort digits;
UShort scale;

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
Boolean operator>>=(to_wchar) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_string) const;
Boolean operator>>=(to_wstring) const;

C++ Language Mapping Mapping for the Any Type

June 1999 1-59

1-60

Boolean operator>>=(to_fixed) const;
/I other public Any details omitted

private:
/Il these functions are private and not implemented
// hiding these causes compile-time errors for
/[unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char &) const;

k

An ORB implementation provides the overloadg@rator<<= andoperator>>=
functions for these special helper types. These helper types are used as shown next.

/I C++

Boolean b = TRUE;

Any any;

any <<= Any::from_boolean(b);
...

if (any >>= Any::to_boolean(b)) {
/I ...any contained a Boolean...

}

const char* p = "bounded";
any <<= Any::from_string(p, 8);
...
if (any >>= Any::to_string(p, 8)) {
/I ...any contained a string<8>...
}

A bound value of zero passed to the appropriate helper type indicates an unbounded
string or wide string.

For noncopying insertion of a bounded or unbounded string inemanthe nocopy
flag on thefrom_string constructor should be set TlRUE

Il C++

char* p = string_alloc(8);

/I ...initialize string p...

any <<= Any::from_string(p, 8, 1); /[any consumes p

The same rules apply for bounded and unbounded wide strings and the
from_wstring helper type. Note that the non-constant versions ofathstring
andto_wstring constructors will be removed in a future version of the mapping and
should not be used.

Assuming thaboolean , char , andoctet all map the C++ typansigned char

the private and unimplementeperator<<= andoperator>>= functions for
unsigned char will cause a compile-time error if straight insertion or extraction of
any of theboolean , char , oroctet types is attempted.

C++ Language Mapping June 1999

/I C++

Octet oct = 040;

Any any;

any <<= oct; /1 this line will not compile

any <<= Any::from_octet(oct);// but this one will

It is important to note that the previous example is only one possible implementation
for these helpers, not a mandated one. Other compliant implementations are possible,
such as providing them via in-lined stadiny member functions iboolean , char ,
andoctet are in fact mapped to distinct C++ types. All compliant C++ mapping
implementations must provide these helpers, however, for purposes of portability.

In standard C++ environments, the mapping implementation must declare the
constructors of thérom_ andto_ helper classes axplicit . This prevents
undesirable conversions via temporaries.

1.16.5 Widening to Object

Sometimes it is desirable to extract an object reference froAmwras the base
Object type. This can be accomplished using a helper type similar to those required
for extractingBoolean , Char, andOctet :

/I C++
class Any

{
public:

struct to_object {
to_object(Object_out obj) : ref(obj) {}
Object_ptr &ref;

3

Boolean operator>>=(to_object) const;

h

Theto_object helper type is used to extract an object reference froAngras the
baseObject type. If theAny contains a value of an object reference type as indicated
by its TypeCode, the extraction functiooperator>>=(to_object) explicitly
widens its contained object referenceQbject and returns true, otherwise it returns
false. This is the only object reference extraction function that performs widening on
the extracted object reference. Unlike for regular object reference extraction, the
lifetime of an object reference extracted usiogobject is independent of that of

the Any that it is extracted from, and so the responsibility for invokeigase on it
becomes that of the caller.

C++ Language Mapping Mapping for the Any Type June 1999 1-61

1-62

1.16.6 Widening to Abstract Interface

The CORBA::Any::to_abstract_base type allows the contents of #my to be
extracted as aAbstractBase if the entity stored in thé&ny is an object reference
type or avaluetype directly or indirectly derived from thAbstractBase base
class. Thedo_abstract_base type is shown below:

/I C++
class Any {
public:

struct to_abstract_base {
to_abstract_base(AbstractBase_ptr& base)
: ref(base) {}
AbstractBase_ptr& ref;
%

Boolean operator>>=(to_abstract_base val) const;

h
See Section 1.18.1, “Abstract Interface Base,” on page 1-92 for a description of
AbstractBase

1.16.7 Handling Untyped Values

Under some circumstances the type-safe interfagenyois not sufficient. An example

is a situation in which data types are read from a file in binary form and used to create
values of typeAny. For these cases, tlhay class provides a constructor with an

explicit TypeCode and generic pointer:

Il C++
Any(TypeCode_ptr tc, void *value, Boolean release = FALSE);

The constructor is responsible for duplicating the giVgpeCode pseudo object
reference. If theelease parameter iTRUE then theAny object assumes ownership
of the storage pointed to by thralue parameter. A compliant application should
make no assumptions about the continued lifetime ofahe parameter once it has
been handed to alny with release=TRUE , since a compliarAny implementation

is allowed to copy thealue parameter and immediately free the original pointer. If
therelease parameter i$ALSE (the default case), then tiday object assumes the
caller will manage the memory pointed touslue . Thevalue parameter can be a
null pointer.

The Any class also defines three unsafe operations:

/I C++
void replace(
TypeCode_ptr,
void *value,
Boolean release = FALSE

C++ Language Mapping June 1999

);
TypeCode_ptr type() const;
const void *value() const;

Thereplace function is intended to be used with types that cannot be used with the
type-safe insertion interface, and so is similar to the constructor described above. The
existing TypeCode is released and value storage deallocated, if necessary. The
TypeCode function parameter is duplicated. If tredease parameter iIRUE then

the Any object assumes ownership for the storage pointed to byathe parameter.

A compliant application should make no assumptions about the continued lifetime of
thevalue parameter once it has been handed toAtie:replace function with
release=TRUE , since a complianfny implementation is allowed to copy the

value parameter and immediately free the original pointer. Ifriease

parameter i$~ALSE (the default case), then tay object assumes the caller will
manage the memory occupied by the value. Vidlae parameter of theeplace

function can be a null pointer.

For C++ mapping implementations that iSsevironment parameters to pass
exception information, the defauttlease argument can be simulated by providing
two overloadedeplace functions, one that takes a non-defaultel@ase

parameter and one that takesratease parameter. The second function simply
invokes the first with theelease parameter set tBALSE

Note that neither the constructor shown above norgpkace function is type-safe.

In particular, no guarantees are made by the compiler or runtime as to the consistency
between thd'ypeCode and the actual type of theid* argument. The behavior of

an ORB implementation when presented withAzuy that is constructed with a
mismatchedl'ypeCode and value is not defined.

Thetype accessor function returnsTgpeCode_ptr pseudo-object reference to the
TypeCode associated with thAny. Like all object reference return values, the caller
must release the reference when it is no longer needed, or assign it to a
TypeCode_var variable for automatic management.

Thevalue function returns a pointer to the data stored inAhg. If the Any has no
associated value, thalue function returns a null pointer. The type to which the
void* returned by theralue function may be cast depends on the ORB
implementation; therefore, use of thalue function is not portable across ORB
implementations and its usage is deprecated. Portable programs should use the
DynAny interface to access and modify the contents oAy in those cases where
insertion and extraction operators are not sufficient. Note that ORB implementations
are allowed to make stronger guarantees abouwdli® returned from thealue
function, if so desired.

1.16.8 TypeCode Replacement

Because C++typedef s are only aliases and do not define distinct types, inserting a
type with atk_alias TypeCode into anAny while preserving thatypeCode is not
possible. For example:

C++ Language Mapping Mapping for the Any Type June 1999 1-63

/I IDL

typedef long LongType;

/I C++

Any any;

LongType val = 1234;

any <<= val;

TypeCode_var tc = any.type();

assert(tc->kind() == tk_alias); /I assertion failure!
assert(tc->kind() == tk_long); /[assertion OK

In this code, th&ongType is an alias folCORBA::Long . Therefore, when the value
is inserted, standard C++ overloading mechanisms cause the insertion operator for
CORBA::Long to be invoked. In fact, becausengType is an alias for
CORBA:.Long, an overloadedperator<<= for LongType cannot be generated

anyway.

In cases where theypeCode in the Any must be preserved adla alias
TypeCode , the application can use thge modifier function on thény to replace
its TypeCode with an equivalent one. Revising the previous example:

Il C++

Any any;

LongType val = 1234;

any <<= val;

any.type(_tc_LongType); Il replace TypeCode
TypeCode_var tc = any.type();

assert(tc->kind() == tk_alias); /I assertion OK

Thetype modifier function invokes th@ypeCode::equivalent operation on the
TypeCode in the targetAny, passing th&ypeCode it received as an argument. If
TypeCode::equivalent returns true, thgype modifier function replaces the original
TypeCode in the Any with its argumenfiypeCode . If the twoTypeCode s are not
equivalent, theype modifier function raises thBAD_TYPECODE exception.

1.16.9 Any Constructors, Destructor, Assignment Operator

The default constructor creates Any with a TypeCode of typetk null , and no

value. The copy constructor callgluplicate on theTypeCode_ptr of its Any
parameter and deep-copies the parameter’s value. The assignment operator releases it
own TypeCode_ptr and deallocates storage for the current value if necessary, then
duplicates th&'ypeCode_ptr of its Any parameter and deep-copies the parameter’s
value. The destructor calislease on theTypeCode_ptr and deallocates storage

for the value, if necessary.

ORB implementations concerned with single-process interoperability with the C
mapping may overloadperator new() andoperator delete() for Anys so

that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementation or
not, compliant programs usew to dynamically allocate anys awdelete to free

them.

1-64 C++ Language Mapping June 1999

1.16.10 The Any Class

The full definition of theAny class can be found in “The Any Class” on page 1-65.

1.16.11 The Any_var Class

SinceAnys are returned via pointer ast and return parameters (see Table 1-3 on
page 1-104), there exists &my var class similar to th& var classes for object
referencesAny var obeys the rules fof_var classes described in Section 1.9,
“Mapping for Structured Types,” on page 1-21, callogjete on itsAny* when it
goes out of scope or is otherwise destroyed. The full interface éfrthevar class is
shown in Section 1.41.6, “Any_var Class,” on page 1-154.

1.17 Mapping for Valuetypes

The IDL valuetype has features that make its C++ mapping unlike that of any other
IDL type. Specifically, from an application perspective all other IDL types comprise
either pure state or pure interface, bwbluetype may include both. Because of this,
the C++ mapping for thealuetype is necessarily more restrictive in terms of
implementation than other parts of the C++ mapping.

An IDL valuetype is mapped to a C++ class with the same name as the IDL
valuetype . This class is an abstract base class (ABC), with pure virtual accessor and
modifier functions corresponding to the state members ofdahetype , and pure

virtual functions corresponding to the operations ofuéleietype .

A C++ class whose name is formed by prepending the string "OBV_" to the fully-
scoped name of thealuetype provides default implementations for the accessors and
modifiers of the ABC base class. The application developer then overrides the pure
virtual functions corresponding t@luetype operations in a concrete class derived
directly or indirectly from théOBV_base class.

Applications are responsible for the creatiornvaluetype instances, and after
creation, they deal with those instances only via C++ pointers. Unlike object
references, which map to C+ptr types that may be implemented either as actual
C++ pointers or as C++ pointer-like objects, "handles" to @altietype instances
are actual C++ pointers. This helps to distinguish them from object references.

Becausevaluetype supports the sharing of instances within other constructed types
(such as graphs), the lifetimes of Cvaluetype instances are managed via reference
counting. Unlike the semantics of object reference counting, where néitpkeate

nor release actually affect the object implementation, reference counting operations
for C++ valuetype instances are directly implemented by those instances. Reference
counting mix-in classes are provided by ORB implementations for uselbgtype
implementors (see Section 1.17.6, “Reference Counting Mix-in Classes,” on

page 1-73).

As for most other types in the C++ mapping, eealuetype also has an associated
C++ _var type that automates its reference counting.

C++ Language Mapping Mapping for Valuetypes June 1999 1-65

All init initializers declared for @aluetype are mapped to pure virtual functions on a
separate abstract C++ factory class. The class is named by appending “_init” to the
name of thevaluetype (e.g., typeA has a factory class namédinit).

1.17.1 Valuetype Data Members

The C++ mapping fovaluetype data members follows the same rules as the C++
mapping for unions, except that the accessors and modifiers are pure virtual. Public
state members are mapped to public pure virtual accessor and modifier functions of the
C++ valuetype base class, and private state members are mapped to protected pure
virtual accessor and modifier functions (so that derived concrete classes may access
them). Portable applications that UGBV _classes, including derived value type

classes, shall not access the actual data memb&BWf classes, and ORB
implementations are free to make such members private. The only requirement on the
actual data members in a concrete or partially-concrete class suclO&¥/anlass is

that they be self-managing so that derived classes can correctly implement copying
without needing direct access to them.

Like C++ unions, the accessor and modifier functionsétuetype state members do

not follow the regular C++ parameter passing rules. This is because they allow local
program access to the state stored insideséheetype instance. Modifier functions
perform the equivalent of a deep-copy of their parameters, and accessors that return a
reference or pointer to a state member can be used for read-write access. For example

/I IDL
typedef octet Bytes[64];
struct S{ ... };

interface A{... };

valuetype Val {
public Val t;
private long v;
public Bytes w;
public string Xx;
private S y;
private A z;

h

Il C++

typedef Octet Bytes[64];
typedef Octet Bytes_slice;
struct S{... };

typedef ... A_ptr;

class Val : public virtual ValueBase {
public:

virtual Val* t() const = 0;

1-66 C++ Language Mapping June 1999

virtual void t(Val*) = 0;

virtual const Bytes_slice* w() const = 0O;
virtual Bytes_slice* w() = 0;
virtual void w(const Bytes) = 0;

virtual const char* x() const = 0;
virtual void x(char*) = 0;

virtual void x(const char*) = 0;
virtual void x(const String_var&) = 0;

protected:
virtual Long v() const = 0;
virtual void v(Long) = 0;

virtual const S& y() const = 0;
virtual S& y() = 0;
virtual void y(const S&) = 0;

virtual A_ptr z() const = 0;
virtual void z(A_ptr) = 0;
h

The following rules apply to the accessor and modifier functions shown in the above
example:

® Thet accessor function does not increment the reference count of the returned
valuetype . This implies that the caller ¢f does not adopt the return value.

®* Thet modifier function increments the reference count of its argument, then
decrements the reference count of threember it is replacing before returning.

®* Thex(char*) modifier function frees the old string member and adopts its
argument.

® Thex(const char*) modifier function frees the old string member and copies
its argument.

® Thex(const String_var&) modifier function frees the old string member and
copies its argument.

® By returning a reference to a coiStthe firsty accessor function provides read-
only access to thg member.

® By returning a reference to &) the secong accessor function provides read-write
access to thg member.

®* They modifier function deep-copies i argument.

® Thez accessor function does not invokeéuplicate on the object reference it
returns. This implies that the caller ofis not responsible for invokinglease
on the return value.

C++ Language Mapping Mapping for Valuetypes June 1999 1-67

1-68

®* Thez modifier function releases its old object reference corresponding o the
member, then duplicates its argument before returning.

These rules correspond directly to the parameter passing rules for union accessors anc
modifiers as explained in Section 1.12, “Mapping for Union Types,” on page 1-33.

State members of anonymous array and sequence types require the same supporting
C++ typedefs as required for union members of anonymous array and sequence types;
see Section 1.12, “Mapping for Union Types,” on page 1-33 for more details.

1.17.2 Constructors, Assignment Operators, and Destructors

A C++valuetype class defines a protected default constructor and a protected
virtual destructor. The default constructor is protected to allow only derived class
instances to invoke it, while the destructor is protected to prevent applications from
invoking delete on pointers to value instances instead of using reference counting
operations. The destructor is virtual to provide for proper destruction of derived value
class instances when their reference counts drop to zero.

For the same reasons, a C®BV__class defines a protected default constructor, a
protected constructor that takes an initializer for eadhetype data member, and a
protected default constructor. The parameters of the constructor that takes an initializer
for each member appear in the same order as the data members appear, top to bottorr
in the IDL valuetype definition, regardless of whether they are public or private. All
parameters for the member initializer constructor follow the C++ mapping parameter
passing rules foin arguments of their respective types.

Portable applications shall not invoke a valuetype class copy constructor or default
assignment operator. Due to the required value reference counting, the default
assignment operator for a value class shall be private and preferably unimplemented to
completely disallow assignment of value instances.

1.17.3 Valuetype Operations

Operations declared on a valuetype are mapped to public pure virtual member
functions in the correspondingluetype C++ class. (Note that state member

accessor and modifier functions avet considered to be operations—they have

different parameter passing rules than operations and so they are always referred to as
accessor and modifier functions.) None of the pure virtual member functions
corresponding to operations shall be declareust because unlike C++, IDL

provides no way to distinguish between operations that change the state of an object
and those that merely access that state. This choice, similar to the choice made for the
C++ mapping for operations declared in IDiterface types, has an impact on

parameter passing rules, as described in Section 1.22, “Argument Passing
Considerations,” on page 1-100. The alternative, declaring all pure virtual member
functions aconst , is less desirable because it would not allow member functions
inherited frominterface classes to be invoked @onst value instances, since all

such member functions are already mapped ascoost .

C++ Language Mapping June 1999

1

The C++ sighatures and memory management rulegaloetype operations (but

not state member accessor and modifier functions) are identical to those described in
Section 1.22, “Argument Passing Considerations,” on page 1-100 for client-side
interface operations.

A static_downcast function is provided by each valuetype class to provide a portable
way for applications to cast down the C++ inheritance hierarchy. This is especially
required after an invocation of theopy value function (see Section 1.17.5,
“ValueBase and Reference Counting,” on page 1-70). If a null pointer is passed to
_downcast , it returns a null pointer. Otherwise, if the valuetype instance pointed to

by the argument is an instance of the valuetype class being downcast to, a pointer to the
downcast-to class type is returned. If the valuetype instance pointed to by the argument
is not an instance of the valuetype class being downcast to, a null pointer is returned.

1.17.4 Valuetype Example

For example, consider the following IDL valuetype:

// IDL

valuetype Example {
short op1();
long op2(in Example x);
private short vall;
public long val2;

private string val3;
private float val4;
private Example val5;

k

The C++ mapping for this valuetype is:

/I C++
class Example : public virtual ValueBase {
public:
virtual Short op1() = 0;
virtual Long op2(Example*) = 0;

virtual Long val2() const = 0;
virtual void val2(Long) = 0;

static Example* _downcast(ValueBase?*);
protected:
Example();

virtual ~Example();

virtual Short vall() const = 0;
virtual void vall(Short) = 0;

C++ Language Mapping Mapping for Valuetypes June 1999 1-69

1-70

virtual const char* val3() const = 0;
virtual void val3(char*) = 0;

virtual void val3(const char*) = 0;
virtual void val3(const String_var&) = 0;

virtual Float val4() const = 0O;
virtual void val4(Float) = 0O;

virtual Example* val5() const = 0;
virtual void val5(Example*) = 0;

private:
/I private and unimplemented
void operator=(const Example&);

b

class OBV_Example : public virtual Example {
public:
virtual Long val2() const;
virtual void val2(Long);

protected:
OBV_Example();
OBV_Example(Short init_vall, Long init_val2,
const char* init_val3, Float init_val4,
Example* init_val5);
virtual ~OBV_Example();

virtual Short vall() const;
virtual void val1l(Short);

virtual const char* val3() const;
virtual void val3(char*);

virtual void val3(const char*);
virtual void val3(const String_var&);

virtual Float val4() const;
virtual void val4(Float);

virtual Example* val5() const;
virtual void val5(Example*);

...

1.17.5 ValueBase and Reference Counting

The C++ mapping for th¥alueBase IDL type serves as an abstract base class for all
C++valuetype classesValueBase provides several pure virtual reference
counting functions inherited by all valuetype classes:

C++ Language Mapping June 1999

/I C++
namespace CORBA {
class ValueBase {
public:

virtual ValueBase* _add_ref() = O;
virtual void _remove_ref() = O;

virtual ValueBase* _copy_value() = 0;
virtual ULong _refcount_value() = 0;

static ValueBase* _downcast(ValueBase*);

protected:
ValueBase();

ValueBase(const ValueBaseg&);

virtual ~ValueBaseg();

private:
void operator=(const ValueBaseg&);
3
}
Table 1-2 Operation Descriptions

Operation Description

_add_ref Used to increment the reference count of a
valuetype instance.

_remove_ref Used to decrement the reference count of a
valuetype instance and delete the instance when
the reference count drops to zero. Note that the
use ofdelete to destroy instances requires that
all valuetype instances be allocated usingw.

_copy_value Used to make a deep copy of teduetype

instance. The copy has no connections with the
original instance and has a lifetime independent
of that of the original. Since C++ supports
covariant return types, derived classes can
override the_copy_value function to return a
pointer to the derived class rather than
ValueBase* , but since covariant return types
are still not commonly supported by commercial
C++ compilers, the return value of
_copy_value can also b&alueBase* , even
for derived classes.

C++ Language Mapping Mapping for Valuetypes June 1999 1-71

1-72

Operation Description

_copy_value (continued)

A compliant ORB implementation may use either
approach. For now, portable applications will not re
on covariant return types and will instead use
downcasting to regain the most derived type of a
copiedvaluetype.

y

_refcount_value Returns the value of the reference count for the
valuetype instance on which it is invoked.

1. The C++ dynamic_cast<> operator may also be used to cast down the value hierarchy, but it
too is still not available in all C++ compilers and thus its use is still not portable at this time.

The names of these operations begin with underscore to keep them from clashing with
user-defined operations in derivedluetype classes.

ValueBase also provides a protected default constructor, a protected copy constructor,
and a protected virtual destructor. The copy constructor is protected to disallow copy
construction of derivedaluetype instances except from within derived class

functions, and the destructor is protected to prevent direct deletion of instances of
classes derived frondalueBase .

With respect to reference countindglueBase is intended to introduce only the
reference counting interface. Depending upon the inheritance hierarchy of a
valuetype class, its instances may require different reference counting mechanisms.
For example, the reference counting mechanisms neededvéduetype class that
supports annterface are likely to be different from those needed for a regular
concretevaluetype class, since the former has object adapter issues to consider.
Therefore ValueBase normally serves as a virtual base class multiply inherited into a
valuetype class. One inheritance path is through the IDL inheritance hierarchy for the
valuetype , since allvaluetype s inherit fromValueBase , which provides the

reference counting interface. The other inheritance path is through the reference
counting implementation mix-in base class (see Section 1.17.6, “Reference Counting
Mix-in Classes,” on page 1-73), which itself also inherits fidgatueBase .

1.17.5.1 CORBA Module Additions

The C++ mapping also adds two additional reference counting functions GORBA
namespace, as shown below:

/I C++
namespace CORBA {
void add_ref(ValueBase* vb)

{
}

if (vb '=0) vb->_add_ref();

C++ Language Mapping June 1999

}

void remove_ref(ValueBase* vb)

if (vb !=0) vb->_remove_ref();

...

These functions are provided for consistency with object reference reference counting
functions. They are similar in that unlike thadd _ref and_remove _ref member
functions, they can be called with nvllluetype pointers. TheCORBA::add_ref

function increments the reference count of ¥hkietype instance pointed to by the
function argument if non-null, or does nothing if the argument is a null pointer. The
CORBA::remove_ref function behaves the same except it decrements the reference
count. (The implementations shown above are intended to specify the required
semantics of the functions, not to imply that conforming implementations must inline
the functions.)

1.17.6 Reference Counting Mix-in Classes

The C++ mapping provides two standard reference counting implementation mix-in
base classes:

CORBA::DefaultValueRefCountBase , Which can serve as a base class for
any application-provided concretaluetype class whose corresponding IDL value
type does notderive from any IDLinterface s. For these types ofluetype

classes, applications are also free to use their own reference-counting
implementation mix-ins as long as they fulfill tilalueBase reference counting
interface.

PortableServer::ValueRefCountBase , Whichmustserve as a base class

for any application-provided concretaluetype class whose corresponding IDL
valuetype doesderive from one or more IDInterface s, and whose instances will

be registered with the POA as servants. If IDL interface inheritance is present, but
instances of the application-provided concnatkietype class will not be

registered with the POA, tHeORBA::DefaultValueRefCountBase or an
application-specific reference counting implementation mix-in may be used as a
base class instead.

Each of these classes shall be fully concrete and shall completely fulfill the

ValueBase reference counting interface, except that since they provide
implementation, not interface, they shall not provide support for downcasting. In
addition, each of these classes shall provide a protected default constructor that sets the
reference count of the instance to one, a protected virtual destructor, and a protected
copy constructor that sets the reference count of the newly-constructed instance to one.
Just as with th&alueBase base class, the default assignment operator should be
private and preferably unimplemented to completely disallow assignment.

C++ Language Mapping Mapping for Valuetypes June 1999 1-73

1-74

Note that it is the application-supplied concresduetype classes that must derive

from these mix-in classes, not thaluetype classes generated by the IDL compiler.
This is to avoid the need to inherit these mix-ins as virtual bases, or to avoid inheriting
multiple copies of the mix-ins (and thus multiple reference counts) if virtual bases are
not employed. Also, only the final implementor ofauetype knows whether it will

ever be used as a POA servant or not, and thus the implementor must specify the
desired reference counting mix-in.

1.17.7 Value Boxes

A value box class essentially provides a reference-counted version of its underlying
type. Unlike normalaluetype classes, C++ classes for value boxes can be concrete
since value boxes do not support methods, inheritance, or interfaces. Value box classes
differ depending upon their underlying types.

To fulfill the ValueBase interface, all value box classes are derived from
CORBA::DefaultValueRefCountBase

1.17.7.1 Parameter Passing for Underlying Boxed Type

All value box classes provideboxed_in , boxed_inout , and_boxed_out

member functions that allow the underlying boxed value to be passed to functions
taking parameters of the underlying boxed type. The signatures of these functions
depend on the parameter passing modes of the underlying boxed type. The return
values of the boxed_inout and_boxed_out functions shall be such that the

boxed value is referenced directly, allowing it to be replaced or set to a new value. For
example, invoking boxed_out on a boxed string allows the actual string owned by
the value box to be replaced:

// IDL
valuetype StringValue string;
interface X {

void op(out string s);

h

/I C++

StringValue* sval = new StringValue("string val");

X_varx =...

x->op(sval->_boxed_out()); // boxed string is replaced

/I by op() invocation

Assume the implementation op is as follows:

/I C++
void MyXImpl::op(String_out s)
{
s = string_dup("new string val");
}

C++ Language Mapping June 1999

1

The return value of theboxed_out function shall be such that the string value
boxed in the instance pointed to &yal is set to'new string val" afterop
returns, with the instance pointed todwal maintaining ownership of the string.

1.17.7.2 Basic Types, Enums, and Object References

For all the signed and unsigned integer types except fdixéed type, and for
boolean , octet, char, wchar, float, double , long double , and enumerated types,
and for typedefs of all of these, value box classes provide:

A public default constructor. Note that except for the object reference case, the
value of the underlying boxed value will be indeterminate after this constructor runs
(i.e., the default constructor doast initialize the boxed value to a given value).

This is because the built-in constructors for each of the basic types and
enumerations do not initialize instances of their types to particular values, either.
For boxed object references, this constructor sets the underlying boxed object
reference to nil.

A public constructor that takes one argument of the underlying type. This argument
is used to initialize the value of the underlying boxed type.

A public assignment operator that takes one argument of the underlying type. This
argument is used to replace the value of the underlying boxed type.

Public accessor and modifier functions for the boxed value. The accessor and
modifier functions are always namesalue . For boxed object references, the
return value of the accessor is not a duplicate.

Explicit conversion functions that allow the boxed value to be passed where its
underlying type is called for. These functions are nantsaked_in ,

_boxed_inout , and_boxed_out , and their return types match timg inout ,
andout parameter passing modes, respectively, of the underlying boxed type.
Implicit conversions to the underlying type are not provided because values are
normally handled by pointer.

A public copy constructor.
A public static_downcast function.
A protected destructor.

A private and preferably unimplemented default assignment operator.

An example value box class for an enumerated type is shown below:

/I IDL
enum Color { red, green, blue }
valuetype ColorValue Color;

Il C++
class ColorValue : public DefaultValueRefCountBase {

public:
ColorValue();
ColorValue(Color val);

C++ Language Mapping Mapping for Valuetypes June 1999 1-75

1-76

ColorValue(const ColorValue& val);
ColorValue& operator=(Color val);

Color _value() const;// accessor
void _value(Color val);// modifier

/I explicit conversion functions for
/I underlying boxed type

1

Color _boxed_in() const;

Color& _boxed_inout();

Color& _boxed_out();

static ColorValue* _downcast(ValueBase* base);

protected:
~ColorValue();

private:
void operator=(const ColorValue& val);

1.17.7.3 Struct Types

Value box classes for struct types map to classes that provide accessor and modifier
functions for each struct member. Specifically, the classes provide:

* A public default constructor. The underlying boxed struct type is initialized as it
would be by its own default constructor.

® A public constructor that takes a single argument of tgrest T&, whereT is the
underlying boxed struct type.

® A public assignment operator that takes a single argument oty T&,
whereT is the underlying boxed struct type.

® Public accessor and modifier functions, all namedlue , for the underlying
boxed struct type. Two accessors are provided: one a const member function
returningconst T&, and the other a non-const member function returning.a
The modifier function takes a single argument of tgpast T&.

® The _boxed in , boxed inout ,and boxed out functions that allow access
to the boxed value to pass it in signatures expecting the underlying boxed struct
type. The return values of these functions correspond tmtheout , andout
parameter passing modes for the underlying boxed struct type, respectively.

®* For each struct member, a set of accessor and modifier functions. These functions
have the same signatures as accessor and modifier functions for union members.

® A public copy constructor.

® A public static_downcast function.

C++ Language Mapping June 1999

® A protected destructor.

* A private and preferably unimplemented default assignment operator.

As with other value box classes, no implicit conversions to the underlying boxed type

are provided since values are normally handled by pointer.

For example:

/I IDL
struct S {
string str;
long len;
h

valuetype BoxedS S;

/I C++

class BoxedsS : public DefaultValueRefCountBase {

public:

BoxedS();
BoxedS(const S& val);
BoxedS(const BoxedS& val);

BoxedS& operator=(const S& val);

const S& _value() const;
S& value();
void _value(const S& val);

const S& _boxed_in() const;
S& hoxed_inout();
S*& boxed_out();

static BoxedS* _downcast(ValueBase* base);

const char* str() const;

void str(char* val);

void str(const char* val);

void str(const String_var& val);

Long len() const;
void len(Long val);

protected:

~BoxedS();

private:

void operator=(const BoxedS& val);

C++ Language Mapping Mapping for Valuetypes June 1999

1-77

1-78

1.17.7.4 String and WString Types

In order to allow boxed strings to be treated as normal strings where appropriate, value
box classes for strings provide largely the same interface &trihg_var class.
The only differences from the interface of thging var class are:

® The value box class interface does not providertheinout , out , and_retn
functions thatString_var provides. Rather, the value box class provides
replacements for these functions calldsbxed_in , boxed_inout , and
_boxed_out . They have mostly the same semantics and signatures as their
String_var counterparts, but their names have been changed to make it clear that
they provide access to the underlying string, not to the value box itself.

® There are no overloaded operators for implicit conversion to the underlying string
type because values are normally handled by pointer.

In addition to most of th&tring_var interface, value box classes for strings
provide:

® Public accessor and modifier functions for the boxed string value. These functions
are all namedvalue . The single accessor function takes no arguments and returns
aconst char* . There are three modifier functions, each taking a single
argument. One takeschar* argument which is adopted by the value box class,
one takes &onst char* argument which is copied, and one takepast
String_var& from which the underlying string value is copied.

® A public default constructor that initializes the underlying string to an empty string.

® Three public constructors that take string arguments. One taktem?a argument
which is adopted, one takesanst char* which is copied, and one takes a
const String_var& from which the underlying string value is copied. If the
String_var holds no string, the boxed string value is initialized to the empty
string.

® Three public assignment operators: one that takes a parameter ohaype which
is adopted, one that takes a parameter of typst char* which is copied, and
one that takes a parameter of tyqmast String_var& from which the
underlying string value is copied. Each returns a reference to the object being
assigned to. If th&tring_var holds no string, the boxed string value is set equal
to the empty string.

® A public copy constructor.
® A public static_downcast function.
® A protected destructor.

® A private and preferably unimplemented default assignment operator.

An example of a value box class for a string is shown below:

/I IDL
valuetype StringValue string;

C++ Language Mapping June 1999

/I C++
class StringValue : public DefaultValueRefCountBase {
public:
/I constructors
I
StringValue();
StringValue(const StringValue& val);
StringValue(char* str);
StringValue(const char* str);
StringValue(const String_var& var);

/[assignment operators

I

StringValue& operator=(char* str);
StringValue& operator=(const char* str);
StringValue& operator=(const String_var& var);

/I accessor
1
const char* _value() const;

/I modifiers

1

void _value(char* str);

void _value(const char* str);

void _value(const String_var& var);

/I explicit argument passing conversions for
/I the underlying string

1

const char* _boxed_in() const;

char*& _boxed_inout();

char*& _boxed_out();

/I ...other String_var functions such as overloaded
/I subscript operators, etc....

static StringValue* _downcast(ValueBase* base);

protected:
~StringValue();

private:
void operator=(const StringValue& val);

k

Note that even though value box classes for strings provide overloaded subscript
operators, the fact that values are normally handled by pointer means that they must be
dereferenced before the subscript operators can be used.

C++ Language Mapping Mapping for Valuetypes June 1999 1-79

1.17.7.5 Union, Sequence, Fixed, and Any Types

Value boxes for these types map to classes that have exactly the same public interface:
as the underlying boxed types, except that each has:

® |n addition to the constructors provided by the class for the underlying boxed type,
a public constructor that takes a single argument of¢gpst T& , whereT is the
underlying boxed type.

®* An assignment operator that takes a single argument ofctypst T& , whereT
is the underlying boxed type.

® Accessor and modifier functions for the underlying boxed value. All such functions
are named value . There are two accessor functions, one a const member function
returning aconst T& , and the other a non-const member function returiiifag
The modifier function takes a single argument of tgpast T&

®* The_boxed in , boxed inout ,and _boxed out functions that allow access
to the boxed value to pass it in signatures expecting the underlying boxed value
type. The return values of these functions correspond tmtheout , andout
parameter passing modes for the underlying boxed type, respectively.

® A protected destructor.

® A private and preferably unimplemented default assignment operator.

As with other value box classes, no implicit conversions to the underlying boxed type
are provided since values are normally handled by pointer.

Note that the value box class for sequence types provides overloaded subscript
operators gperator[]) just as a sequence class does. However, since values are
normally handled by pointer, the value instance must be dereferenced before the
overloaded subscript operator can be applied to it.

Value box instances for theny type can be passed to the overloaded operators for
insertion and extraction by invoking the appropriate explicit conversion function:

/I C++

AnyValueBox* val = ...

val->_boxed_inout() <<= something;

if (val->_boxed_in() >>= something_else) ...

Below is an example value box along with its corresponding C++ class:

/I IDL
typedef sequence<long> LongSeq;
valuetype LongSeqValue LongSeq;

/I C++
class LongSeqValue : public DefaultValueRefCountBase {
public:
LongSeqValue();
LongSeqValue(ULong max);
LongSeqValue(ULong max,

1-80 C++ Language Mapping June 1999

ULong length,

Long* buf,

Boolean release = 0);
LongSeqValue(const LongSeqgé& init);
LongSeqValue(const LongSeqValue& val);

LongSeqValue& operator=(const LongSeqé& val);

const LongSeq& _value() const;
LongSeq& _value();
void _value(const LongSeq&);

const LongSeq& _boxed_in() const;
LongSeq& boxed_inout();
LongSeq*& _boxed_out();

static LongSeqValue* _downcast(ValueBase*);

ULong maximum() const;
ULong length() const;
void length(ULong len);

Long& operator[J(ULong index);
Long operator[](ULong index) const;

protected:
~LongSeqValue();

private:
void operator=(const LongSeqValue&);

k

1.17.7.6 Array Types

In order to allow boxed arrays to be treated as normal arrays where appropriate, value
box classes for arrays provide largely the same interface as the corresponding array
_var class. The only differences from the interface of thar class are:

®* The value box class interface does not providertheinout , out , and_retn
functions that var provides. Rather, the value box class provides replacements for
these functions calledboxed_in , boxed_inout , and_boxed_out . They
have mostly the same semantics and signatures as Waeircounterparts, but their
names have been changed to make it clear that they provide access to the underlying
array, not to the value box itself.

® There are no overloaded operators for implicit conversion to the underlying array
type because values are normally handled by pointer.

In addition to most of thevar interface, value box classes for arrays provide:

C++ Language Mapping Mapping for Valuetypes June 1999 1-81

® Public accessor and modifier functions for the boxed array value. These functions
are named value . The single accessor function takes no arguments and returns a
pointer to array slice. The modifier function takes a single argument of type const
array.

® A public default constructor.

® A public constructor that takes a const array argument.

* A public assignment operator that takes a const array argument.
® A public copy constructor.

® A public static_downcast function.

® A protected destructor.

® A private and preferably unimplemented default assignment operator.

An example of a value box class for an array is shown below:

/I IDL
typedef long LongArray[3][4];
valuetype ArrayValue LongArray;

/I C++

typedef Long LongArray[3][4];

typedef Long LongArray_slice[4];

class ArrayValue : public DefaultValueRefCountBase {

public:

ArrayValue();
ArrayValue(const ArrayValue& val);
ArrayValue(const LongArray val);

ArrayValue& operator=(const LongArray val);

const LongArray_slice* _value() const;
LongArray_slice* _value();

void _value(const LongArray val);

/I explicit argument passing conversions for
/l the underlying array

1

const LongArray_slice* _boxed_in() const;
LongArray_slice* _boxed_inout();
LongArray_slice* _boxed_out();

/I ...overloaded subscript operators...

static ArrayValue* _downcast(ValueBase* base);

protected:
~ArrayValue();

1-82 C++ Language Mapping June 1999

private:
void operator=(const ArrayValue& val);

h

Note that even though value box classes for arrays provide overloaded subscript
operators, the fact that values are normally handled by pointer means that they must be
dereferenced before the subscript operators can be used.

1.17.8 Abstract Valuetypes

Abstract IDL valuetype s follow the same C++ mapping rules as concrete IDL
valuetype s, except that because they have no data members, the IDL compiler does
not generat®©BV _classes for them.

1.17.9 Valuetype Inheritance

For an IDLvaluetype derived from othewaluetype s or that supportsiterface
types, several C++ inheritance scenarios are possible:

® Concrete value base classa® inherited as public virtual bases to allow for “ladder
style” implementation inheritance.

® Abstract value base classage inherited as public virtual base classes, since they
may be multiply inherited in IDL.

* Interface classesupported by the IDlaluetype are not inherited. Instead, the
operations on the interface (and base interfaces, if any) are mapped to pure virtual
functions in the generated C++ base value class. In addition to this abstract base
value class and th@BV_class, the IDL compiler generates a POA skeleton for this
value type; the name of this skeleton is formed by prepending the string "POA " to
the fully-scoped name of thaluetype . The base value class and the POA
skeleton of the interface type are public virtual base classes of this skeleton.

The reason thahterface classes are not inherited is thvatuetype instances, ike

POA servants, are themselvast object references. Providing this inheritance would
allow for error-prone code that implicitly widened pointers/éduetype instances to
C++ object references for the supported interfaces, but without first obtaining valid
object references for thosaluetype instances from the POA. When such an
application attempted to use an invalid object reference obtained in this manner, it
would encounter errors that could be difficult to track back to the implicit widening of
the pointer tovaluetype to object reference. The C++ language provides no hooks
into the implicit pointer-to-class widening mechanism by which an application might
guard against this type of error.

Avoiding the derivation ofialuetype classes froninterface classes also separates

the lifetimes ofvaluetype instances from the lifetimes of object reference instances. It
would be surprising to an application if a valid object reference that had not yet been
released unexpectedly became invalid because another part of the program had
decremented thealuetype part of the object reference instance to zero. This scenario
could be solved by the provision of an appropriate reference counting mix-in class.

C++ Language Mapping Mapping for Valuetypes June 1999 1-83

1-84

However, given that such an approach breaks local/remote transparency by having
object reference release operations affect the servant, and given the associated
problems described in the preceding paragraphs, denalugtype classes from
interface classes is best avoided.

An example of the mapping forvaluetype that supports amterface is shown
below.

/I IDL
interface A {
void op();

k

valuetype B supports A {
public short data;

3
/I C++
class B : public virtual ValueBase {
public:
virtual void op() throw(SystemException) = 0O;
virtual Short data() const = 0;
virtual void data(Short) = 0;
...
3
class POA_B : public virtual POA_A, public virtual B {
public:
virtual void op() throw(SystemException) = 0;
...
3

Note thatvaluetype operations inherited frorimterface s always include exception
specifications, just as skeleton classes do. See Section 1.37, “Implementing
Operations,” on page 1-142 for more details.

1.17.10 Valuetype Factories

Because concretealuetype classes are provided by the application developer, the
creation of values is problematic under certain circumstances. These circumstances
include:

®* Unmarshaling The ORB cannot know priori about all potential concrete value
classes supplied by the application, and so the ORB unmarshaling mechanisms do
not possess the capability to directly create instances of those classes.

® Component LibrariesPortions of an application, such as parts of a framework, may
be limited to only manipulatingaluetype instances while leaving creation of
those instances to other parts of the application.

C++ Language Mapping June 1999

1.17.10.1 ValueFactoryBase Class

Just as they provide concrete Cvaluetype classes, applications must also provide
factories for those concrete classes. The base of all value factory classes is the C++
CORBA::ValueFactoryBase class:

/I C++
namespace CORBA {
class ValueFactoryBase;
typedef ValueFactoryBase* ValueFactory;

class ValueFactoryBase

{
public:

virtual ~ValueFactoryBase();

virtual void _add_ref();

virtual void _remove_ref();

static ValueFactory _downcast(ValueFactory vf);
protected:

ValueFactoryBase();
private:

virtual ValueBase* create_for_unmarshal() = 0;
I3
...

}

The C++ mapping for the IDCORBA::ValueFactory native type is a pointer to a
ValueFactoryBase class, as shown above. Applications derive concrete factory
classes fromValueFactoryBase , and register instances of those factory classes
with the ORB via théORB::register_value_factory function. If a factory is
registered for a given value type and no previous factory was registered for that type,
theregister_value_factory function returns a null pointer.

When unmarshaling value instances, the ORB needs to be able to call up to the
application to ask it to create those instances. Value instances are normally created via
their type-specific value factories (see Section 1.17.10, “Valuetype Factories,” on

page 1-84) so as to preserve any invariants they might have for their state. However,
creation for unmarshaling is different because the ORB has no knowledge of
application-specific factories, and in fact in most cases may not even have the
necessary arguments to provide to the type-specific factories.

To allow the ORB to create value instances required during unmarshaling, the
ValueFactoryBase class provides thereate for_unmarshal pure virtual
function. The function is private so that only the ORB, through implementation-
specific means (e.gvja a friend class), can invoke it. Applications are not expected to
invoke thecreate for_unmarshal function. Derived classes shall override the
create_for_unmarshal function and shall implement it such that it creates a new

C++ Language Mapping Mapping for Valuetypes June 1999 1-85

1-86

value instance and returns a pointer to it. The caller assumes ownership of the returned
instance and shall ensure thaémove_ref is eventually invoked on it. Since the
create_for_unmarshal function returns a pointer dalueBase , the caller may

use the downcasting functions supplied by value types to downcast the pointer back to
a pointer to a derived value type.

Once the ORB has created a value instance viardae for_unmarshal

function, it can use the value data member modifier functions to set the state of the
new value instance from the unmarshaled data. How the ORB accesses the protected
value data member modifiers of the value is implementation-specific and does not
affect application portability.

The ValueFactoryBase uses reference counting to prevent itself from being
destroyed while still in use by the applicationVAlueFactoryBase initially has a
reference count of one. Invokingdd_ref on aValueFactoryBase increases its
reference count by one. Invokingemove ref on aValueFactoryBase

decrements its reference count by one, and if the resulting reference count equals zero,
_remove_ref invokesdelete on itsthis pointer in order to destroy the factory.

For ORBs that operate in multi-threaded environments, the implementations of
ValueFactoryBase::_add_ref andValueFactoryBase::_remove_ref

are thread-safe.

When avaluetype factory is registered with the ORB, the ORB invokesid_ref

once on the factory before returning froegister_value factory . When the ORB

is done using that factory, the reference count is decremented once. This can occur in
any of the following circumstances:

* |f the factory is explicitly unregistered vimregister_value_factory the ORB
invokes_remove_ref once on the factory.

® |f the factory is implicitly unregistered due @RB::shutdown , the ORB is
responsible for invokingremove_ref once on each registered factory.

® |f the factory is replaced with a new invocationrefjister_value_factory , the
previously registered factory is returned to the caller who assumes ownership of one
reference to that factory. When the caller is done with the factory, it invokes
_remove_ref once on that factory.

The caller oflookup_value_factory assumes ownership of one reference to the
factory. When the caller is done with the factory, it invokemmove_ref once on
that factory.

The _downcast function on the factory allows the return type of the
ORB::lookup_value_factory function to be downcast to a pointer to a type-
specific factory (see Section 1.17.10, “Valuetype Factories,” on page 1-84). It is
important to note that the return value of the factatgwncast doesnot become the
memory management responsibility of the caller, and theimove_ref is not called
on it.

C++ Language Mapping June 1999

1.17.10.2 ValueFactoryBase_var Class

For the convenience of automatically managiatuetype factory reference counts,

the CORBAnamespace provides tMalueFactoryBase_var class. This class
behaves similarly to thBortableServer::ServantBase_var class for servant
memory management (see Section 1.36.3, “ServantBase_var Class,” on page 1-131).

Il C++
namespace CORBA
{

class ValueFactoryBase_var

{

public:
ValueFactoryBase var() :_ptr(0) {}
ValueFactoryBase var(ValueFactoryBase* p)

: _ptr(p) {}

ValueFactoryBase_var(const ValueFactoryBase_var& b)
. _ptr(b._ptr)

if (_ptr !=0) _ptr->_add_ref();
}

~ValueFactoryBase_var()

{
if (_ptr !=0) _ptr->_remove_ref();

ValueFactoryBase var&
operator=(ValueFactoryBase* p)
{

if (_ptr !=0) _ptr->_remove_ref();
_ptr=p;

return *this;
}

ValueFactoryBase var&
operator=(const ValueFactoryBaseBase_var& b)

{
if (_ptr !=b._ptr) {
if (_ptr '=0) _ptr->_remove_ref();
if (_ptr =b._ptr) I=0)
_ptr->_add_ref();
}
return *this;
}

ValueFactoryBase* operator->() const {return _ptr;}
ValueFactoryBase* in() const { return _ptr; }
ValueFactoryBase*& inout() { return _ptr; }
ValueFactoryBase*& out()

{
if (_ptr '=0) _ptr->_remove_ref();
_ptr=0;
return _ptr;

}

C++ Language Mapping Mapping for Valuetypes June 1999 1-87

ValueFactoryBase* _retn()

{ ValueFactoryBase* retval = _ptr;
_ptr=0;
return retval;
}
private:
ValueFactoryBase* _ptr;
b
...
}
The implementation shown above for MalueFactoryBase_var is intended only

as an example that conveys required semantics. Variations of this implementation are
conforming as long as they provide the same semantics as the implementation shown
here.

1.17.10.3 Type-Specific Value Factories

All valuetype s that have initializer operations declared for them also have type-
specific C++ value factory classes generated for them. Faluatype A, the name of

the factory class, which is generated at the same scope as the value class, shall be
A_init . Each initializer operation maps to a pure virtual function in the factory class,
and each of these initializers defined in IDL is mapped to an initializer function of the
same name. Basaluetype initializers are not inherited, and so do not appear in the
factory class. The initializer parameters are mapped using normal C++ parameter
passing rules foin parameters. The return type of each initializer function is a pointer
to the createdaluetype .

For example, consider the followingluetype :

/I IDL
valuetype V {
factory create_bool(boolean b);
factory create_(char c);
factory create_(octet 0);
factory create_(short s, string p);

%
The factory class for the example given above will be generated as follows:
Il C++
class V_init : public ValueFactoryBase {
public:

virtual ~V_init();

virtual V*
create_bool(Boolean val) = 0;

1-88 C++ Language Mapping June 1999

virtual V* create_char(Char val) =0;
virtual V* create_octet(Octet val)=0;
virtual V* create_other(Short s, const char* p) = 0;

static V_init* _downcast(ValueFactory vf);

protected:
V_init();
3

Each generated factory class has a public virtual destructor, a protected default
constructor, and a publiddowncast function allowing downcasting from a pointer to

the basev/alueFactoryBase class. Each also supplies a public pure virtual

create function corresponding to each initializer. Applications derive concrete

factory classes from these classes and register them with the ORB. Note that since eact
generated value factory derives from the béakieFactoryBase , all derived

concrete factory classes shall also override the private pure virtual
create_for_unmarshal function inherited fronValueFactoryBase

For valuetype s that have no initializers, there are no type-specific abstract factory
classes, but applications must still supply concrete factory classes. These classes,
which are derived directly frorWalueFactoryBase , need not supplydowncast
functions>, and only need to override ticeeate_for_unmarshal function.

1.17.10.4 Unmarshaling Issues

When the ORB unmarshalsvaluetype for a request handled via C++ static stubs or
skeletons, it tries to find a factory for theluetype via the

ORB::lookup_value_factory operation. If the factory lookup fails, the client
application receives @ORBA::MARSHAL exception. Thus, applications utilizing
static stubs or skeletons must ensure that a valuetype factory is registered for every
valuetype it expects to receive via static invocation mechanisms.

Because of their dynamic nature, applications using the DIl or DSI are not expected to
have compile-time information for all thaluetype s they might receive. For these
applicationsyaluetype instances are representedGBRBA::Any, and so value

factories are not required to be registered with the ORB to allow\salabtype s to

be unmarshaled. However, value factories must be registered with the ORB and
available for lookup if the application attempts extraction ofvddaetypes via the
statically-typedAny extraction functions. See “Extraction from any” on page 1-55 for
more details.

15. Since the factory class hierarchy has virtual functions in it, a C++ dynamic_cast can
always be used to traverse the factory inheritance hierarchy, but it is not portable since all
C++ compilers do not yet support it.

C++ Language Mapping Mapping for Valuetypes June 1999 1-89

1-90

1.17.11 Custom Marshaling

The C++ mappings for the IDCORBA::CustomerMarshal ,
CORBA::DataOutputStream , andCORBA::DatalnputStream
normal C++valuetype mapping rules.

1.17.12 Another Valuetype Example

/I IDL

valuetype Node {
public long data;
public Node next;
void print();

Node change(in Node inval,
inout Node ioval,
out Node outval);

I3

/I C++
class Node : public virtual ValueBase
{
public:
virtual Long data() const = 0;
virtual void data(Long) = 0O;

virtual Node* next() const = 0;
virtual void next(Node*) = 0;

virtual void print() = 0;

virtual Node* change(Node* inval,
Node*& ioval,
Node_out outval) = 0;

static Node* _downcast(ValueBase*);

protected:
Node();
virtual ~Node();

private:
/I private and unimplemented
void operator=(const Nodeg&);

h

class OBV_Node : public virtual Node

{
public:
virtual Long data() const;
virtual void data(Long);

C++ Language Mapping June 1999

types follow

virtual Node* next() const;
virtual void next(Node*);

protected:
OBV_Node();
OBV_Node(Long data_init, Node* next_init);
virtual ~OBV_Node();

private:
/I private and unimplemented
void operator=(const OBV_Node&);

1.17.13 Valuetype Members of Structs

As described in Section 1.9, “Mapping for Structured Types,” on page 1-21, struct
members are required to be self-managing. This results in the need for manager types
for both strings and object references. Sinakietype s are handled by pointer,

similar to the way strings and object references are handled, they too require manager
types to represent them when they are used as struct members.

The valuetype instance manager types have semantics similar to that of the manager
types for object references:

* Any assignment to a managedluetype member causes that member to
decrement the reference count of taduetype it is managing, if any.

* A valuetype pointer assigned to a manageduetype member is adopted by the
member.

®* A valuetype _var assigned to a managedluetype member results in the
reference count of the instance being incremented. Vae types and/aluetype
member manager types follow the same rules for widening assignment that those
for object references do.

* |f the constructed type holding the managetletype member is assigned to
another constructed type (for example, an instance of a struct watlietype
member is assigned to another instance of the same struct), the reference count of
the managedaluetype instance in the struct on the right-hand side of the
assignment is incremented, while the reference count of the managed instance on
the left-hand side is decremented. As usual in C++, assignment to self must be
guarded against to avoid any mishandling of the reference count.

®* When it is destroyed, the managed valuetype member decrements the reference
count of the managed valuetype instance.

The semantics of valuetype managers described here provide for sharing of valuetype
instances across constructed types by default. Eachv@ltietype also provides an
explicit copy function that can be used to avoid sharing when desired.

C++ Language Mapping Mapping for Valuetypes June 1999 1-91

1

1.18 Mapping for Abstract Interfaces

1-92

The C++ mapping for abstract interfaces is almost identical to the mapping for regular
interfaces. Rather than defining a complete C++ mapping for abstract interfaces, which
would only duplicate much of the specification of the mapping for regular interfaces
found in Section 1.3, “Mapping for Interfaces,” on page 1-6, only the ways in which
the abstract interface mapping differs from the regular interface mapping are described
here.

1.18.1 Abstract Interface Base

C++ classes for abstract interfaces are not derived frol@@RRBA::Object C++

class. In IDL, abstract interfaces have no common base. However, to facilitate
narrowing from an abstract interface base class down to derived abstract interfaces,
derived interfaces, and derived valuetype types, all abstract interface base classes that
have no other base abstract interfaces derive directly @ORBA::AbstractBase

This base class provides the following:

® a protected default constructor

® a protected copy constructor

® a protected pure virtual destructor
® a public static duplicate function
® a public static narrow function

® a public static nil function

The AbstractBase class is shown below:

/I C++
class AbstractBase;
typedef ... AbstractBase_ptr;// either pointer or class

class AbstractBase {
public:
static AbstractBase_ptr _duplicate(AbstractBase_ptr);
static AbstractBase ptr _narrow(AbstractBase_ptr);
static AbstractBase_ptr _nil();

protected:
AbstractBase();
AbstractBase(const AbstractBase& val);
virtual ~AbstractBase() = 0O;

h

The duplicate function operates polymorphically over both object references and
valuetype types. If aAbstractBase_ptr that actually refers to an object reference
is passed to theduplicate function, the object reference is duplicated and a

C++ Language Mapping June 1999

1

duplicate object reference is returned. Otherwise, the argument refers to a valuetype
instance, so theadd_ref function is called on the valuetype and the argument is
returned. If the argument is a wibstractBase ptr , the return value is nil.

The implementation ofbstractBase::_narrow merely passes its argument to
_duplicate and uses the value it returns as its own return value. Strictly speaking,
the _narrow function is not needed in thbstractBase interface because it is of
little use to narrow akbstractBase to its own type, but it is required by all
conforming implementations to make writing C++ templates that deal with abstract
interfaces easieApstractBase does not present a special case).

As with regular object references, theil function returns a typedbstractBase
nil reference.

Both theis_nil andrelease functions in theCORBAamespace are overloaded to
handle abstract interface references:

/I C++

namespace CORBA {
Boolean is_nil(AbstractBase_ptr);
void release(AbstractBase_ptr);

}

These behave the same as their object reference counterparts. Nodéetsat is
expected to operate polymorphically over both valuetype types and object reference
types. If its argument is nil, it does nothing. If its argument refers to a valuetype
instance, it invokesremove_ref on that instance. Otherwise, its argument refers to
an object reference, on which it invoke®RBA::release for object references.

1.18.2 Client Side Mapping

The client side mapping for abstract interfaces is almost identical to the mapping for
object references, except:

® C++ classes for abstract interfaces derive flO@RBA::AbstractBase , not
CORBA::Object

® Because abstract interface classes can serve as base classes for application-supplie
concrete valuetype classes, they shall provide a protected default constructor, a
protected copy constructor, and a protected destructor (which is virtual by virtue of
inheritance fromAbstractBase).

®* The mapping for object reference classes does not specify the type of inheritance
used for base object reference classes. However, because abstract interfaces can
serve as base classes for application-supplied concrete valuetype classes, which
themselves can be derived from regular interface classes, abstract interface classes
shall always be inherited as public virtual base classes.

® |nserting an abstract interface reference int@GRBA::Any operates
polymorphically; either the object reference or valuetype to which the abstract
interface reference refers is what actually gets inserted intAriheBecause
abstract interfaces cannot actually be inserted intArgn there is no need for

C++ Language Mapping Mapping for Abstract Interfaces June 1999 1-93

abstract interface extraction operators, either. The
CORBA::Any::to_abstract_base type allows the contents of #my to be
extracted as aAbstractBase if the entity stored in thény is an object

reference type or a valuetype directly or indirectly derived from the

AbstractBase base class. See Section 1.16.6, “Widening to Abstract Interface,”
on page 1-62 for details.

Other than that, the mapping for abstract interfaces is identical to that for regular
interfaces, including the provision ofiar types, out types, manager types for
struct, sequence, and array members, identical memory management, and identical
C++ signatures for operations.

Both interfaces that are derived from one or more abstract interfaces, and valuetypes
that support one or more abstract interfaces support implicit widening tgpthe

type for each abstract interface base class. Specifically;*ttfer valuetype T and
theT_ptr type for interface typ@ support implicit widening to thBase_ptr type

for abstract interface typBase. The only exception to this rule is for valuetypes that
directly or indirectly support one or more regular interface types (see Section 1.17.9,
“Valuetype Inheritance,” on page 1-83). In these cases, it is the object reference for the
valuetype, not the pointer to the valuetype, that supports widening to the abstract
interface base.

1.19 Mapping for Exception Types

1-94

An OMG IDL exception is mapped to a C++ class that derives from the standard
UserException class defined in the CORBA module (see Section 1.1.4, “CORBA
Module,” on page 1-5). The generated class is like a variable-length struct, regardless
of whether or not the exception holds any variable-length members. Just as for
variable-length structs, each exception member must be self-managing with respect to
its storage. String and wide string exception members must be initialized to the empty
string (" andL™ , respectively) by the default constructor for the exception.

The copy constructor, assignment operator, and destructor automatically copy or free
the storage associated with the exception. For convenience, the mapping also defines ¢
constructor with one parameter for each exception member—this constructor initializes
the exception members to the given values. For exception types that have a string
member, this constructor should takeamst char* parameter, since the

constructor must copy the string argument. Similarly, constructors for exception types
that have an object reference member must_chlplicate on the corresponding

object reference constructor parameter. The default constructor performs no explicit
member initialization.

/I C++
class Exception

{
public:
virtual ~Exception();
virtual void _raise() const = 0;

C++ Language Mapping June 1999

1

TheException base class is abstract and may not be instantiated except as part of an
instance of a derived class. It supplies one pure virtual function to the exception
hierarchy: the raise() function. This function can be used to tell an exception
instance tahrow itself so that a&atch clause can catch it by a more derived type.
Each class derived frofxception implements raise() as follows:

/I C++
void SomeDerivedException:;_raise() const

{
}

For environments that do not support exception handling, please refer to
Section 1.42.2, “Without Exception Handling,” on page 1-164 for information about
the raise() function.

throw *this;

The UserException class is derived from a baBsception class, which is also
defined in theCORBA module.

All standard exceptions are derived frorsystemException class, also defined in
the CORBA module. LikeUserException , SystemException is derived from
the baseexception class. TheSystemException class interface is shown below.

/I C++

enum CompletionStatus {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

k

class SystemException : public Exception
{
public:
SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

virtual void _raise() const = 0;

CompletionStatus completed() const;
void completed(CompletionStatus);

k

The default constructor f@ystemException causesninor() to return 0 and
completed() to returnCOMPLETED_NO.

Each specific system exception is derived frieystemException

C++ Language Mapping Mapping for Exception Types June 1999 1-95

Il C++

class UNKNOWN : public SystemException { ... };
class BAD_PARAM : public SystemException{ ... };
/I etc.

All specific system exceptions are defined within @@RBA module.

This exception hierarchy allows any exception to be caught by simply catching the
Exception type:

/I C++
try {

} catch (const Exception &exc) {

}

Alternatively, all user exceptions can be caught by catching)tieeException
type, and all system exceptions can be caught by catchirgy#temException

type:

/I C++
try {

} catch (const UserException &ue) {

} catch (const SystemException &se) {

}

Naturally, more specific types can also appeagatth clauses.

Exceptions are normally thrown by value and caught by reference. This approach lets
the exception destructor release storage automatically.

The Exception class provides for downcasting within the exception hierarchy:

/I C++
class UserException : public Exception

{
public:
static UserException *_downcast(Exception *);
static const UserException *_downcast(
const Exception *

);
virtual void _raise() const = 0;

...
h

class SystemException : public Exception

1-96 C++ Language Mapping June 1999

{
public:
static SystemException *_downcast(Exception *);
static const SystemException *_downcast(
const Exception *
);

virtual void _raise() const = 0;

...
J3

Each exception class supports an overloaded static member function named
_downcast . The parameter to thedowncast calls is a pointer to eonst or non-
const instance of the base claBgception . If the parameter is a null pointer, the
return type of downcast is a null pointer. If the actual (run time) type of the
parameter exception can be widened to the requested exception’s type, then
_downcast will return a valid pointer to the parametexception . Otherwise,
_downcast will return a null pointer. The version oflowncast overloaded to take
a pointer to a&onst Exception returns a pointer toonst in order to preserve
const -correctness.

Unlike the_narrow operation on object references, thdowncast operation on
exceptions is equivalent to the C#lynamic_cast operator in that it returns a
suitably-typed pointer to the same exception parameter, not a pointer to a new
exception. If the original exception goes out of scope or is otherwise destroyed, the
pointer returned by downcast is no longer valid. The semantics faowncast

are thus the same as for valuetype as described in Section 1.17.3, “Valuetype
Operations,” on page 1-68.

For application portability, conforming C++ mapping implementations built using C++
compilers that support the standard C++ Run Time Type Information (RTTI)
mechanisms still need to support downcasting forBkeeption hierarchy. RTTI
supports, among other things, determination of the run-time type of a C++ object. In
particular, thedynamic_cast<T*> operatot® allows for downcasting from a base
pointer to a more derived pointer if the object pointed to really is of the more derived
type. This operator is not useful for narrowing object references, since it cannot
determine the actual type of remote objects, but it can be used by the C++ mapping
implementation to downcast within the exception hierarchy.

Previous versions of this mapping provided support for downcasting via a static
member function callednarrow , which had exactly the same semantics as
_downcast . Due to confusion over memory management differences between object
reference narrow functions and exceptionnarrow functions, the exception

_narrow function is now deprecated in favor olowncast . Portable applications

shall use_downcast for exception downcasting, noharrow . ORB

16.1t is unlikely that a compiler would support RTTI without supporting exceptions, since much
of a C++ exception handling implementation is based on RTTI mechanisms.

C++ Language Mapping Mapping for Exception Types June 1999 1-97

implementations that providenarrow functions for exceptions for purposes of
backwards compatibility shall provide overloadethrrow functions for botlconst
and noneonst Exception* , same as fordowncast .

1.19.1 UnknownUserException

Request invocations made through the DIl may result in user-defined exceptions that
cannot be fully represented in the calling program because the specific exception type
was not known at compile-time. The mapping provides the

UnknownUserException so that such exceptions can be represented in the calling
process:

/I C++
class UnknownUserException : public UserException
{
public:
Any &exception();
3

As shown hereUnknownUserException is derived fromUserException . It
provides theexception() accessor that returns amy holding the actual
exception. Ownership of the return@dy is maintained by the

UnknownUserException —the Any merely allows access to the exception data.
Conforming applications should never explicitly throw exceptions of type
UnknownUserException —it is intended for use with the DII.

1.19.2 Any Insertion and Extraction for Exceptions

Conforming implementations shall generaigy insertion and extraction operators
(operator<<= andoperator>>= | respectively) that allow all system and user
exceptions to be correctly inserted into and extracted oy Both copying and non-
copying forms of théAny insertion operator shall be provided for all system and user
exceptions.

In addition, conforming mapping implementations must supfioyt insertion (but not
extraction) forCORBA::Exception . This is required to allow DSI-based
applications to catch exceptions @®RBA::Exception& and store them into a
ServerRequest

Il C++
try {
...
} catch (Exception& exc) {
Any any;
any <<= exc;
server_request->set_exception(any);

1-98 C++ Language Mapping June 1999

1

Note that this shall result in both thgpeCode and value for the actual derived
exception type being stored into thay. Both copying and non-copying forms Ay
insertion forCORBA::Exception shall be provided:

/I C++
void operator<<=(Any&, const Exception&);
void operator<<=(Any&, const Exception?*);

1.20 Mapping For Operations and Attributes

An operation maps to a C++ function with the same name as the operation. Each read-
write attribute maps to a pair of overloaded C++ functions (both with the same name),
one to set the attribute’s value and one to get the attribute’s valueseTiuaction

takes arin parameter with the same type as the attribute, whilgé¢hfinction takes

no parameters and returns the same type as the attribute. An attribute marked
“readonly” maps to only one C++ function, to get the attribute’s value. Parameters and
return types for attribute functions obey the same parameter passing rules as for regular
operations.

OMG IDL oneway operations are mapped the same as other operations; that is, there
is no way to know by looking at the C++ whether an operati@améwvay or not.

The mapping does not define whether exceptions specified for an OMG IDL operation
are part of the generated operation’s type signature or not.

/I IDL

interface A

{
void f();
oneway void g();
attribute long x;

3

Il C++

A var a;

a->f();

a->g();

Long n = a->x();
a->x(n + 1);

Unlike the C mapping, C++ operations do not require an additiBmatonment
parameter for passing exception information—real C++ exceptions are used for this
purpose. See Section 1.19, “Mapping for Exception Types,” on page 1-94 for more
details.

1.21 Implicit Arguments to Operations
If an operation in an OMG IDL specification has a context specification, then a

Context_ptr input parameter (see Section 1.31, “Context,” on page 1-118) follows
all operation-specific arguments. In an implementation that does not support real C++

C++ Language Mapping Mapping For Operations and Attributes June 1999 1-99

exceptions, an outplEnvironment parameter is the last argument following all
operation-specific arguments, and following the context argument if present. The
parameter passing mode fénvironment is described in Section 1.42.2, “Without
Exception Handling,” on page 1-164.

1.22 Argument Passing Considerations

1-100

The mapping of parameter passing modes attempts to balance the need for both
efficiency and simplicity. For primitive types, enumerations, and object references, the
modes are straightforward, passing the tifer primitives and enumerations and the
type A_ptr for an interface typé.

Aggregate types are complicated by the question of when and how parameter memory
is allocated and deallocated. Mappingparameters is straightforward because the
parameter storage is caller-allocated and read-only. The mappiongtf@ndinout
parameters is more problematic. For variable-length types, the callee must allocate
some if not all of the storage. For fixed-length types, suchRmsnatype represented

as a struct containing three floating point members, caller allocation is preferable (to
allow stack allocation).

To accommodate both kinds of allocation, avoid the potential confusion of split
allocation, and eliminate confusion with respect to when copying occurs, the mapping
is T& for a fixed-length aggregaeandT*& for a variable-lengti. This approach has

the unfortunate consequence that usage for structs depends on whether the struct is
fixed- or variable-length; however, the mapping is consistehtlyar& if the caller

uses the managed typevar .

The mapping foout andinout parameters additionally requires support for

deallocating any previous variable-length data in the parameter whevaa is

passed. Even though their initial values are not sent to the operation, we inglude
parameters because the parameter could contain the result from a previous call. There
are many ways to implement this support. The mapping does not require a specific
implementation, but a compliant implementation must free the inaccessible storage
associated with a parameter passed @svar managed type. The provision of the

T_out types is intended to give implementations the hooks necessary to free the
inaccessible storage while converting from Thevar types. The following examples
demonstrate the compliant behavior:

/I IDL
struct S { string name; float age; };
void f(out S p);

Il C++
S vars;

f(s);
/luse s
f(s); // first result will be freed

S *sp; // need not initialize before passing to out
f(sp);

C++ Language Mapping June 1999

/[use sp
delete sp; // cannot assume next call will free old value

f(sp);

Note that implicit deallocation of previous values éoit andinout parameters works
only with T_var types, not with other types:

// 1DL
void g(out string s);

/I C++
char *s;
for (inti=0;i<10; i++)
q(s); // memory leak!

Each call to they function in the loop results in a memory leak because the caller is
not invokingstring_free on theout result. There are two ways to fix this, as
shown below:

/I C++
char *s;
String_var svar;
for (inti=0;i<10;i++){
q(s);
string_free(s);// explicit deallocation
/I OR:
g(svar); /Il implicit deallocation

}

Using a plainchar* for theout parameter means that the caller must explicitly
deallocate its memory before each reuse of the variable ast gparameter, while
using aString_var means that any deallocation is performed implicitly upon each
use of the variable as aut parameter.

If strings or wide strings are passedrasut parameters, the callee may modify the the
contents of the string or wide string in place. However, if the new string or wide string
is longer than the initial string or wide string, reallocation becomes necessary. For a
new string or wide string that is shorter than the original string or wide string,
reallocation may also be used to conserve memory. However, shortening the string or
wide string by replacing a character that is part of the initial string or wide string with
the appropriate NUL character is also legal.

Forinout object references, reallocation is necessary whenever the callee needs to
change the initial value of the reference. The example below illustrates this.

Forin valuetype s, the callee shall receive a copy of esaluetype argument passed
to it even if the caller and callee are collocated in the same process. The callee is
allowed to invoke operations and modifier functions that modify the state of the
valuetype instance, but the state of the caller’s copy of Waduetype instance shall
not be affected by the callee’s state changes. This is required to preserve location
transparency for interface operations.

C++ Language Mapping Argument Passing Considerations June 1999 1-101

1-102

Forinout valuetype s, the callee may either modify the incomiajuetype

instance, or may replace the incoming pointer with a pointer to a diffesirdtype
instance. The callee shall invokeemove_ref on thevaluetype instance passed in
before replacing it with &aluetype instance to be passed back out. The caller shall
eventually invoke remove_ref on thevaluetype instance it receives back as either
aninout, out, or return value.

The example below illustrates the replacemenhofit arguments. For the operation

f, sl is aninout string that is modified in place and whose length is not changed by
the callees2 is aninout string that is grown by the calleebj is aninout object
reference that is changed by the callee, vall imaut valuetype that is changed in
place by the callee, and val2 is iaout valuetype that is replaced by the callee. The
example code uses locBl var variables to ensure automatic deallocation, but explicit
calls toCORBA::string_free andCORBA::release could have been used
instead.

/I IDL
valuetype V { public long state; };
interface A {
void f(inout string s1, inout string s2, inout A obj,
inout V vall, inout V val2);

h

Il C++
void Aimpl::f(char *&s1, char *&s2, A_ptr &obj,
V *&vall, V *&val2)
{
/I Convert s1 to uppercase in place
while (*s1 I=10") to upper(*s1++);

/l Return a different string value for s2
String_var s2_tmp = s2;
s2 = string_dup("new s2");

/I Assign new value to obj
A_ptr newobj = ...

A_var obj_tmp = obj;

obj = A::_duplicate(newobj);

/l Change value of vall in place
if (vall I= 0) vall->state(42);

/I Replace val2 entirely

CORBA::remove_ref(val2);

val2 = new MyVIimpl(1234);
}

For parameters that are passed or returned as a pdihdeor(reference to pointer

(T*&), except forvaluetype s, a compliant program is not allowed to pass or return a
null pointer; the result of doing so is undefined. In particular, a caller may not pass a
null pointer under any of the following circumstances:

C++ Language Mapping June 1999

 in andinout string
e in andinout array (pointer to first element)

A caller may pass a reference to a pointer with a null valuedbparameters,
however, since the callee does not examine the value but rather just overwrites it.
Furthermore, conforming applications may also pass and return null pointers for all
valuetype parameters and return types, and may embedvaluietype pointers
within constructed types that are passed as parameters or return values, such as struct:
unions, arrays, sequencdés)y, and other valuetypes. A callee may not return a null
pointer under any of the following circumstances:

+ out and return variable-length struct

* out and return variable-length union

» out and return string

» out and return sequence

» out and return variable-length array, return fixed-length array

e out and return any

Since OMG IDL has no concept of pointers in general or null pointers in particular,
except forvaluetype s, allowing the passage of null pointers to or from an operation
would project C++ semantics onto OMG IDL operatidAsh compliant

implementation is allowed but not required to raiggs® PARAM exception if it
detects such an error.

1.22.1 Operation Parameters and Signatures

Table 1-3 displays the mapping for the basic OMG IDL parameter passing modes and
return type according to the type being passed or returned, while Table 1-4 on

page 1-104 displays the same informationTovar types. “T_var Argument and

Result Passing” is merely for informational purposes; it is expected that operation
signatures for both clients and servers will be written in terms of the parameter passing
modes shown in “Basic Argument and Result Passiwgh the exception that the

T out types will be used as the actual parameter types foowtllparameterslt is

also expected that_var types will support the necessary conversion operators to
allow them to be passed directly. Callers should always pass instances of eitirer

types or the base types shown in “Basic Argument and Result Passing”, and callees
should treat thei_out parameters as if they were actually the corresponding
underlying types shown in Table 1-3.

In Table 1-3, fixed-length arrays are the only case where the typeift gparameter
differs from a return value, which is necessary because C++ does not allow a function
to return an array. The mapping returns a pointerdtce of the array, where a slice

is an array with all the dimensions of the original specified except the first one.

17.When real C++ exceptions are not available, however, it is important that null pointers are
returned whenever danvironment containing an exception is returned; see
Section 1.42.2, “Without Exception Handling,” on page 1-fi@4nore details.

C++ Language Mapping Argument Passing Considerations June 1999 1-103

1-104

Table 1-3 Basic Argument and Result Passing

A caller is responsible for providing storage for all arguments passedaaguments.

Data Type In Inout Out Return
short Short Short& Short& Short
long Long Long& Long& Long
long long LongLong LongLong& LongLong& LongLong
unsigned short UShort UShort& UShort& UShort
unsigned long ULong ULong& ULong& ULong
unsigned long long ULongLong ULongLong& ULongLong& ULongLong
float Float Float& Float& Float
double Double Double& Double& Double
long double LongDouble LongDouble& LongDouble& LongDouble
boolean Boolean Boolean& Boolean& Boolean
char Char Char& Char& Char
wchar WChar WChar& WChar& WChar
octet Octet Octet& Octet& Octet
enum enum enum& enum& enum
object reference ptrt objref_ptr objref_ptr& objref_ptr& objref_ptr
struct, fixed const struct& struct& struct& struct
struct, variable const struct& struct& struct*& struct*
union, fixed const union& union& union& union
union, variable const union& union& union*& union*
string const char* char*& char*& char*
wstring const WChar* WChar*& WChar*& WChar*
sequence const sequence& | sequence& sequence*& sequence*
array, fixed const array array array array slice*?
array, variable const array array array slice*&2 array slice*?
any const any& any& any*& any*
fixed const fixed& fixed& fixed& fixed
valuetype3 valuetype* valuetype*& valuetype*& valuetype*

1. Including pseudo-object references.

2. Aslice is an array with all the dimensions of the original except the first one.

3. Including value boxes.

Table 1-4 T_var Argument and Result Passing

Data Type In Inout Out Return
object reference var? | const objref_var& objref_var& objref_var& objref_var
struct_var const struct_var& struct_var& struct_var& struct_var
union_var const union_var& union_var& union_var& union_var
string_var const string_var& string_var& string_var& string_var
sequence_var const sequence_var& | sequence_var& sequence_var& sequence_var

C++ Language Mapping

June 1999

Table 1-4 T_var Argument and Result Pass]inq

Data Type In Inout Out Return
array_var const array_var& array_var& array_var& array_var
any_var const any_var& any_var& any_var& any_var
valuetype_var® const valuetype_var& | valuetype_var& valuetype_var& valuetype_var

1. Fixed types have no corresponding_var type and are therefore not shown in this table.
2. Including pseudo-object references.
3. Including value boxes.

“Caller Argument Storage Responsibilities” on page 1-468 “Argument Passing
Cases” on page 1-106 describe the caller’'s responsibility for storage associated with
inout andout parameters and for return results.

Table 1-5 Caller Argument Storage Responsibilities
Inout Out Return
Type Param Param Result

short

long

long long

unsigned short

unsigned long

unsigned long long

float

double

long double

boolean

char

wchar

octet

enum

object reference ptr

struct, fixed

struct, variable

union, fixed

union, variable

WiwlRrl W Rr[NRPIRPIRP|RP|IRP[RP|RP|RP|RP|RP|[RP|Rr|RP|PR

string

w

wstring

sequence

array, fixed

array, variable

glr|rlala|dlrRrRrIR|RP|INRIR|IRP|IRPIRIR|RP|RIRPR|R|R|R| PR
wlolRr|lw gl w wl rlwlr|NdPR|R[IRIRIRIRPIRP|IR|R|IR|R|[Rr|R|PR

W oo w

any

C++ Language Mapping Argument Passing Considerations June 1999 1-105

1-106

Table 1-5 Caller Argument Storage Responsibiliti@ontinued)

Inout Out Return
Type Param Param Result
fixed 1 1 1
valuetype 7 7 7

Table 1-6 Argument Passing Cases

Case

Caller allocates all necessary storage, except that which may be encapsulated and managed
within the parameter itself. For inout parameters, the caller provides the initial value, and the
callee may change that value. For out parameters, the caller allocates the storage but need not
initialize it, and the callee sets the value. Function returns are by value.

Caller allocates storage for the object reference. For inout parameters, the caller provides an
initial value; if the callee wants to reassign the inout parameter, it will first call CORBA::release
on the original input value. To continue to use an object reference passed in as an inout, the
caller must first duplicate the reference. The caller is responsible for the release of all out and
return object references. Release of all object references embedded in other structures is
performed automatically by the structures themselves.

For out parameters, the caller allocates a pointer and passes it by reference to the callee. The
callee sets the pointer to point to a valid instance of the parameter’s type. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. To maintain local/remote
transparency, the caller must always release the returned storage, regardless of whether the
callee is located in the same address space as the caller or is located in a different address
space. Following the completion of a request, the caller is not allowed to modify any values in
the returned storage—to do so, the caller must first copy the returned instance into a new
instance, then modify the new instance.

For inout strings, the caller provides storage for both the input string and the char* or wchar*
pointing to it. Since the callee may deallocate the input string and reassign the char* or
wchar* to point to new storage to hold the output value, the caller should allocate the input
string using string_alloc() or wstring_alloc() . The size of the out string is therefore
not limited by the size of the in string. The caller is responsible for deleting the storage for the
out using string_free() or wstring_free() . The callee is not allowed to return a null
pointer for an inout, out, or return value.

For inout sequences and anys, assignment or modification of the sequence or any may cause
deallocation of owned storage before any reallocation occurs, depending upon the state of the
Boolean release parameter with which the sequence or any was constructed.

C++ Language Mapping June 1999

Table 1-6 Argument Passing CaséGontinued)

Case

For out parameters, the caller allocates a pointer to an array slice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to the
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. To maintain local/remote
transparency, the caller must always release the returned storage, regardless of whether the
callee is located in the same address space as the caller or is located in a different address
space. Following completion of a request, the caller is not allowed to modify any values in the
returned storage—to do so, the caller must first copy the returned array instance into a new
array instance, then modify the new instance.

Caller allocates storage for the valuetype instance. For inout parameters, the caller provides an
initial value; if the callee wants to reassign the inout pointer value to point to a different
valuetype instance, it will first call _remove_ref on the original input valuetype. To continue to
use a valuetype instance passed in as an inout after the invoked operation returns, the caller
must first invoke _add_ref on the valuetype instance. The caller is responsible for invoking
_remove_ref on all out and return valuetype instances. The reduction of reference counts via
_remove_ref for all valuetype instances embedded in other structures is performed
automatically by the structures themselves.

1.23 Mapping of Pseudo Objects to C++

CORBA pseudo objects may be implemented either as normal CORBA objects or as
serverless objectdn the CORBA specification, the fundamental differences between

these strategies are:
» Serverless object types do not inherit fr@®RBA::Object
« Individual serverless objects are not registered with any ORB

» Serverless objects do not necessarily follow the same memory management rules

as for regular IDL types.

References to serverless objects are not necessarily valid across computational
contexts; for example, address spaces. Instead, references to serverless objects that al
passed as parameters may result in the construction of independent functionally-
identical copies of objects used by receivers of these references. To support this, the

otherwise hidden representational properties (such as data layout) of serverless objects
are made known to the ORB. Specifications for achieving this are not contained in this
chapter. Making serverless objects known to the ORB is an implementation detail.

This section provides a standard mapping algorithm for all pseudo object types. This
avoids the need for piecemeal mappings for each of the nine CORBA pseudo object
types, and accommodates any pseudo object types that may be proposed in future
revisions of CORBA.It also avoids representation dependence in the C mapping while
still allowing implementations that rely on C-compatible representations.

C++ Language Mapping Mapping of Pseudo Objects to C++ June 1999 1-107

1

1.24 Usage

Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to
describe serverless object types. Interfaces for pseudo object types follow the exact
same rules as normal OMG IDL interfaces, with the following exceptions:
« They are prefaced by the keywagudeudo .
« Their declarations may refer to oth®serverless object types that are not
otherwise necessarily allowed in OMG IDL.

As explained in Section 1.23, “Mapping of Pseudo Objects to C++,” on page 1-107,
the pseudo prefix means that the interface may be implemented in either a normal or
serverless fashion. That is, apply either the rules described in the following sections or
the normal mapping rules described in this chapter.

1.25 Mapping Rules

1-108

Serverless objects are mapped in the same way as normal interfaces, except for the
differences outlined in this section.

Classes representing serverless object typerareubclasses dCORBA::Object ,
and are not necessarily subclasses of any other C++ class. Thus, they do not
necessarily support, for example, bject::create_request operation.

For each class representing a serverless object type T, overloaded versions of the
following functions are provided in theORBAnamespace:

/I C++
void release(T_ptr);
Boolean is_nil(T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by users,
although subclasses can be provided by implementations. Implementations are allowed
to make assumptions about internal representations and transport formats that may not
apply to subclasses.

The member functions of classes representing serverless object types do not
necessarily obey the normal memory management rules. This is due to the fact that
some serverless objects, suchC8BRBA::NVList , are essentially just containers for
several levels of other serverless objects. Requiring callers to explicitly free the values
returned from accessor functions for the contained serverless objects would be counter
to their intended usage.

All other elements of the mapping are the same. In particular:

18.In particularexception used as a data type and a function name.

C++ Language Mapping June 1999

1

1. The types of references to serverless objdctgtr , may or may not simply be a
typedef of T*.

2. Each mapped class supports the following static member functions:

/I C++
static T_ptr _duplicate(T_ptr p);
static T_ptr _nil();

Legal implementations ofduplicate include simply returning the argument
or constructing references to a new instance. Individual implementations may
provide stronger guarantees about behavior.

1. The corresponding C++ classes may or may not be directly instantiable or have
other instantiation constraints. For portability, users should invoke the appropriate
constructive operations.

2. As with normal interfaces, assignment operators are not supported.

3. Although they can transparently employ “copy-style” rather than “reference-style”
mechanics, parameter passing signatures and rules as well as memory managemen
rules are identical to those for normal objects, unless otherwise noted.

1.26 Relationto the C PIDL Mapping

All serverless object interfaces and declarations that rely on them have direct analogs
in the C mapping. The mapped C++ classes can, but need not be, implemented using
representations compatible with those chosen for the C mapping. Differences between
the pseudo object specifications for C-PIDL and C++ PIDL are as follows:

e C++-PIDL calls for removal of representation dependencies through the use of
interfaces rather than structs and typedefs.

« C++-PIDL calls for placement of operations on pseudo objects in their interfaces,
including a few cases of redesignated functionality as noted.

e In C++-PIDL, therelease performs the role of the associatede and
delete operations in the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are
provided in the following sections. Further details, including definitions of types
referenced but not defined below, may be found in the relevant sections of this
specification.

Some of the pseudo-interfaces shown in this chapter rely on a user-defined exception
supplied in theCORBA module by ORB implementations. This exception is called
Bounds and is defined as follows:

/' 1DL

module CORBA

{
exception Bounds {};
...

h

C++ Language Mapping Relation to the C PIDL Mapping June 1999 1-109

Note that this exception is not the same asGO&RBA:: TypeCode::Bounds
exception.

1.27 Environment

Environment provides a vehicle for dealing with exceptions in those cases where true
exception mechanics are unavailable or undesirable (for example in the DIl). They may
be set and inspected using #weption attribute.

As with normal OMG IDL attributes, thexception attribute is mapped into a pair of
C++ functions used to set and get the exception. The semanticsseft trendget
functions, however, are somewhat different than those for normal OMG IDL attributes.
Theset C++ function assumes ownership of theception pointer passed to it.
The Environment will eventually calldelete on this pointer, so thException

it points to must be dynamically allocated by the caller. @éte function returns a
pointer to theException , just as an attribute for a variable-length struct would, but
the pointer refers to memory owned by fevironment . Once theEnvironment

is destroyed, the pointer is no longer valid. The caller must notlekdte on the
Exception pointer returned by thget function. TheEnvironment is responsible
for deallocating an¥xception it holds when it is itself destroyed. If the
Environment holds no exception, thget function returns a null pointer.

Theclear() function causes thEnvironment todelete anyException itis
holding. It is not an error to catlear() = on anEnvironment holding no
exception. Passing a null pointer to #et exception function is equivalent to calling
clear() . If anEnvironment contains exception information, the caller is
responsible for callinglear() on it before passing it to an operation.

1.27.1 Environment Interface

// IDL
pseudo interface Environment

{

attribute exception exception;
void clear();

k

1.27.2 Environment C++ Class

Il C++
class Environment
{
public:
void exception(Exception*);
Exception *exception() const;
void clear();

1-110 C++ Language Mapping June 1999

1.27.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:
 Defines an interface rather than a struct.

« Supports an attribute allowing operations on exception values as a whole rather
than on major numbers and/or identification strings.

» Supports alear() function that is used to destroy aByception the
Environment may be holding.

» Supports a default constructor that initializes it to hold no exception information.

1.27.4 Memory Management

Environment has the following special memory management rules:

®* Thevoid exception(Exception*) member function adopts the
Exception* given to it.

®* Ownership of the return value of tException *exception() member
function is maintained by thEnvironment ; this return value must not be freed

by the caller.

1.28 NamedValue

NamedValue is used only as an elementNYList, especially in the DII.
NamedValue maintains an (optional) name, any value, and labelling flags. Legal
flag values arddRG_IN, ARG_OUT, andARG_INOUT.

The value in &NamedValue may be manipulated via standard operationsign

1.28.1 NamedValue Interface

/I IDL

pseudo interface NamedValue

{
readonly attribute Identifier name;
readonly attribute any value;
readonly attribute Flags flags;

h

1.28.2 NamedValue C++ Class

Il C++
class NamedValue
{
public:
const char *name() const;
Any *value() const;
Flags flags() const;

C++ Language Mapping NamedValue June 1999 1-111

1.28.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:
» Defines an interface rather than a struct.
» Provides no analog of tHen field.

1.28.4 Memory Management

NamedValue has the following special memory management rules:

® Ownership of the return values of thame() andvalue() functions is
maintained by th&lamedValue ; these return values must not be freed by the
caller.

1.29 NVList

NVList is a list ofNamedValue s. A newNVList is constructed using the
ORB::create_list operation (see Section 1.33, “ORB,” on page 1-121). New
NamedValue s may be constructed as part ofNiList, in any of three ways:

¢ add—creates an unnamed value, initializing only the flags.
» add_item —initializes name and flags.
» add_value —initializes name, value, and flags.

» add_item_consume —initializes name and flags, taking over memory
management responsibilities for tblear* name parameter.

» add_value_consume —initializes name, value, and flags, taking over memory
management responsibilities for both thar* name parameter and tAay*
value parameter. Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexiraddTtaeld_item ,

add_value, add_item_consume , andadd_value _consume functions lengthen

the NVList to hold the new element each time they are called.it€he function can
be used to access existing elements.

1.29.1 NVList Interface

/I IDL
pseudo interface NVList
{
readonly attribute unsigned long count;
NamedValue add(in Flags flags);
NamedValue add_item(in Identifier item_name, in Flags flags);
NamedValue add_value(
in ldentifier item_name,
in any val,
in Flags flags
)i

NamedValue item(in unsigned long index) raises(Bounds);

1-112 C++ Language Mapping June 1999

void remove(in unsigned long index) raises(Bounds);

k

1.29.2 NVList C++ Class

/I C++
class NVList

{
public:
ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(
const char*,

const Any&,
Flags
);
NamedValue_ptr add_item_consume(
char*,
Flags

):

NamedValue_ptr add_value_consume(
char*,
Any *,
Flags
);
NamedValue_ptr item(ULong);
void remove(ULong);

1.29.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:
« Defines an interface rather than a typedef
» Provides different signatures for operations that add items in order to avoid
representation dependencies
 Provides indexed access methods

1.29.4 Memory Management

NVList has the following special memory management rules:

® Ownership of the return values of thdd, add_item , add_value
add_item_consume ,add_value_consume , anditem functions is maintained
by theNVList ; these return values must not be freed by the caller.

C++ Language Mapping NVList June 1999 1-113

®* Thechar* parameters to thadd_item_consume andadd_value_consume
functions and thény* parameter to thadd_value_consume function are
consumed by th8lVList . The caller may not access these data after they have
been passed to these functions becaushlthést may copy them and destroy the
originals immediately. The caller should use NemedValue::value()
operation in order to modify thealue attribute of the underlyinlamedValue ,
if desired.

®* Theremove function also callCORBA:release on the removed
NamedValue .

1.30 Request

Request provides the primary support for DIl. A new request on a particular target
object may be constructed using the short version of the request creation operation
shown in Section 1.34, “Object,” on page 1-125:

/I C++
Request_ptr Object::_request(ldentifier operation);

Arguments and contexts may be added after construction via the corresponding
attributes in theRequest interface. Results, output arguments, and exceptions are
similarly obtained after invocation. The following C++ code illustrates usage:

/I C++

Request_ptr req = anObj->_request("anOp");

*(req->arguments()->add(ARG_IN)->value()) <<= anArg;

...

reg->invoke();

if (reg->env()->exception() == 0) {
*(reqg->result()->value()) >>= aResult;

}

While this example shows the semantics of the attribute-based accessor functions, the
following example shows that it is much easier and preferable to use the equivalent
argument manipulation helper functions:

/I C++

Request_ptr req = anObj->_request("anOp");

reg->add_in_arg() <<= anArg;

...

reg->invoke();

if (reg->env()->exception() == 0) {
reg->return_value() >>= aResult;

}

Alternatively, requests can be constructed using one of the long forms of the creation
operation shown in the Object interface in Section 1.34, “Object,” on page 1-125:

/I C++
void Object::_create_request(

1-114 C++ Language Mapping June 1999

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags
);
void Object::_create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags

);

Usage is the same as for the short form except that all invocation parameters are
established on construction. Note that @gT_LIST MEMORY and

IN_COPY_VALUE flags can be set as flags in tteg|_flags parameter, but they

are meaningless and thus ignored because argument insertion and extraction are done
via theAny type.

Request also allows the application to supply all information necessary for it to be
invoked without requiring the ORB to utilize the Interface Repository. In order to
deliver a request and return the response, the ORB requires:

* a target object reference
* an operation name
« a list of arguments (optional)
 a place to put the result (optional)
» a place to put any returned exceptions
® aContext (optional)
« a list of the user-defined exceptions that can be thrown (optional)

® a list of Context strings that must be sent with the operation (optional)

Since theDbject::create_request operation allows all of these except the last two to
be specified, an ORB may have to utilize the Interface Repository in order to discover
them. Some applications, however, may not want the ORB performing potentially
expensive Interface Repository lookups during a request invocation, so two new
serverless objects have been added to allow the application to specify this information
instead:

® ExceptionList : allows an application to provide a list BfpeCode s for all user-
defined exceptions that may result when Regjuest is invoke.

® ContextList : allows an application to provide a list @bntext strings that must
be supplied with th®equest invocation.

C++ Language Mapping Request June 1999 1-115

The ContextList differs from theContext in that the former supplies only the context
strings whose values are to be looked up and sent with the request invocation (if
applicable), while the latter is where those values are obtained.

The IDL descriptions foExceptionList, ContextList , andRequest are shown
below.

1.30.1 Request Interface

/I IDL
pseudo interface ExceptionList
{
readonly attribute unsigned long count;
void add(in TypeCode exc);
TypeCode item(in unsigned long index) raises(Bounds);
void remove(in unsigned long index) raises(Bounds);

k

pseudo interface ContextList
{
readonly attribute unsigned long count;
void add(in string ctxt);
string item(in unsigned long index) raises(Bounds);
void remove(in unsigned long index) raises(Bounds);

k

pseudo interface Request

{
readonly attribute Object target;
readonly attribute Identifier operation;
readonly attribute NVList arguments;
readonly attribute NamedValue result;
readonly attribute Environment env;
readonly attribute ExceptionList exceptions;
readonly attribute ContextList contexts;

attribute context ctx;

void invoke();

void send_oneway();
void send_deferred();
void get_response();
boolean poll_response();

1-116 C++ Language Mapping June 1999

1.30.2 Request C++ Class

Il C++
class ExceptionList
{
public:
ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
void remove(ULong index);

k

class ContextList
{
public:
ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
void remove(ULong index);
h
class Request
{
public:
Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

/I argument manipulation helper functions
Any &add_in_arg();

Any &add_in_arg(const char* name);
Any &add_inout_arg();

Any &add_inout_arg(const char* name);
Any &add_out_arg();

Any &add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any &return_value();

void invoke();

void send_oneway();

void send_deferred();

void get_response();

Boolean poll_response();

C++ Language Mapping Request June 1999

1-117

1.30.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:
» Replacement chdd_argument , and so forth, with attribute-based accessors.
» Use ofenv attribute to access exceptions raised in DIl calls.

» Theinvoke operation does not take a flag argument, since there are no flag
values that are listed as legal@QORBA

» Thesend_oneway andsend_deferred operations replace the singlend
operation with flag values, in order to clarify usage.

» Theget response operation does not take a flag argument, and an operation
poll_response is defined to immediately return with an indication of whether
the operation has completed.

e« Theadd_* arg, set_return_type , andreturn_value member functions are
added as shortcuts for using the attribute-based accessors.

1.30.4 Memory Management

Request has the following special memory management rules:

®* Ownership of the return values of ttegget , operation , arguments
result , env, exceptions ,contexts , andctx functions is maintained by the
Request ; these return values must not be freed by the caller.

ExceptionList has the following special memory management rules:

®* Theadd_consume function consumes it§ypeCode_ptr argument. The caller
may not access the object referred to byTieeCode ptr after it has been
passed in because thdd_consume function may copy it and release the original
immediately.

® Ownership of the return value of tiiem function is maintained by the
ExceptionList ; this return value must not be released by the caller.

ContextList has the following special memory management rules:

® Theadd_consume function consumes itshar* argument. The caller may not
access the memory referred to by thar* after it has been passed in because the
add_consume function may copy it and free the original immediately.

® Ownership of the return value of titem function is maintained by the
ContextList ; this return value must not be released by the caller.

1.31 Context

A Context supplies optional context information associated with a method invocation.

1.31.1 Context Interface

// IDL
pseudo interface Context

1-118 C++ Language Mapping June 1999

readonly attribute Identifier context_name;
readonly attribute context parent;

void create_child(in Identifier child_ctx_name, out Context child_ctx);

void set_one_value(in Identifier propname, in any propvalue);
void set_values(in NVList values);
void delete_values(in Identifier propname);
void get_values(
in Identifier start_scope,
in Flags op_flags,
in Identifier pattern,
out NVList values

1.31.2 Context C++ Class

/I C++
class Context

{
public:
const char *context_name() const;
Context_ptr parent() const;

void create_child(const char *, Context_out);

void set_one_value(const char *, const Any &);
void set_values(NVList_ptr);
void delete_values(const char *);
void get_values(
const char*,

Flags,

const char*,

NVList_out

k

1.31.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:
« Introduction of attributes for context name and parent.
» The signatures for values are uniformly seany.

« In the C mappingset_one_value used strings, while others used
NamedValue s containingany. Even though implementations need only support
strings as values, the signatures now uniformly allow alternatives.

* Therelease operation frees child contexts.

C++ Language Mapping Context June 1999 1-119

1.31.4 Memory Management

1.32 TypeCode

Context has the following special memory management rules:

® Ownership of the return values of thentext_name andparent functions is
maintained by th€ontext ; these return values must not be freed by the caller.

A TypeCode represents OMG IDL type information.

No constructors fofypeCode s are defined. However, in addition to the mapped
interface, for each basic and defined OMG IDL type, an implementation provides
access to dypeCode pseudo object referencéypeCode_ptr) of the form
tc<type> that may be used to set typesAiny, as arguments fagqual, and so
on. In the names of thedgpeCode reference constantstype> refer to the local
name of the type within its defining scope. Each Cter <type> constant must be
defined at the same scoping level as its matching type.

In all C++TypeCode pseudo object reference constants, the prefix “_tc_" should be
used instead of the “TC_" prefix prescribed in “TypeCode” on page 1-120. This is to
avoid name clashes for CORBA applications that simultaneously use both the C and
C++ mappings.

Like all other serverless objects, the C++ mappingifgreCode provides a nil()

operation that returns a nil object reference faipeCode . This operation can be

used to initializeTypeCode references embedded within constructed types. However,

a nil TypeCode reference may never be passed as an argument to an operation, since
TypeCode s are effectively passed as values, not as object references.

1.32.1 TypeCode Interface

The TypeCode IDL interface is fully defined in version 2.3 @he Common Object
Request Broker: Architecture and Specificatidnserface Repositorghapter,The
TypeCode Interfaceection and is thus not duplicated here.

1.32.2 TypeCode C++ Class

1-120

/I C++
class TypeCode
{
public:
class Bounds : public UserException { ... };
class BadKind : public UserException{ ... };

Boolean equal(TypeCode_ptr) const;

Boolean equivalent(TypeCode_ptr) const;
TCKind kind() const;

C++ Language Mapping June 1999

TypeCode_ptr get_compact_typecode() const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;
Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;

Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;

UShort fixed_digits() const;
Short fixed_scale() const;

Visibility member_visibility(ULong index) const;
ValuetypeModifier type_maodifier() const;
TypeCode_ptr concrete_base_type() const;

1.32.3 Differences from C-PIDL

For C++, use of prefix “_tc_" instead of “TC_" for constants.

1.32.4 Memory Management

TypeCode has the following special memory management rules:

« Ownership of the return values of tle, name, andmember_name functions is
maintained by th&ypeCode ; these return values must not be freed by the caller.

1.33 ORB

An ORB is the programmer interface to the Object Request Broker.

1.33.1 ORB Interface

/I IDL
pseudo interface ORB

{

typedef sequence<Request> RequestSeq,;
string object_to_string(in Object obj);
Object string_to_object(in string str);

C++ Language Mapping ORB June 1999 1-121

1-122

void create_list(in long count, out NVList new_list);
void create_operation_list(in OperationDef oper, out NVList

new_list);

void create_named_value(out NamedValue nmval);
void create_exception_list(out ExceptionList exclist);
void create_context_list(out ContextList ctxtlist);

void get_default_context(out Context ctx);
void create_environment(out Environment new_env);

void send_multiple_requests_oneway(in RequestSeq req);
void send_multiple_requests_deferred(in RequestSeq req);
boolean poll_next_response();

void get_next_response(out Request req);

Boolean work_pending();

void perform_work();

void shutdown(in Boolean wait_for_completion);
void run();

Boolean get_service_information (
in ServiceType service_type,
out Servicelnformation service_information

);

typedef string Objectlid;
typedef sequence<Objectld> ObjectldList;
Object resolve_initial_references(
in Objectld id
) raises(InvalidName);
ObjectldList list_initial_services();

Policy create_policy(in PolicyType type, in any val)
raises(PolicyError);

C++ Language Mapping June 1999

1.33.2 ORB C++ Class

Il C++
class ORB
{
public:
class RequestSeq {...};
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char *);
void create_list(Long, NVList_out);
void create_operation_list(
OperationDef_ptr,
NVList_out

);

void create_named_value(NamedValue_out);
void create_exception_list(ExceptionList_out);
void create_context_list(ContextList_out);

void get_default_context(Context_out);
void create_environment(Environment_out);

void send_multiple_requests_oneway(
const RequestSeq&
)i

void send_multiple_requests_deferred(
const RequestSeq &

)i

Boolean poll_next_response();

void get_next_response(Request_out);

Boolean work_pending();

void perform_work();

void shutdown(Boolean wait_for_completion);
void run();

Boolean get_service_information(
ServiceType svc_type,
Servicelnformation_out svc_info

);

typedef char* Objectld;

class ObjectldList { ... };

Object_ptr resolve_initial_references(const char* id);
ObjectldList* list_initial_services();

C++ Language Mapping ORB June 1999 1-123

1-124

Policy ptr create_policy(
PolicyType type,
const Any& val
)i
h

1.33.3 Differences from C-PIDL

» Addedcreate_environment . Unlike the struct versiorEnvironment requires
a construction operation. (Since this is overly constraining for implementations
that do not support real C++ exceptions, these implementations may allow
Environment to be declared on the stack. See Section 1.42.2, “Without
Exception Handling,” on page 1-164 for details.)

« Assigned multiple request support to ORB, made usage symmetrical with that in
Request, and used a sequence type rather than otherwise illegal unbounded
arrays in signatures.

« Addedcreate_named_value , which is required for creatingamedValue
objects to be used as return value parameters fdDlbect::.create_request
operation.

« Addedcreate_exception_list andcreate_context_list (see Section 1.30,
“Request,” on page 1-114 for more details).

1.33.4 Mapping of ORB Initialization Operations

The following PIDL specifies initialization operations for an ORB; this PIDL is part of
the CORBA module (not the ORB interface) and is described in version Zigeof
Common Object Request Broker: Architecture and Specificati®R8 Interface
chapter,ORB Initializationsection.

// PIDL
module CORBA {
typedef string ORBId;
typedef sequence <string> arg_list;
ORB ORB._init (inout arg_list argv, in ORBId orb_identifier);

h
The mapping of the preceding PIDL operations to C++ is as follows:
Il C++
namespace CORBA {

typedef char* ORBId;

static ORB_ptr ORB_init(

int& argc,
char** argv,
const char* orb_identifier ="

)i

}

C++ Language Mapping June 1999

1

1.34 Object

The C++ mapping foORB _init deviates from the OMG IDL PIDL in its handling of
thearg_list parameter. This is intended to provide a meaningful PIDL definition of
the initialization interface, which has a natural C++ binding. To this end, the
arg_list structure is replaced witirgv andargc parameters.

Theargv parameter is defined as an unbound array of strictysr **) and the
number of strings in the array is passed indlge (int &) parameter.

If an empty ORBId string is used then argc arguments can be used to determine which
ORB should be returned. This is achieved by searchingrthe parameters for one
taggedORBId e.g.,-ORBid "ORBid_example.'If an empty ORBid string is used and

no ORB is indicated by thargv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBid string is pas§&#Boinit ,
theargv arguments are examined to determine if any ORB parameters are given. If a
non-empty ORBId string is passed@®RB_init , all -ORBidparameters in thargv

are ignored. All otherORB<suffix>parameters may be of significance during the

ORSB initialization process.

For C++, the order of consumption afgv parameters may be significant to an
application. In order to ensure that applications are not required to haggle
parameters they do not recognize the ORB initialization function must be called before
the remainder of the parameters is consumed. Therefore, aft@RiBeinit call the

argv andargc parameters will have been modified to remove the ORB understood
arguments. It is important to note that the ORB_init call can only reorder or remove
references to parameters from the argv list, this restriction is made in order to avoid
potential memory management problems caused by trying to free parts of the argv list
or extending the argv list of parameters. This is @lgv is passed aseéhar** and

not achar**&

The rules in this section apply to OMG IDL interfaDbject, the base of the OMG
IDL interface hierarchy. Interfac®bject defines a normal CORBA object, not a
pseudo object. However, it is included here because it references other pseudo objects

1.34.1 Object Interface

/I IDL
interface Object
{
boolean is_nil();
Object duplicate();
void release();
ImplementationDef get_implementation();
InterfaceDef get_interface();
boolean is_a(in string logical_type_id);
boolean non_existent();
boolean is_equivalent(in Object other_object);

C++ Language Mapping Object June 1999 1-125

unsigned long hash(in unsigned long maximum);
void create_request(

in Context ctx,

in Identifier operation,

in NVList arg_list,

in NamedValue result,
out Request request,
in Flags req_flags

);

void create_request2(

in Context ctx,

in Identifier operation,

in NVList arg_list,

in NamedValue result,

in ExceptionList exclist,

in ContextList ctxtlist,

out Request request,

in Flags req_flags
)i
Policy_ptr get_policy(in PolicyType policy_type);
DomainManagerList get_domain_managers();
Object set_policy_overrides(in PolicyList policies,

in SetOverrideType set_or_add);

1.34.2 Object C++ Class

In addition to other rules, all operation names in interfabgct have leading
underscores in the mapped C++ class. Also, the mappirgdate_request is split

into three forms, corresponding to the usage styles described in Section 1.30,
“Request,” on page 1-114 of this specification. Thenil andrelease functions are
provided in theCORBAnamespace, as described in Section 1.3.3, “Object Reference
Operations,” on page 1-8.

Il C++
class Object
{
public:
static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
ImplementationDef_ptr _get_implementation();
InterfaceDef_ptr _get_interface();
Boolean _is_a(const char* logical_type_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);

1-126 C++ Language Mapping June 1999

ULong _hash(ULong maximum);
void _create_request(
Context_ptr ctx,
const char *operation,

NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags

void _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags

);
Request_ptr _request(const char* operation);
Policy_ptr _get_policy(PolicyType policy_type);

DomainManagerList* _get_domain_managers();
Object_ptr _set _policy_overrides(

const PolicyList&,

SetOverrideType

h

1.35 Server-Side Mapping

Server-side mapping refers to the portability constraints for an object implementation
written in C++. The ternserveris not meant to restrict implementations to situations

in which method invocations cross address space or machine boundaries. This mapping
addresses any implementation of an OMG IDL interface.

1.36 Implementing Interfaces

To define an implementation in C++, one defines a C++ class with any valid C++
name. For each operation in the interface, the class defines a non-static member
function with the mapped name of the operation (the mapped name is the same as the
OMG IDL identifier except when the identifier is a C++ keyword, in which case the
string “_cxx_" is prepended to the identifier, as noted in Section 1.1, “Preliminary
Information,” on page 1-3). Note that the ORB implementation may allow one
implementation class to derive from another, so the statement “the class defines a
member function” does not mean the class must explicitly define the member
function—it could inherit the function.

C++ Language Mapping Server-Side Mapping June 1999 1-127

1-128

The mapping specifies two alternative relationships between the application-supplied
implementation class and the generated class or classes for the interface. Specifically,
the mapping requires support for batiheritance-basedelationships andelegation-
basedrelationships. CORBA-compliant ORB implementations are required to provide
both of these alternatives. Conforming applications may use either or both of these
alternatives.

1.36.1 Mapping of PortableServer::Servant

The PortableServer module for the Portable Object Adapter (POA) defines the native
Servant type. The C++ mapping fdervant is as follows:

/I C++
namespace PortableServer
{
class ServantBase
{
public:
virtual ~ServantBase();

virtual POA_ptr _default POA();

virtual InterfaceDef _ptr
_get_interface() throw(SystemException);

virtual Boolean
_is_a(const char* logical_type_id)
throw(SystemException);

virtual Boolean
_non_existent() throw(SystemException);

virtual void _add_ref();
virtual void _remove_ref();

protected:
ServantBase();
ServantBase(const ServantBaseg&);
ServantBase& operator=(const ServantBaseg&);
/I ...all other constructors...

3

typedef ServantBase* Servant;

}

The ServantBase destructor is public and virtual to ensure that skeleton classes
derived from it can be properly destroyed. The default constructor, along with other
implementation-specific constructors, must be protected so that instances of
ServantBase cannot be created except as sub-objects of instances of derived classes.
A default constructor (a constructor that either takes no arguments or takes only
arguments with default values) must be provided so that derived servants can be

C++ Language Mapping June 1999

1

constructed portably. Both copy construction and a protected default assignment
operator must be supported so that application-specific servants can be copied if
necessary. Note that copying a servant that is already registered with the object adapter,
either by assignment or by construction, does not mean that the target of the
assignment or copy is also registered with the object adapter. Similarly, assigning to a
ServantBase or a class derived from it that is already registered with the object
adapter does not in any way change its registration.

The default implementation of thelefault POA function provided by

ServantBase returns an object reference to the root POA of the default ORB in this
process—the same as the return value of an invocation of
ORB::resolve_initial_references("RootPOA") on the default ORB.

Classes derived fror8ervantBase can override this definition to return the POA of
their choice, if desired.

ServantBase provides default implementations of thget _interface ,_Is_a
and_non_existent object reference operations that can be overridden by derived
servants if the default behavior is not adequate. The POA invokes these just like normal
skeleton operations, thus allowing overriding definitions in derived servant classes to

use_this and thePortableServer::Current interface within their function
bodies.
For static skeletons, the default implementation of tpet_interface and_is_a

functions provided byservantBase use the interface associated with the skeleton
class to determine their respective return values. For dynamic skeletons
(seeSection 1.38, “Mapping of DSI to C++,” on page 1-144), these functions use the
_primary_interface function to determine their return values.

The default implementation ofnon_existent simply returns false.

Servant instances may implement reference counting to prevent themselves from being
destroyed while the application is still using them. Servant reference counting is
performed using theadd_ref and_remove_ref functions declared in

ServantBase . The default implementations ofdd ref and_remove_ref

supplied byServantBase do nothing:

/I C++
void PortableServer::ServantBase::_add_ref()
{
/I empty
}
void PortableServer::ServantBase::_remove_ref()
{
/I empty
}

For servants that need to perform actual reference counting, these functions are virtual
and thus may be overridden by derived servant classes. A default reference counting
mix-in class is also provided in the PortableServer namespace; please see

Section 1.36.2, “Servant Reference Counting Mix-In,” on page 1-130 for more details.

C++ Language Mapping Implementing Interfaces June 1999 1-129

1-130

Details concerning POA and application responsibilities with respect to reference
counting can be found inSection 1.36.4, “Servant Memory Management
Considerations,” on page 1-132.

1.36.2 Servant Reference Counting Mix-In

The PortableServer namespace also provides a standard servant reference
counting mix-in class:

/I C++
namespace PortableServer
{
class RefCountServantBase : public virtual ServantBase
{
public:
~RefCountServantBase();
virtual void _add_ref();
virtual void _remove_ref();
protected:
RefCountServantBase() : _ref _count(1) {}
RefCountServantBase(
const RefCountServantBase&
) : _ref _count(1) {}
RefCountServantBase&
operator=(const RefCountServantBase&);
private:
ULong _ref_count;
/I ...other implementation detalils...
3

}

The RefCountServantBase mix-in class overrides the inheriteddd_ref and

_remove_ref functions it inherits fronServantBase , implementing them to

provide true reference counting. An instance of a servant class derived from
RefCountServantBase initially has a reference count of one. Invokiredd_ref

on the servant instance increases its reference count by one. Invokingve_ref

on the servant instance decreases its reference count by one; if the resulting reference
count equals zero,remove_ref invokesdelete on itsthis pointer in order to

destroy the servant. For ORBs that operate in multi-threaded environments, the
implementations of add_ref and_remove_ref that the

RefCountServantBase class provides shall be thread-safe.

Like ServantBase , RefCountServantBase supports copy construction and the
default assignment operation. Copy construction always sets the reference count of the
new servant instance to one. The default assignment implementation merely returns
*this and does not affect the reference count.

C++ Language Mapping June 1999

1.36.3 ServantBase var Class

For the convenience of automatically managing servant reference counts, the
PortableServer namespace also provides the ServantBase_var class. This class behave
similarly to _var classes for object references (seeSection 1.3.1, “Object Reference
Types,” on page 1-7).

Il C++
namespace PortableServer

{

class ServantBase var
{
public:
ServantBase_var() : _ptr(0) {}
ServantBase_var(ServantBase* p) : _ptr(p) {}
ServantBase_var(const ServantBase_var& b)
. _ptr(b._ptr)
{
if (_ptr !'=0) _ptr->_add_ref();

~ServantBase_var()

if (_ptr '=0) _ptr->_remove_ref();

}
ServantBase_var& operator=(ServantBase* p)
{
if (_ptr '=0) _ptr->_remove_ref();
_ptr=p;
return *this;
}

ServantBase_var&
operator=(const ServantBaseBase_var& b)

{
if (_ptr!=b._ptr) {
if (_ptr '=0) _ptr->_remove_ref();
if (_ptr =b._ptr) '=0)
_ptr->_add_ref();
}
return *this;
}

ServantBase* operator->() const { return _ptr; }

ServantBase* in() const { return _ptr; }
ServantBase*& inout() { return _ptr; }
ServantBase*& out()
{
if (_ptr !=0) _ptr->_remove_ref();
_ptr=0;

C++ Language Mapping Implementing Interfaces June 1999 1-131

1-132

return _ptr;

}

ServantBase* _retn()

{
ServantBase* retval = _ptr;
_ptr=0;
return retval;

}

private:
ServantBase* _ptr;
2
}

The implementation shown above for tBervantBase var s intended only as an
example that conveys required semantics. Variations of this implementation are
possible as long as they provide the same semantics as the implementation shown here

1.36.4 Servant Memory Management Considerations

Portable memory management of servants requires an exact specification of when and
how a servant may be deleted. This specification supports but does not require
reference counting:

®* When reference counting is used, the implementatiomeshove_ref is assumed
to delete the servant when its reference count drops to zero. The POA ensures that
a servant will not be deleted while invocations are currently outstanding on that
servant by maintaining a reference to the servant until the invocations have
completed. For example, the POA may increment the reference count of the servant
before invoking the implementation (but affgeinvoke) and decrement the
reference count after the invocation (but befoostinvoke).

* |f reference counting is not used, some application code must explicitly call
delete on a heap-allocated servant for that servant's memory to be reclaimed.
Beware that explicit deletion of a servant will cause memory access violations if
that servant is still in use by some other part of the application. For example, if the
same servant instance was obtained fR@A::.reference_to_servant or
POA::id_to_servant (perhaps in another thread), the caller that obtained the
servant instance may still be using it. Also, explicit deletion may cause problems if
the same servant instance is registered in multiple POAs.

For each POAServantActivator , or ServantLocator operation that either passes a
Servant as a parameter or return$Sarvant , the following rules described caller
and callee memory management responsibilities:

® ServantActivator::incarnate —returns aServant . The POA may use
this Servant until it is passed tetherealize

® ServantActivator::etherealize —has ann Servant argument. The
POA assumes thatherealize consumes th8ervant argument, and does not
access &ervant in any way after it has been passedtioerealize . A
conforming implementation aftherealize may delete itServant argument

C++ Language Mapping June 1999

1

if the type of theServant uses the default reference counting inherited from
ServantBase and theServant instance has been heap-allocated. If the
application uses reference counting, 8ervant is consumed by invoking
_remove_ref on thatServant .

ServantLocator::preinvoke —returns aServant . The POA may use this
Servant until it is passed tpostinvoke

ServantLocator::postinvoke —has ann Servant argument. The POA
assumes thggostinvoke consumes th8ervant argument, and does not access
aServant in any way after it has been passegdstinvoke . A conforming
implementation opostinvoke = may delete itServant argument if the type of
the Servant uses the default reference counting inherited fRervantBase

and theServant instance has been heap-allocated. If the application uses
reference counting, th@ervant is consumed by invokingremove_ref on that
Servant .

POA:.get servant —returns aServant . The POA invokes add ref once

on theServant before returning it. If the application uses reference counting, the
caller ofget_servant s responsible for invokingremove_ref once on the
returnedServant when it is finished with it. A conforming caller need not invoke
_remove_ref on the returnedervant if the type of theServant uses the
default reference counting inherited fr@®ervantBase

POA:set_ servant —has anin Servant argument. The implementation of
set_servant will invoke _add_ref at least once on th&ervant argument
before returning. When the POA no longer needsStwant , it will invoke
_remove_ref on it the same number of times.

POA::activate_object —has ann Servant argument. The implementation
of activate_object will invoke _add_ref at least once on thgervant
argument before returning. When the POA no longer needSetivant , it will
invoke remove_ref on it the same number of times.

POA::activate_object_with_id —has ann Servant argument. The
implementation ofctivate object with_id will invoke _add_ref at least
once on the&servant argument before returning. When the POA no longer needs
the Servant , it will invoke remove_ref on it the same number of times.

POA::servant_to_id —has ann Servant argument. If this operation causes
the object to be activatedadd ref is invoked at least once on tBervant

argument before returning. Otherwise, the POA does not increment or decrement
the reference count of tigervant passed to this function.

POA::servant_to_reference —has ann Servant argument. If this
operation causes the object to be activatedld ref is invoked at least once on
the Servant argument before returning. Otherwise, the POA does not increment
or decrement the reference count of 8evant passed to this function.

POA::reference_to_servant —returns aServant . The POA invokes
_add_ref once on the&Sservant before returning it. If the application uses
reference counting, the caller dference_to_servant is responsible for

invoking_remove_ref once on the returneslervant when it is finished with it.

C++ Language Mapping Implementing Interfaces June 1999 1-133

A conforming caller need not invokeemove_ref on the returne®ervant if
the type of theServant uses the default reference counting inherited from
ServantBase

®* POA:id_to_servant —returns aServant . The POA invokes add_ref
once on the&servant before returning it. If the application uses reference
counting, the caller ofd_to_servant is responsible for invoking
_remove_ref once on the returneBervant when it is finished with it. A
conforming caller need not invokeemove _ref on the returne®ervant if the
type of theServant uses the default reference counting inherited from
ServantBase

The following operations do not receive or ret@grvants in their signatures, but
have behavior that may require invocations afld_ref or_remove_ref

®* this —invoked on aServant to obtain an object reference for an object
implemented by thaServant . If this operation causes the object to be activated,
_add_ref is invoked at least once on tBervant argument before returning.
Otherwise, the POA does not increment or decrement the reference count of the
Servant passed to this function.

® POA:deactivate_object —upon activation, add_ref is invoked on the
Servant . Therefore, the act of deactivation must causenove ref to be
invoked. If the POA has n8ervantActivator associated with it, the POA
implementation callsremove_ref when all operation invocations have
completed. If there is ServantActivator , the Servant is consumed by the call to
ServantActivator::etherealize instead.

® POA:destroy —upon activation of a servant or registration of a default servant,
_add_ref is invoked on th&ervant . Therefore, the destruction of a POA must
cause_remove_ref to be invoked. The POA implementation invokes
_remove_ref on any default servant. If the POA has $ervantActivator
associated with it, the POA implementation callemove_ref on each
Servant in the Active Object Map when all operation invocations have completed.
If there is aServantActivator , eachServant is consumed by the call to
ServantActivator::etherealize instead.

* POAManager::deactivate —upon activation of a servant or registration of a
default servant, add_ref is invoked on thé&ervant . Therefore, the destruction
of a POA must causeremove_ref to be invoked. letherealize_objects
is true the POA implementation invokeeemove_ref on any default servant. If
etherealize_objects is true and a managed POA does not have a
ServantActivator associated with it, the POA implementation invokes
_remove_ref on each Servant in that POA's Active Object Map after all
dispatched operations have completed. If thereSeraantActivator , each
Servant is consumed by the call ®ervantActivator:.etherealize instead.

Note that in those cases where the caller becomes responsible for invoking
_remove_ref on aServant returned to it, the caller can assign the return value to
a ServantBase var instance for automatic reference count management.

1-134 C++ Language Mapping June 1999

1.36.5 Skeleton Operations

All skeleton classes provide_ahis() member function. This member function has
three purposes:

1. Within the context of a request invocation on the target object represented by the
servant, it allows the servant to obtain the object reference for the target CORBA
object it is incarnating for that request. This is true even if the servant incarnates
multiple CORBA obijects. In this contextthis() can be called regardless of the
policies used to create the dispatching POA.

2. Outside the context of a request invocation on the target object represented by the
servant, it allows a servant to be implicitly activated if its POA allows implicit
activation. This requires the activating POA to have been created with the
IMPLICIT_ACTIVATION policy. If the POA was not created with the
IMPLICIT_ACTIVATION policy, thePortableServer::WrongPolicy exception is
thrown. The POA used for implicit activation is gotten by invoking
_default_POA() on the servant.

3. Outside the context of a request invocation on the target object represented by the
servant, it will return the object reference for a servant that has already been
activated, as long as the servant is not incarnating multiple CORBA objects. This
requires the POA with which the servant was activated to have been created with the
UNIQUE_ID and RETAIN policies. If the POA was created with the
MULTIPLE_ID or NON_RETAIN policies, thePortableServer::WrongPolicy
exception is thrown. The POA is gotten by invokirdgefault POA() on the
servant.

For example, for interfacA defined as follows:

/I IDL
interface A

{
short op1();

void op2(in long val);

I3

The return value ofthis() is a typed object reference for the interface type
corresponding to the skeleton class. For example, ttiie() function for the
skeleton for interfac& would be defined as follows:

/I C++
class POA_A : public virtual ServantBase

{
public:
A_ptr _this();

h

The _this() function follows the normal C++ mapping rules for returned object
references, so the caller assumes ownership of the returned object reference and musi
eventually callCORBA::release() on it.

C++ Language Mapping Implementing Interfaces June 1999 1-135

The _this() function can be virtual if the C++ environment supports covariant
return types, otherwise the function must be non-virtual so the return type can be
correctly specified without compiler errors. Applications usieis() the same way
regardless of which of these implementation approaches is taken.

AssumingA_impl is a class derived frolBOA_Athat implements thA interface,
and assuming that the servant’s POA was created with the appropriate policies, a
servant of typéA_impl can be created and implicitly activated as follows:

/I C++
A_impl my_a;
A_var a=my_a._this();

1.36.6 Inheritance-Based Interface Implementation

Implementation classes can be derived from a generated base class based on the OM(
IDL interface definition. The generated base classes are knoskekdon classesnd

the derived classes are knownimplementation classe&ach operation of the

interface has a corresponding virtual member function declared in the skeleton class.
The signature of the member function is identical to that of the generated client stub
class. The implementation class provides implementations for these member functions.
The object adapter typically invokes the methods via calls to the virtual functions of
the skeleton class.

Assume that IDL interfacA is defined as follows:

/I IDL
interface A
{
short op1();
void op2(in long val);

k

For IDL interfaceA as shown above, the IDL compiler generates an interface &lass
This class contains the C++ definitions for the typedefs, constants, exceptions,
attributes, and operations in the OMG IDL interface. It has a form similar to the
following:

/I C++
class A : public virtual Object

{
public:
virtual Short op1() = 0;
virtual void op2(Long val) = 0;

kh

Some ORB implementations might not use public virtual inheritance from
CORBA::Object , and might not make the operations pure virtual, but the signatures
of the operations will be the same.

1-136 C++ Language Mapping June 1999

1

On the server side, a skeleton class is generated. This class is partially opaque to the
programmer, though it will contain a member function corresponding to each operation
in the interface. For the POA, the name of the skeleton class is formed by prepending
the string “POA_" to the fully-scoped name of the corresponding interface, and the
class is either directly or indirectly derived from the servant base class
PortableServer::ServantBase . ThePortableServer::ServantBase

class must be a virtual base class of the skeleton to allow portable implementations to
multiply inherit from both skeleton classes and implementation classes for other base
interfaces without error or ambiguity.

The skeleton class for interfade shown above would appear as follows:

/I C++
class POA_A : public virtual PortableServer::ServantBase
{
public:
/I ...server-side implementation-specific detail
/I goes here...
virtual Short op1() throw(SystemException) = 0;
virtual void op2(Long val) throw(SystemException) = 0;

kh

If interface A were defined within a module rather than at global scegg,Mod::A ,
the name of its skeleton class would®@A Mod::A. This helps to separate server-
side skeleton declarations and definitions from C++ code generated for the client.

To implement this interface using inheritance, a programmer must derive from this
skeleton class and implement each of the operations in the OMG IDL interface. An
implementation class declaration for interfacavould take the form:

/I C++
class A_impl : public POA_A
{
public:
Short op1() throw(SystemException);
void op2(Long val) throw(SystemException);

h

Note that the presence of ththis() function implies that C++ servants must only

be derived directly from a single skeleton class. Direct derivation from multiple
skeleton classes could result in ambiguity errors due to multiple definitions of

_this() . This should not be a limitation, since CORBA objects have only a single
most-derived interface. Servants that are intended to support multiple interface types
can utilize the delegation-based interface implementation approach, described below in
“Delegation-Based Interface Implementation”, or can be registered as DSI-based
servants, as described in Section 1.38, “Mapping of DSI to C++,” on page 1-144.

C++ Language Mapping Implementing Interfaces June 1999 1-137

1-138

1.36.7 Delegation-Based Interface Implementation

Inheritance is not always the best solution for implementing servants. Using
inheritance from the OMG IDL—generated classes forces a C++ inheritance hierarchy
into the application. Sometimes, the overhead of such inheritance is too high, or it may
be impossible to compile correctly due to defects in the C++ compiler. For example,
implementing objects using existing legacy code might be impossible if inheritance
from some global class were required, due to the invasive nature of the inheritance.

In some cases delegation can be used to solve this problem. Rather than inheriting
from a skeleton class, the implementation can be coded as required for the application,
and a wrapper object will delegate upcalls to that implementation. This section
describes how this can be achieved in a type-safe manner using C++ templates.

For the examples in this section, the OMG IDL interface from Section 1.36.6,
“Inheritance-Based Interface Implementation,” on page 1-136 will again be used:

/I IDL
interface A

short op1();void op2(in long val);
¥

In addition to generating a skeleton class, the IDL compiler generates a delegating
class called aie. This class is partially opaque to the application programmer, though
like the skeleton, it provides a method corresponding to each OMG IDL operation. The
name of the generated tie class is the same as the generated skeleton class with the
addition that the string “_tie” is appended to the end of the name. For example:

/I C++
template<class T>
class POA_A _tie : public POA_A

{
public:

h

An instance of this template class performs the task of delegation. When the template
is instantiated with a class type that provides the operatioAstbén thePOA_A tie

class will delegate all operations to an instance of that implementation class. A
reference or pointer to the actual implementation object is passed to the appropriate tie
constructor when an instance of the tie class is created. When a request is invoked on
it, the tie servant will just delegate the request by calling the corresponding method in
the implementation object.

/I C++
template<class T>
class POA_A tie : public POA_A
{
public:
POA_A_tie(T&t)

C++ Language Mapping June 1999

. _ptr(&t), _poa(POA::_nil()), _rel(0) {}
POA A tie(T&t, POA_ptr poa)
;. ptr(&t),
_poa(POA::_duplicate(poa)), rel(0) {}
POA_A tie(T* tp, Boolean release = 1)
. _ptr(tp), _poa(POA::_nil()), _rel(release) {}
POA_A tie(T* tp, POA_ptr poa,
Boolean release = 1)
. _ptr(tp), _poa(POA::_duplicate(poa)),
_rel(release) {}
~POA_A tie()
{
CORBA::release(_poa);
if (_rel) delete _ptr;
}

/I tie-specific functions
T* tied_object() { return _ptr; }
void _tied_object(T& obj)

{
if (_rel) delete _ptr;
_ptr = &obj;
_rel=0;
}
void _tied_object(T* obj, Boolean release = 1)
{
if (_rel) delete _ptr;
_ptr = obj;
_rel = release;
}

Boolean _is_owner() { return _rel; }
void _is_owner(Boolean b) { _rel =b;}

/I IDL operations
Short op1() throw(SystemException)

{
return _ptr->op1();
}
void op2(Long val) throw(SystemException)
{
_ptr->op2(val);
}

/I override ServantBase operations
POA_ptr _default_POA()
{
if {CORBA::is_nil(_poa)) {
return PortableServer::POA::_duplicate(_poa);
}else {
[return root POA

}

C++ Language Mapping Implementing Interfaces June 1999 1-139

1-140

}

private:
T* _ptr;
POA_ptr _poa;
Boolean _rel;

/I copy and assignment not allowed

POA_A tie(const POA_A_tie&);

void operator=(const POA_A _tie&);
2

It is important to note that the tie example shown above contains sample
implementations for all of the required functions. A conforming implementation is free

to implement these operations as it sees fit, as long as they conform to the semantics in
the paragraphs described below. A conforming implementation is also allowed to
include additional implementation-specific functions if it wishes.

The T& constructors cause the tie servant to delegate all calls to the C++ object bound
to reference . Ownership for the object referred to bydoes not become the
responsibility of the tie servant.

TheT* constructors cause the tie servant to delegate all calls to the C++ object pointed
to bytp . Therelease parameter dictates whether the tie takes on ownership of the
C++ object pointed to bip ; if release is TRUE the tie adopts the C++ object,
otherwise it does not. If the tie adopts the C++ object being delegated to, it will
delete it when its own destructor is invoked, as shown above in the

~POA_A_tie() destructor.

The _tied_object() accessor function allows callers to access the C++ object
being delegated to. If the tie was constructed to take ownership of the C++ object
(release wasTRUEIn theT* constructor), the caller oftied_object() should

neverdelete the return value.

The first_tied_object() modifier function callgdelete on the current tied

object if the tie's release flag BRUE and then points to the new tie object passed in.
The tie’s release flag is set FALSE The second tied_object() modifier

function does the same, except that the final state of the tie’s release flag is determined
by the value of theelease argument.

The _is_owner() accessor function returdRRUEIf the tie owns the C++ object it

is delegating to, oFALSEf it does not. The is_owner() modifier function allows

the state of the tie’s release flag to be changed. This is useful for ensuring that memory
leaks do not occur when transferring ownership of tied objects from one tie to another,
or when changing the tied object a tie delegates to.

For delegation-based implementations it is important to note that the servant is the tie

object, not the C++ object being delegated to by the tie object. This means that the tie

servant is used as the argument to those POA operations that re§eimeant

argument. This also means that any operations that the POA calls on the servant, such

C++ Language Mapping June 1999

1

asServantBase::_default POA() , are provided by the tie servant, as shown by
the example above. The value returned bgfault POA() is supplied to the tie
constructor.

It is also important to note that by default, a delegation-based implementation (the
“tied” C++ instance) has no access to tlleis() function, which is available only

on the tie. One way for this access to be provided is by informing the delegation object
of its associated tie object. This way, the tie holds a pointer to the delegation object,
and vice-versa. However, this approach only works if the tie and the delegation object
have a one-to-one relationship. For a delegation object tied into multiple tie objects,
the object reference by which it was invoked can be obtained within the context of a
request invocation by calling

PortableServer::Current::get_object_id() , passing its return value to
PortableServer::POA::id_to_reference() , and then narrowing the

returned object reference appropriately.

In the tie class shown above, all the operations are shown as being inline. In practice,
it is likely that they will be defined out of line, especially for those functions that
override inherited virtual functions. Either approach is allowed by conforming
implementations.

The use of templates for tie classes allows the application developer to provide
specializations for some or all of the template’s member functions for a given
instantiation of the template. This allows the application to control how the tied object
is invoked. For example, tHeOA A tie<T>::0p2() operation is normally defined

as follows:

/I C++

template<class T>

void

POA_A tie<T>:0p2(Long val) throw(SystemException)
{

}

This implementation assumes that the tied object suppoxp(h operation with

the same signature and the ability to throw CORBA system exceptions. However, if the
application wants to use legacy classes for tied object types, it is unlikely they will
support these capabilities. In that case, the application can provide its own
specialization. For example, if the application already has a class rronetiat

supports dog_value() function, the tie clasep2() function can be made to call

it if the following specialization is provided:

_ptr->op2(val);

/I C++

void

POA_A tie<Foo>::0p2(Long val) throw(SystemException)
{

}

_tied_object()->log_value(val);

C++ Language Mapping Implementing Interfaces June 1999 1-141

Portable specializations like the one shown above should not access tie class data
members directly, since the names of those data members are not standardized.

For C++ implementations that do not support namespaces or the definition of template
classes inside other classes, tie template classes must be defined at global scope. For
these environments, the names of tie template classes shall be formed by “flattening”
the normal tie name, i.e., replacing all occurrences:of with “_". For example, in

such an environment the name of the tie template class for intédf&eC would be
POA_A_B_C tie.

1.37 Implementing Operations

1-142

The signature of an implementation member function is the mapped signature of the
OMG IDL operation. Unlike the client side, the server-side mapping requires that the
function header include the appropriate excepttarov) specification. This

requirement allows the compiler to detect when an invalid exception is raised, which is
necessary in the case of a local C++-to-C++ library call (otherwise the call would have
to go through a wrapper that checked for a valid exception). For example:

/I IDL
interface A

{

exception B {};
void f() raises(B);

¥
Il C++
class MyA : public virtual POA_A
{
public:
void f() throw(A::B, SystemException);
h

Since all operations and attributes may throw CORBA system exceptions,
CORBA::SystemException must appear in all exception specifications, even when
an operation has naises clause.

Within a member function, the “this” pointer refers to the implementation object’s data
as defined by the class. In addition to accessing the data, a member function may
implicitly call another member function defined by the same class. For example:

/I IDL
interface A
void f();
void g();
k

C++ Language Mapping June 1999

/I C++
class MyA : public virtual POA_A
{
public:
void f() throw(SystemException);
void g() throw(SystemException);
private:
long Xx_;

kh

void
MyA.::f() throw(SystemException)
{

this->x_ = 3;
this->g();
}

However, when a servant member function is invoked in this manner, it is being called
simply as a C++ member function, not as the implementation of an operation on a
CORBA object. In such a context, any information available visP®&_Current

object refers to the CORBA request invocation that performed the C++ member
function invocation, not to the member function invocation itself.

1.37.1 Skeleton Derivation From Object

In several existing ORB implementations, each skeleton class derives from the
corresponding interface class. For example, for interffdod::A , the skeleton class
POA_Mod::A is derived from clasMod::A . These systems therefore allow an object
reference for a servant to be implicitly obtained via normal C++ derived-to-base
conversion rules:

/I C++
MyImplOfA my_a; /I declare impl of A
A_ptra=&my a; /I obtain its object reference

/I by C++ derived-to-base
/I conversion

Such code can be supported by a conforming ORB implementation, but it is not
required, and is thus not portable. The equivalent portable code invithke§ on
the implementation object in order to implicitly register it if it has not yet been
registered, and to get its object reference:

/I C++
MyImplOfA my_a; /I declare impl of A
A_ptra=my_a._this(); // obtain its object

/I reference

C++ Language Mapping Implementing Operations June 1999 1-143

1

1.38 Mapping of DSI to C++

1-144

The Common Object Request Broker: Architecture and Specificabbgnamic
Skeleton InterfacehapterDSI: Language Mappingection contains general
information about mapping the Dynamic Skeleton Interface to programming
languages.

This section contains the following information:

® Mapping of the Dynamic Skeleton Interfac&srverRequest to C++
® Mapping of the Portable Object Adapter's Dynamic Implementation Routine to C++

1.38.1 Mapping of ServerRequest to C++

The ServerRequest pseudo object maps to a C++ class in@i@RBAnamespace
which supports the following operations and signatures:

/I C++
class ServerRequest
{
public:
const char* operation() const;
void arguments(NVList_ptr& parameters);
Context_ptr ctx();
void set_result(const Any& value);
void set_exception(const Any& value);
3

Note that, as with the rest of the C++ mapping, ORB implementations are free to make
such operations virtual and modify the inheritance as needed.

All of these operations follow the normal memory management rules for data passed
into skeletons by the ORB. That is, the DIR is not allowed to modify or change the
string returned byperation() , in parameters in thBlVList returned from
arguments() , or theContext returned byctx() . Similarly, data allocated by the
DIR and handed to the ORB (th&/List parameters) are freed by the ORB rather
than by the DIR.

1.38.2 Handling Operation Parameters and Results

The ServerRequest provides parameter values when the DIR invokes the
arguments() operation. TheNVList provided by the DIR to the ORB includes the
TypeCodes and directionFlags (insideNamedValues) for all parameters,

including out ones for the operation. This allows the ORB to verify that the correct
parameter types have been provided before filling their values in, but does not require
it to do so. It also relieves the ORB of all responsibility to consult an Interface
Repository, promoting high-performance implementations.

C++ Language Mapping June 1999

1

The NVList provided to the ORB then becomes owned by the ORB. It becomes
deallocated after the DIR returns. This allows the DIR to paseuhealues,
including the return side afiout values, to the ORB by modifying tiNVList after
arguments() has been called. Therefore, if the DIR storesNMeist_ptr into an
NVList var , it should pass it to therguments() function by invoking the
_retn() function on it, in order to force it to release ownership of its internal
NVList ptr to the ORB.

1.38.3 Mapping of PortableServer Dynamic Implementation Routine

In C++, DSI servants inherit from the stand&yhamiclmplementation class.

This class inherits from th8ervantBase class and is also defined in the
PortableServer namespace. The Dynamic Skeleton Interface (DSI) is
implemented through servants that are members of classes that inherit from dynamic
skeleton classes.

/I C++
namespace PortableServer
{
class Dynamiclmplementation : public virtual ServantBase
{
public:
Object_ptr _this();
virtual void invoke(
ServerRequest_ptr request
)=0;
virtual Repositoryld
_primary_interface(
const Objectld& oid,
POA_ptr poa

}

The _this() function returns £ORBA::Object_ptr for the target object. Unlike
_this() for static skeletons, its return type is not interface-specific because a DSI
servant may very well incarnate multiple CORBA objects of different types. If
Dynamiclmplementation::_this() is invoked outside of the context of a
request invocation on a target object being served by the DSI servant, it raises the
PortableServer::WrongPolicy exception.

Theinvoke() method receives requests issued to any CORBA object incarnated by
the DSI servant and performs the processing necessary to execute the request.

The _primary_interface() method receives aBbjectld value and a
POA ptr as input parameters and returns a vRlapositoryld representing the
most-derived interface for thaid .

It is expected that thimvoke() and_primary_interface() methods will be
invoked only by the POA in the context of serving a CORBA request. Invoking this
method in other circumstances may lead to unpredictable results.

C++ Language Mapping Mapping of DSI to C++ June 1999 1-145

1

1.39 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableServer::POA::Objectld type, as object identifiers. However, because C++
programmers will often want to use strings as object identifiers, the C++ mapping
provides several conversion functions that convert stringdbfectld and vice-
versa:

/I C++
namespace PortableServer

{
char* Objectld_to_string(const Objectld&);

WChar* Objectld_to_wstring(const Objectld&);

Obijectld* string_to_Objectld(const char*);
Objectld* wstring_to_Objectld(const WChar?*);

}

These functions follow the normal C++ mapping rules for parameter passing and
memory management.

If conversion of arDbjectld to a string would result in illegal characters in the
string (such as a NUL), the first two functions throw @@RBA::BAD_PARAM
exception.

1.40 Mapping for PortableServer::ServantManager

1-146

1.40.1 Mapping for Cookie

SincePortableServer::ServantLocator::Cookie is an IDL native type, its type
must be specified by each language mapping. In Cobkie maps tovoid* :

/I C++
namespace PortableServer

{

class ServantLocator {

typedef void* Cookie;
h
}
For the C++ mapping of thRortableServer::ServantLocator::preinvoke()

operation, theCookie parameter maps to@ookie& , while for thepostinvoke()
operation, it is passed aLLaokie .

C++ Language Mapping June 1999

1.40.2 ServantManagers and AdapterActivators

Portable servants that implement fertableServer::AdapterActivator ,

the PortableServer::ServantActivator , or

PortableServer::ServantLocator interfaces are implemented just like any

other servant. They may use either the inheritance-based approach or the tie approact

1.40.3 Server Side Mapping for Abstract Interfaces

The only circumstances under which an IDL compiler should generate C++ code for
abstract interfaces for the server side are when either an interface is derived from an
abstract interface, or whenvaluetype supports an abstract interface indirectly

through one or more intermediate regular interface types. Abstract interfaces by
themselves cannot be directly implemented or instantiated by portable applications.
Because of this, standard C++ skeleton classes for abstract interfaces are not necessat

The requirements for the C++ server-side mapping for abstract interfaces are therefore
quite simple:

® The IDL compiler shall ensure that POA skeletons for interfaces derived from
abstract interfaces somehow include pure virtual functions for the IDL opergtions
defined in the base abstract interface(s). These functions can either be generated
directly into the POA skeleton class, or can be generated into an implementation-
specific base class inherited by the POA skeleton. If the latter approach is used, it
must be done in a way that does not require special constructor invocations by
application-supplied servant classes (for example, if it were a virtual base class
without a default constructor, it would require the most derived servant class to
explicitly initialize it in its own constructor member initialization lists).

1.41 C++ Definitions for CORBA

This section provides a partial set of C++ definitions for@@RBA module. The
definitions appear within the C++ namespace na@@RBA

/I C++
namespace CORBA({ ... }

Any implementations shown here are merely sample implementations: they are not the
required definitions for these types. Furthermore, in some cases these types do not
define the complete interfaces of their IDL counterparts; if any type is missing one or
more operations, those operations are assumed to follow normal C++ mapping rules for
their signatures, parameter passing rules, memory management rules, etc.

19. This refers only to the operations defined in IDL, not to the C++-specific _duplicate,
_narrow, and _nil functions supplied by all abstract interface C++ classes.

C++ Language Mapping C++ Definitions for CORBA June 1999 1-147

1-148

1.41.1 Primitive Types

typedef unsigned char
typedef unsigned char
typedef wchar_t
typedef unsigned char
typedef short

typedef unsigned short
typedef long

typedef ...

typedef unsigned long
typedef ...

typedef float

typedef double
typedef long double

typedef Boolean&
typedef Char&
typedef WChar&
typedef Octet&
typedef Short&
typedef UShort&
typedef Long&
typedef LongLong&
typedef ULong&
typedef ULongLong&
typedef Float&
typedef Double&
typedef LongDouble&

class String_var

{
public:
String_var();

String_var(char *p);

Boolean;
Char;
WChar;
Octet;
Short;
UShort;
Long;
LongLong;
ULong;
ULongLong;
Float;
Double;
LongDouble;

Boolean_out;
Char_out;
WChar_out;
Octet_out;
Short_out;
UShort_out;
Long_out;
LonglLong_out;
ULong_out;
ULongLong_out;
Float_out;
Double_out;
LongDouble_out;

1.41.2 String_var and String_out Class

String_var(const char *p);
String_var(const String_var &s);

~String_var();

String_var &operator=(char *p);
String_var &operator=(const char *p);
String_var &operator=(const String_var &s);

operator char*();

operator const char*() const;

C++ Language Mapping June 1999

const char* in() const;
char*& inout();
char*& out();

char* _retn();

char &operator[](ULong index);
char operator[](ULong index) const;

kh

class String_out
{
public:

String_out(char*& p);
String_out(String_var& p);
String_out(String_out& s);
String_out& operator=(String_out& s);
String_out& operator=(char* p);
String_out& operator=(const char* p)

operator char*&();
char*& ptr();

private:
[/l assignment from String_var disallowed
void operator=(const String_var&);

k

1.41.3 WString_var and WString_out

The WString_var andWString_out types are identical t8tring_var and
String_out , respectively, except that they operate on wide string and wide character
types.

1.41.4 Fixed Class

class Fixed
{
public:

/I Constructors
Fixed(int val = 0);
Fixed(unsigned val);
Fixed(Long val);
Fixed(ULong val);
Fixed(LongLong val);
Fixed(ULongLong val);
Fixed(Double val);
Fixed(LongDouble val);
Fixed(const Fixed& val);
Fixed(const char *);
~Fixed();

C++ Language Mapping C++ Definitions for CORBA June 1999 1-149

/I Conversions

operator LongLong() const;
operator LongDouble() const;
Fixed round(UShort scale) const;
Fixed truncate(UShort scale) const;

/I Operators

Fixed& operator=(const Fixed& val);
Fixed& operator+=(const Fixed& val);
Fixed& operator-=(const Fixed& val);
Fixed& operator*=(const Fixed& val);
Fixed& operator/=(const Fixed& val);

Fixed& operator++();
Fixed operator++(int);
Fixed& operator--();

Fixed operator--(int);
Fixed operator+() const;
Fixed operator-() const;
Boolean operator!() const;

/I Other member functions
UShort fixed_digits() const;
UShort fixed_scale() const;

k

istream& operator>>(istream& is, Fixed& val);
ostream& operator<<(ostreamé& o0s, const Fixed& val);

Fixed operator + (const Fixed& vall, const Fixed& val2);
Fixed operator - (const Fixed& vall, const Fixed& val2);
Fixed operator * (const Fixed& vall, const Fixed& val2);
Fixed operator / (const Fixed& vall, const Fixed& val2);

Boolean operator > (const Fixed& vall, const Fixed& val2);
Boolean operator < (const Fixed& vall, const Fixed& val2);
Boolean operator >= (const Fixed& vall, const Fixed& val2);
Boolean operator <= (const Fixed& vall, const Fixed& val2);
Boolean operator == (const Fixed& vall, const Fixed& val2);
Boolean operator != (const Fixed& vall, const Fixed& val2);

1.41.5 Any Class

class Any
{
public:
Any();
Any(const Any&);

1-150 C++ Language Mapping June 1999

Any(TypeCode_ptr tc, void *value,
Boolean release = FALSE);

~Any();
Any &operator=(const Any&);

/I special types needed for boolean, octet, char,
/I and bounded string insertion
/I these are suggested implementations only
struct from_boolean {
from_boolean(Boolean b) : val(b) {}
Boolean val;
3
struct from_octet {
from_octet(Octet o) : val(o) {}
Octet val;

kh

struct from_char {
from_char(Char c) : val(c) {}
Char val;

3

struct from_wechar {
from_char(WChar c) : val(c) {}

WChar val;

3

struct from_string {
from_string(char* s, ULong b,

Boolean n = FALSE) :
val(s), bound(b), nocopy(n) {}
from_string(const char* s, ULong b) :

val(const_cast<char*>(s)), bound(b),
nocopy(0) {}
char *val;
ULong bound;
Boolean nocopy;
3
struct from_wstring {
from_wstring(WChar* s, ULong b,
Boolean n = FALSE) :
val(s), bound(b), nocopy(n) {}
from_wstring(const WChar*, ULong b) :
val(const_cast<WChar*>(s)), bound(b),
nocopy(0) {}
WChar *val;
ULong bound;
Boolean nocopy;
2
struct from_fixed {
from_fixed(const Fixed& f, UShort d, UShort s)

C++ Language Mapping C++ Definitions for CORBA June 1999 1-151

1-152

: val(f), digits(d), scale(s) {}
const Fixed& val;
UShort digits;
UShort scale;

k

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_wchar);
void operator<<=(from_octet);
void operator<<=(from_string);
void operator<<=(from_wstring);
void operator<<=(from_fixed);

Il special types needed for boolean, octet,
/I char extraction
/l these are suggested implementations only
struct to_boolean {
to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;
3
struct to_char {
to_char(Char &c) : ref(c) {}
Char &ref;
|3
struct to_wchar {
to_wchar(WChar &c) : ref(c) {}
WChar &ref;

k

struct to_octet {
to_octet(Octet &0) : ref(o) {}
Octet &ref;
3
struct to_object {
to_object(Object_out obj) : ref(obj) {}
Object_ptr &ref;
3
struct to_string {
to_string(const char *&s, ULong b)
: val(s), bound(b) {}
const char *&val,
ULong bound;

/I the following constructor is deprecated
to_string(char *&s, ULong b) : val(s), bound(b) {}
k
struct to_wstring {
to_wstring(const WChar *&s, ULong b)
: val(s), bound(b) {}
const WChar *&val;

C++ Language Mapping June 1999

ULong bound;

/I the following constructor is deprecated
to_wstring(WChar *&s, ULong b)
: val(s), bound(b) {}
3
struct to_fixed {
to_fixed(Fixed& f, UShort d, UShort s)
: val(f), digits(d), scale(s) {}
Fixed& val;
UShort digits;
UShort scale;
3
struct to_abstract_base {
to_abstract_base(AbstractBase ptr& base)
: ref(base) {}
AbstractBase_ptr& ref;

h

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;

Boolean operator>>=(to_wchar) const;
Boolean operator>>=(to_octet) const;

Boolean operator>>=(to_object) const;
Boolean operator>>=(to_string) const;
Boolean operator>>=(to_wstring) const;
Boolean operator>>=(to_fixed) const;

Boolean operator>>=(to_abstract_base) const;

void replace(TypeCode_ptr, void *value,
Boolean release = FALSE);

TypeCode_ptr type() const;
void type(TypeCode_ptr);
const void *value() const;

private:

char

3

/I these are hidden and should not be implemented
/] so as to catch erroneous attempts to insert
/I or extract multiple IDL types mapped to unsigned

void operator<<=(unsigned char);
Boolean operator>>=(unsigned char&) const;

void operator<<=(Any&, Short);
void operator<<=(Any&, UShort);
void operator<<=(Any&, Long);
void operator<<=(Any&, ULong);
void operator<<=(Any&, Float);
void operator<<=(Any&, Double);

C++ Language Mapping C++ Definitions for CORBA June 1999

1-153

1-154

void operator<<=(Any&, LonglLong);

void operator<<=(Any&, ULongLong);

void operator<<=(Any&, LongDouble);

void operator<<=(Any&, const Any&); /I copying

void operator<<=(Any&, Any*); // non-copying
void operator<<=(Any&, const char*);

void operator<<=(Any&, const WChar*);

Boolean operator>>=(const Any&, Short&);
Boolean operator>>=(const Any&, UShort&);
Boolean operator>>=(const Any&, Long&);
Boolean operator>>=(const Any&, ULong&);
Boolean operator>>=(const Any&, Float&);
Boolean operator>>=(const Any&, Double&);
Boolean operator>>=(const Any&, LongLong&);
Boolean operator>>=(const Any&, ULongLong&);
Boolean operator>>=(const Any&, LongDouble&);
Boolean operator>>=(const Any&, const Any*&);
Boolean operator>>=(const Any&, const char*&);
Boolean operator>>=(const Any&, const WChar*&);

1.41.6 Any var Class

class Any_var
{
public:
Any_var();
Any_var(Any *a);
Any_var(const Any_var &a);
~Any_var();

Any_var &operator=(Any *a);
Any_var &operator=(const Any_var &a);

Any *operator->();
const Any& in() const;
Anyé& inout();

Any*& out();

Any* _retn();

/I other conversion operators for parameter passing

C++ Language Mapping June 1999

1.41.7 Exception Class

Il C++
class Exception
{
public:
Exception(const Exception &);
virtual ~Exception();
Exception &operator=(const Exception &);
virtual void _raise() const = 0;
protected:
Exception();
h

1.41.8 SystemException Class

/I C++

enum CompletionStatus { COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE };

class SystemException : public Exception

{

public:
SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

CompletionStatus completed() const;
void completed(CompletionStatus);

virtual void _raise() const = 0;
static SystemException* _downcast(Exception*);

static const SystemException* _downcast(
const Exception*

);

C++ Language Mapping C++ Definitions for CORBA June 1999 1-155

1-156

1.41.9 UserException Class

Il C++

class UserException : public Exception

{

k

public:

);

UserException();

UserException(const UserException &);
~UserException();

UserException &operator=(const UserException &);

virtual void _raise() const = 0;
static UserException* _downcast(Exception®*);

static const UserException* _downcast(
const Exception*

1.41.10 UnknownUserException Class

/I C++
class UnknownUserException : public UserException
{
public:
Any &exception();
static UnknownUserException* _downcast(Exception*);
static const UnknownUserException* _downcast(
const Exception*
);
virtual void raise();
3

C++ Language Mapping June 1999

1.41.11 release and is_nil

Il C++
namespace CORBA {
void release(Object_ptr);

void release(Environment_ptr);
void release(NamedValue_ptr);
void release(NVList_ptr);
void release(Request_ptr);
void release(Context_ptr);
void release(TypeCode_ptr);
void release(POA_ptr);
void release(ORB_ptr);

Boolean is_nil(Object_ptr);
Boolean is_nil(Environment_ptr);
Boolean is_nil(NamedValue_ptr);
Boolean is_nil(NVList_ptr);
Boolean is_nil(Request_ptr);
Boolean is_nil(Context_ptr);
Boolean is_nil(TypeCode_ptr);
Boolean is_nil(POA_ptr);
Boolean is_nil(ORB_ptr);

1.41.12 Obiject Class

/I C++
class Object
{
public:
static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
InterfaceDef_ptr _get_interface();
Boolean _is_a(const char* logical_type_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);
ULong _hash(ULong maximum);
void _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags

C++ Language Mapping C++ Definitions for CORBA June 1999

1-157

void _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags

)i
Request_ptr _request(const char* operation);
Policy_ptr _get_policy(PolicyType policy_type);

DomainManagerList* _get_domain_managers();
Object_ptr _set_policy_overrides(
const PolicyList& policies,
SetOverrideType set_or_add
)i
h

1.41.13 Environment Class

Il C++
class Environment
{
public:
void exception(Exception*);
Exception *exception() const;
void clear();
static Environment_ptr _duplicate(Environment_ptr ev);
static Environment_ptr _nil();
h

1.41.14 NamedValue Class

/I C++
class NamedValue
{
public:
const char *name() const;
Any *value() const;
Flags flags() const;
static NamedValue_ptr _duplicate(NamedValue_ptr nv);
static NamedValue_ptr _nil();
3

1-158 C++ Language Mapping June 1999

1.41.15 NVList Class

Il C++

class NVList

{

public:

k

ULong count() const;
NamedValue_ptr add(Flags);

NamedValue_ptr add_item(const char*, Flags);

NamedValue_ptr add_value(const char*, const Any&,

Flags);
NamedValue_ptr add_item_consume(
char*,
Flags
);
NamedValue_ptr add_value_consume(
char*,
Any *|
Flags
)i
NamedValue_ptr item(ULong);
void remove(ULong);

static NVList_ptr _duplicate(NVList_ptr nv);
static NVList_ptr _nil();

1.41.16 ExceptionList Class

Il C++

class ExceptionList

{

public:

ULong count();

void add(TypeCode_ptr tc);

void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
void remove(ULong index);

C++ Language Mapping C++ Definitions for CORBA

June 1999

1-159

1-160

1.41.17 ContextList Class

class ContextList

{

public:

ULong count();

void add(const char* ctxt);

void add_consume(char* ctxt);
const char* item(ULong index);
void remove(ULong index);

1.41.18 Request Class

Il C++

class Request

{

public:

Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

Any& add_in_arg();

Any& add_in_arg(const char* name);
Any& add_inout_arg();

Anyé& add_inout_arg(const char* name);
Any& add_out_arg();

Anyé& add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Anyé& return_value();

void invoke();

void send_oneway();
void send_deferred();
void get_response();
Boolean poll_response();

static Request_ptr _duplicate(Request_ptr req);
static Request_ptr _nil();

C++ Language Mapping June 1999

1.41.19 Context Class

Il C++
class Context
{
public:
const char *context_name() const;
Context_ptr parent() const;

void create_child(const char*, Context_out);
void set_one_value(const char*, const Any&);
void set_values(NVList_ptr);

void delete_values(const char*);
void get_values(const char*, Flags, const char*,
NVList_out);

static Context_ptr _duplicate(Context_ptr ctx);
static Context_ptr _nil();

3

1.41.20 TypeCode Class

/I C++
class TypeCode

{
public:
class Bounds : public UserException { ... };
class BadKind : public UserException{ ... };

TCKind kind() const;

Boolean equal(TypeCode_ptr) const;

Boolean equivalent(TypeCode_ptr) const;
TypeCode_ptr get_compact_typecode() const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;
Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;

Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;

C++ Language Mapping C++ Definitions for CORBA June 1999

1-161

UShort fixed_digits() const;
Short fixed_scale() const;

Visibility member_visibility(ULong index) const;
ValuetypeModifier type_modifier() const;
TypeCode_ptr concrete_base_type() const;

static TypeCode_ptr _duplicate(TypeCode_ptr tc);
static TypeCode_ptr _nil();
h

1.41.21 ORB Class

Il C++
class ORB
{
public:
typedef sequence<Request_ptr> RequestSeq;
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char*);
void create_list(Long, NVList_out);
void create_operation_list(OperationDef_ptr,
NVList_out);
void create_named_value(NamedValue_out);
void create_exception_list(ExceptionList_out);
void create_context_list(ContextList_out);
void get_default_context(Context_out);
void create_environment(Environment_out);
void send_multiple_requests_oneway(
const RequestSeq&
)i
void send_multiple_requests_deferred(
const RequestSeq&
);
Boolean poll_next_response();
void get_next_response(Request_out);

/I Obtaining initial object references
typedef char* Objectld;
class ObjectldList {...};
class InvalidName : public UserException {...};
ObjectldList *list_initial_services();
Object_ptr resolve_initial_references(
const char *identifier

):

1-162 C++ Language Mapping June 1999

Boolean work _pending();

void perform_work();

void shutdown(Boolean wait_for_completion);
void run();

Boolean get_service_information(
ServiceType svc_type,
Servicelnformation_out svc_info

);

typedef char* Objectld;

class ObjectldList{ ... };

Object_ptr resolve_initial_references(const char* id);
ObijectldList* list_initial_services();

Policy ptr create_policy(
PolicyType type,
const Any& val

);

static ORB_ptr _duplicate(ORB_ptr orb);
static ORB_ptr _nil();

1.41.22 ORSB Initialization

Il C++
typedef char* ORBId;
static ORB_ptr ORB_init(
int& argc,
char** argv,
const char* orb_identifier =

1.41.23 General T_out Types

/I C++
class T_out

{
public:
T out(T*& p) : ptr_(p) { ptr_=0;}
T out(T_var& p) : ptr_(p.ptr_) {
delete ptr_;
ptr_=0;

C++ Language Mapping C++ Definitions for CORBA June 1999

1-163

T_out(T_out& p) : ptr_(p-ptr_) {}
T_out& operator=(T_out& p) {
ptr_ = p.ptr_;
return *this;

}
T_out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

/[assignment from T_var not allowed
void operator=(const T_var&):

h
1.42 Alternative Mappings For C++ Dialects

1.42.1 Without Namespaces

If the target environment does not supportrtamespace construct but does support

nested classes, then a module should be mapped to a C++ class. If the environment does
not support nested classes, then the mapping for modules should be the same as for the
CORBA C mapping (concatenating identifiers using an underscore (*_") character as the
separator). Note that module constants map to file-scope constants on systems that suppo
namespaces and class-scope constants on systems that map modules to classes.

1.42.2 Without Exception Handling

For those C++ environments that do not support real C++ exception handling, referred to
here ason-exception handling (non-EH) C++ environmem@BEnvironment parame-
ter passed to each operation is used to convey exception information to the caller.

As shown in Section 1.27, “Environment,” on page 1-110Eim&ronment class sup-
ports the ability to access and modify theception it holds.

As shown in Section 1.19, “Mapping for Exception Types,” on page 1-94, both user-
defined and system exceptions form an inheritance hierarchy that normally allow types to
be caught either by their actual type or by a more general base type. When used in a non-
EH C++ environment, the narrowing functions provided by this hierarchy allow for exam-
ination and manipulation of exceptions:

1-164 C++ Language Mapping June 1999

/I IDL

interface A

{
exception Broken{ ... };
void op() raises(Broken);

k

/I C++
Environment ev;
A_ptrobj = ...
obj->op(ev);
if (Exception *exc = ev.exception()) {
if (A::Broken *b = A::Broken::_narrow(exc)) {
/I deal with user exception
}else {
/l must have been a system exception
SystemException *se = SystemException::_narrow(exc);

}
}
Section 1.33, “ORB,” on page 1-121 specifies thatironment must be created using
ORB::create_environment , but this is overly constraining for implementations

requiring anEnvironment to be passed as an argument to each method invocation. For
implementations that do not support real C++ exceptiBngironment may be allo-

cated as a static, automatic, or heap variable. For example, all of the following are legal
declarations on a non-EH C++ environment:

Il C++
Environment global_env; // global
static Environment static_env; /I file static

class MyClass

{
public:
private:
static Environment class_env; /I class static
h
void func()
{
Environment auto_env; /I auto
Environment *new_env = new Environment;// heap
}

For ease of us&nvironment parameters are passed by reference in non-EH environ-
ments:

C++ Language Mapping Alternative Mappings For C++ Dialects June 1999 1-165

1.43 C++ Keywords

1-166

/I IDL

interface A

{
exception Broken { ... };
void op() raises(Broken);

h

Il C++

class A ...

{

public:

void op(Environment &);

h

For additional ease of use in non-EH environmdesjronment should support copy
construction and assignment from otB®wvironment objects. These additional fea-
tures are helpful for propagating exceptions fromBneronment to another under
non-EH circumstances.

When an exception is “thrown” in a non-EH environment, object implementors and ORB
runtimes must ensure that alit and return pointers are returned to the caller as null
pointers. If non-initialized or “garbage” pointer values are returned, client application
code could experience runtime errors due to the assignment of bad poiiitevarto

types. When & _var goes out of scope, it attemptdmlete theT* given to it; if this
pointer value is garbage, a runtime error will almost certainly occur. Exceptions in non-EH
environments need not support the virtualise() function, since the only useful
implementation of it in such an environment would be to abort the program.

Table 1-7 lists all C++ keywords from the 2 December 1996 Working Paper of the
ANSI (X3J16) C++ Language Standardization Committee.

Table 1-7 C++ Keywords

and and_eq asm auto bitand bitor
bool break case catch char class
compl const const_cast continue default delete
do double dynamic_cast else enum explicit
export extern false float for friend
goto if inline int long mutable
namespace new not not_eq operator or
or_eq private protected public register reinterpret_cast
return short signed sizeof static static_cast
struct switch template this throw true
try typedef typeid typename union unsigned
using virtual void volatile wchar_t while
xor Xor_eq

C++ Language Mapping June 1999

Index

Symbols

_duplicate 1-8, 1-9

_narrow 1-9, 1-97

_nil 1-10

_ptr field accessor 1-28

_tie_Aclass 1-138

_var 1-8

‘release’ Constructor Parameter 1-44

A
A_ptr 1-7, 1-165
A var 1-7
abstract base class 1-6
Abstract Interfaces 1-92
Abstract Valuetypes 1-83
access function 1-34
aggregate type 1-100
alias 1-49
ANSI/ISO C++ standardization committees 1-3, 1-166
Any 1-80
Any Class 1-65
Any class
helper types 1-57
any class 1-150
Any Type 1-50
any type 1-50
conversion of typed values into 1-50
Any_var 1-65
Any_var Class 1-65
ARef 1-7
Argument 1-99
array slice 1-36
Array Types 1-46, 1-81
Array_forany 1-48
Array_var 1-48
assignment operator 1-21, 1-34, 1-64
Assignment Operators 1-68
Attributes 1-99

B
BAD_PARAM exception 1-103
base exception class 1-95
base interface type 1-8
Basic Data Types 1-15
basic data types
and different platforms 1-16
mapped from OMG IDL to C++ 1-15
basic object adapter 1-136
Basic Types 1-75
boolean 1-57
boolean type 1-15, 1-16
boolean types 1-15
bounded string 1-57
bounded wstring 1-57

C
C++ 1-99
_duplicate 1-8, 1-9
_narrow 1-9, 1-97
_nil 1-10
_ptr field accessor 1-28

_tie_Aclass 1-138
_var 1-8
A* 1-7
A_ptr 1-7, 1-165
A var 1-7
abstract base class 1-6
aggregate types 1-100
alias 1-49
and struct 1-27
Any class interface 1-57
any type 1-62
Any_var 1-65
ARef 1-7
arglist 1-125
arithmetic operations 1-7
array 1-46
array slice 1-36
Array_forany 1-48
Array_var 1-48
assignment operator 1-34
basic data type mapping 1-15
boolean type 1-16
catch clause 1-96
char type 1-16
char* 1-17
CompletionStatus 1-95
constant 1-13
Context interface, OMG PIDL for 1-118
conversion to void* 1-7
CORBA

Object 1-107
CORBA Boolean 1-15
CORBA Char 1-15
CORBA Double 1-15
CORBA Float 1-15
CORBA long 1-15
CORBA namespace 1-147
CORBA Octet 1-15
CORBA Short 1-15
CORBA ULong 1-15
CORBA UShort 1-15
delete 1-23
discriminant 1-33
Double 1-16
duplicate 1-8
dynamic_cast<T*> 1-97
enumeration type 1-17
Environment 1-165
Environment interface, OMG PIDL for 1-110
Float 1-16
function overloading 1-50, 1-51
generated class 1-6
implicit release 1-7
implicit widening 1-7
insertion of a string type 1-52
insertion of arrays,type-safe 1-53
is_nil operation 1-8
keywords 1-5, 1-166
keywords, list of 1-166
left-shift-assign operator 1-52
Long 1-16

C++ Language Mapping

Index-1

Index

mapped for non-exception handling environments 1-164
mapped for non-namespace environments 1-164
mapped to ORB initialization operations 1-124

mapping compatability to C 1-4
modifier function 1-36

NamedValue interface, OMG PIDL for 1-111

namespace 1-3, 1-5

nested constant 1-13

NVList interface, OMG PIDL for 1-112
NVList type 1-144

Object interface, OMG PIDL for 1-125
object reference variable type 1-7
Object_ptr 1-8

Object_var 1-8

octet type 1-16

oneway 1-99

operation-specific arguments 1-99
operator< 1-51

operator-> 1-23

operator>>= 1-55

operator[] 1-41

ORB interface, OMG PIDL for 1-121
ORB._init operation 1-125
overloaded subscript operator 1-41
parameter passing 1-100

pointer type 1-7

portability of implementations 1-16
primitive type 1-148

read-write access 1-36

relational operations 1-7

release operation 1-8

release parameter 1-40

replace function 1-63

Request interface, OMG PIDL for 1-116
returning or passing null pointers 1-102
right-shift-operator 1-55

run time type information 1-97
sample interface mapping 1-11
sequence types 1-39

server 1-127

set function 1-99

setting union value 1-34

sizeof(T) 1-5

skeleton class 1-137

slice 1-47

split allocation 1-100

string union members 1-37
String_var 1-17

structured types 1-21
SystemException 1-95

T *data constructor 1-40

T_ptr* 1-42

T var 1-21, 1-166

template 1-138

throw exception 1-142

tie class 1-138

type function 1-63

TypeCode 1-51

TypeCode and value, mismatched 1-50
TypeCode_ptr 1-64, 1-120

typedef 1-49

ULong 1-16
underscore 1-127
union members 1-33
unsafe operations 1-62
untyped value 1-62
UserException 1-94
UShort 1-16
using statement 1-4, 1-5
value function 1-63
void* 1-63
C++ definitions 1-147
C++ Type Size Requirements 1-5
catch clause 1-96
caught 1-96
char 1-57
char type 1-15, 1-16
char* 1-17
char** 1-42
Client Side Mapping 1-93
CompletionStatus 1-95
compliance viii
constant 1-14
Constructors 1-64, 1-68
Context 1-118
Context interface
OMG PIDL for 1-118
Cookie 1-146
copy constructor 1-21, 1-64
CORBA
contributors viii
namespace 1-147
Object 1-107
CORBA module
C++ definitions for 1-147
object class 1-8
core, compliance viii
Custom Marshaling 1-90

D

default constructor 1-64

Destructors 1-68

discriminant 1-33

double type 1-15

DSl 1-144

duplicate 1-9

duplicate operation 1-8

Dynamic Skeleton interface
mapped to C++ 1-144

dynamic_cast<T*> 1-97

E
enumeration type 1-17
Enums 1-17, 1-75
Environment interface
OMG PIDL for 1-110
Exception Types 1-94
exceptions 1-99
Extraction from any 1-55

F
Fixed 1-80

Index-2 C++ Language Mappings

Index

Fixed Point Constants 1-15

Fixed T_var and T_out Types 1-33
Fixed Types 1-30

float type 1-15

G

generated class 1-6
generic pointer 1-62
get function 1-99

|
Insertion into any 1-51
interface inheritance 1-7
interoperability, compliance viii
interworking

compliance viii
is 1-9
is_nil operation 1-8

L
left-shift-assign operator 1-52
long type 1-15

M

Mapping for Abstract Interfaces 1-92
Mapping for Array Types 1-46
Mapping for Basic Data Types 1-15
Mapping for Constants 1-13
Mapping for Cookie 1-146

Mapping for Enums 1-17

Mapping for Exception Types 1-94
Mapping for Fixed Types 1-30
Mapping for Interfaces 1-6

Mapping for Modules 1-5

Mapping For Operations and Attributes 1-99
Mapping for PortableServer

ServantManager 1-146
Mapping for Sequence Types 1-39
Mapping for String Types 1-17
Mapping for Struct Types 1-27
Mapping for Structured Types 1-21
Mapping for the Any Type 1-50
Mapping For Typedefs 1-49
Mapping for Union Types 1-33
Mapping for Valuetypes 1-65
Mapping for Wide String Types 1-20
Mapping of DSI to C++ 1-144
Mapping of Pseudo Objects to C++ 1-107
Memory Management 1-45
Mix-in Classes 1-73
modifier function 1-36

N
NamedValue 1-111
NamedValue interface
OMG PIDL for 1-111
namespace 1-3, 1-164
Nil Object Reference 1-10
nil object reference 1-10
null pointer 1-56, 1-102
NVList 1-112

NVList interface
OMG PIDL for 1-112
NVList type 1-144

O
Object 1-125
object class 1-8
Object interface
OMG PIDL for 1-125
object reference 1-7
union members 1-37
Object Reference Operations 1-8
object reference variable type 1-7
Object References 1-9, 1-75
Object_ptr 1-8
Object_var 1-8
octet 1-57
octet type 1-15, 1-16
OMG IDL struct
mapping to C++ 1-27
oneway 1-99
operation 1-7
Operation Parameters and Signatures 1-103
Operations 1-99
operator 1-52
operator< 1-51
operator-> 1-23
operator>>= 1-55
operator[] 1-41
ORB 1-121
ORB interface
OMG PIDL for 1-121
ORB_init operation 1-125
mapped to C++ 1-125
Out Parameter 1-10

P
pointer type 1-7
PortableServer

ServantManager 1-146
PortableServer Functions 1-146
Primitive Types 1-148
pseudo keyword 1-108
Pseudo Objects 1-107

R
readonly 1-99
Reference Counting 1-70
reference counting 1-73
release operation 1-8, 1-9
release parameter 1-40
replace function 1-63
Request 1-114
Request interface
OMG PIDL for 1-116
right-shift-operator 1-55
RTTI 1-97
Run time type information
see RTTI

C++ Language Mapping

Index-3

Index

S .
scoping

and C++ mapping 1-4
Sequence 1-80
Sequence T_var and T_out Types 1-46
sequence type 1-39
Sequence Types 1-39
ServantBase_var class 1-131
server 1-127
ServerRequest

mapped to C++ 1-144
Server-Side Mapping 1-127
set function 1-99
Short 1-16
short type 1-15
Signatures 1-103
sizeof(T) 1-5
skeleton class 1-136, 1-137
Skeleton Derivation From Object 1-143
Skeleton Operations 1-135
slice 1-47, 1-103
split allocation

avoiding errors with 1-100
statically-initialized 1-46
String 1-78
string type 1-17
String Types 1-17
string union members 1-37
String_var 1-17
Struct Types 1-27, 1-76
Structured Types 1-21
SystemException 1-95

T
T *data constructor 1-40
T_out Types 1-26

T _ptr* 1-42

T var 1-21, 1-166

T_var Types 1-22

template 1-138

this pointer 1-142

throw exception 1-96, 1-142
tie class 1-138

top 1-13

type 1-55

type function 1-63

Index-4

type unknown to the receiver 1-50
TypeCode 1-51, 1-120

TypeCode Replacement 1-63
TypeCode_ptr 1-64, 1-120

Typed Values 1-50

typedef 1-49

Typedefs 1-49

type-safe 1-50

Type-Specific Value Factories 1-88

U

unbounded sequence 1-21
unbounded string 1-21
Union 1-80

union member 1-33

Union Types 1-33
UnknownUserException 1-98
Unmarshaling 1-89
unsigned long type 1-15
unsigned short type 1-15
Untyped Values 1-62
UserException 1-94

\Y

Value Boxes 1-74

value function 1-63

ValueBase 1-70
ValueFactoryBase Class 1-85
ValueFactoryBase_var Class 1-87
Valuetype Data Members 1-66
Valuetype Factories 1-84
Valuetype Inheritance 1-83
Valuetype Members of Structs 1-91
Valuetype Operations 1-68
Valuetypes 1-65

void* 1-63
W
wchar 1-57

Wide Character 1-14

Wide String 1-14

Wide String Types 1-20

Widening to Abstract Interface 1-62
Widening to Object 1-61

WString 1-78

C++ Language Mappings

	0.1 About CORBA Language Mapping Specifications
	0.1.1 Alignment with CORBA

	0.2 Definition of CORBA Compliance
	0.3 Acknowledgements
	0.4 References
	C++Language Mapping
	1.1 Preliminary Information
	1.1.1 Overview
	1.1.2 Scoped Names
	1.1.3 C++ Type Size Requirements
	1.1.4 CORBA Module

	1.2 Mapping for Modules
	1.3 Mapping for Interfaces
	1.3.1 Object Reference Types
	1.3.2 Widening Object References
	1.3.3 Object Reference Operations
	1.3.4 Narrowing Object References
	1.3.5 Nil Object Reference
	1.3.6 Object Reference Out Parameter
	1.3.7 Interface Mapping Example

	1.4 Mapping for Constants
	1.4.1 Wide Character and Wide String Constants
	1.4.2 Fixed Point Constants

	1.5 Mapping for Basic Data Types
	1.6 Mapping for Enums
	1.7 Mapping for String Types
	1.8 Mapping for Wide String Types
	1.9 Mapping for Structured Types
	1.9.1 T_var Types
	1.9.2 T_out Types

	1.10 Mapping for Struct Types
	1.11 Mapping for Fixed Types
	1.11.1 Fixed T_var and T_out Types

	1.12 Mapping for Union Types
	1.13 Mapping for Sequence Types
	1.13.1 Sequence Example
	1.13.2 Using the “release” Constructor Parameter
	1.13.3 Additional Memory Management Functions
	1.13.4 Sequence T_var and T_out Types

	1.14 Mapping For Array Types
	1.15 Mapping For Typedefs
	1.16 Mapping for the Any Type
	1.16.1 Handling Typed Values
	1.16.2 Insertion into any
	1.16.3 Extraction from any
	1.16.4 Distinguishing boolean, octet, char, wchar, bounded string, and bounded wstring
	1.16.5 Widening to Object
	1.16.6 Widening to Abstract Interface
	1.16.7 Handling Untyped Values
	1.16.8 TypeCode Replacement
	1.16.9 Any Constructors, Destructor, Assignment Operator
	1.16.10 The Any Class
	1.16.11 The Any_var Class

	1.17 Mapping for Valuetypes
	1.17.1 Valuetype Data Members
	1.17.2 Constructors, Assignment Operators, and Destructors
	1.17.3 Valuetype Operations
	1.17.4 Valuetype Example
	1.17.5 ValueBase and Reference Counting
	1.17.6 Reference Counting Mix-in Classes
	1.17.7 Value Boxes
	1.17.8 Abstract Valuetypes
	1.17.9 Valuetype Inheritance
	1.17.10 Valuetype Factories
	1.17.11 Custom Marshaling
	1.17.12 Another Valuetype Example
	1.17.13 Valuetype Members of Structs

	1.18 Mapping for Abstract Interfaces
	1.18.1 Abstract Interface Base
	1.18.2 Client Side Mapping

	1.19 Mapping for Exception Types
	1.19.1 UnknownUserException
	1.19.2 Any Insertion and Extraction for Exceptions

	1.20 Mapping For Operations and Attributes
	1.21 Implicit Arguments to Operations
	1.22 Argument Passing Considerations
	1.22.1 Operation Parameters and Signatures

	1.23 Mapping of Pseudo Objects to C++
	1.24 Usage
	1.25 Mapping Rules
	1.26 Relation to the C PIDL Mapping
	1.27 Environment
	1.27.1 Environment Interface
	1.27.2 Environment C++ Class
	1.27.3 Differences from C-PIDL
	1.27.4 Memory Management

	1.28 NamedValue
	1.28.1 NamedValue Interface
	1.28.2 NamedValue C++ Class
	1.28.3 Differences from C-PIDL
	1.28.4 Memory Management

	1.29 NVList
	1.29.1 NVList Interface
	1.29.2 NVList C++ Class
	1.29.3 Differences from C-PIDL
	1.29.4 Memory Management

	1.30 Request
	1.30.1 Request Interface
	1.30.2 Request C++ Class
	1.30.3 Differences from C-PIDL
	1.30.4 Memory Management

	1.31 Context
	1.31.1 Context Interface
	1.31.2 Context C++ Class
	1.31.3 Differences from C-PIDL
	1.31.4 Memory Management

	1.32 TypeCode
	1.32.1 TypeCode Interface
	1.32.2 TypeCode C++ Class
	1.32.3 Differences from C-PIDL
	1.32.4 Memory Management

	1.33 ORB
	1.33.1 ORB Interface
	1.33.2 ORB C++ Class
	1.33.3 Differences from C-PIDL
	1.33.4 Mapping of ORB Initialization Operations

	1.34 Object
	1.34.1 Object Interface
	1.34.2 Object C++ Class

	1.35 Server-Side Mapping
	1.36 Implementing Interfaces
	1.36.1 Mapping of PortableServer::Servant
	1.36.2 Servant Reference Counting Mix-In
	1.36.3 ServantBase_var Class
	1.36.4 Servant Memory Management Considerations
	1.36.5 Skeleton Operations
	1.36.6 Inheritance-Based Interface Implementation
	1.36.7 Delegation-Based Interface Implementation

	1.37 Implementing Operations
	1.37.1 Skeleton Derivation From Object

	1.38 Mapping of DSI to C++
	1.38.1 Mapping of ServerRequest to C++
	1.38.2 Handling Operation Parameters and Results
	1.38.3 Mapping of PortableServer Dynamic Implementation Routine

	1.39 PortableServer Functions
	1.40 Mapping for PortableServer::ServantManager
	1.40.1 Mapping for Cookie
	1.40.2 ServantManagers and AdapterActivators
	1.40.3 Server Side Mapping for Abstract Interfaces

	1.41 C++ Definitions for CORBA
	1.41.1 Primitive Types
	1.41.2 String_var and String_out Class
	1.41.3 WString_var and WString_out
	1.41.4 Fixed Class
	1.41.5 Any Class
	1.41.6 Any_var Class
	1.41.7 Exception Class
	1.41.8 SystemException Class
	1.41.9 UserException Class
	1.41.10 UnknownUserException Class
	1.41.11 release and is_nil
	1.41.12 Object Class
	1.41.13 Environment Class
	1.41.14 NamedValue Class
	1.41.15 NVList Class
	1.41.16 ExceptionList Class
	1.41.17 ContextList Class
	1.41.18 Request Class
	1.41.19 Context Class
	1.41.20 TypeCode Class
	1.41.21 ORB Class
	1.41.22 ORB Initialization
	1.41.23 General T_out Types

	1.42 Alternative Mappings For C++ Dialects
	1.42.1 Without Namespaces
	1.42.2 Without Exception Handling

	1.43 C++ Keywords

	Index

