
1

Introduction to PETSc 2Introduction to PETSc 2

Adapted from presentation by:
Matt Knepley

Kris Buschelman
Argonne National Laboratory

2

PETScPETSc

● Writing hand-parallelized application codes from scratch is
extremely difficult and time consuming.

● Scalable parallelizing compilers for real application codes
are very far in the future.

● We can ease the development of parallel application codes
by developing general-purpose, parallel numerical PDE
libraries.

● Caveats
● Developing parallel, non-trivial PDE solvers that deliver high

performance is still difficult, and requires months (or even
years) of concentrated effort.

● PETSc is a toolkit that can reduce the development time, but it
is not a black-box PDE solver nor a silver bullet.

3

Component Interactions for Numerical PDEsComponent Interactions for Numerical PDEs

Grids

Steering

Optimization

PDE
Discretization

Algebraic
Solvers

Visualization

Derivative
Computation

PETSc
emphasis

4

What is PETSc?What is PETSc?

● A freely available and supported research code
● Available via http://www.mcs.anl.gov/petsc
● Free for everyone, including industrial users
● Hyperlinked documentation and manual pages for all routines
● Many tutorial-style examples
● Support via email: petsc-maint@mcs.anl.gov
● Usable from Fortran 77/90, C, and C++

● Portable to any parallel system supporting MPI, including
● Tightly coupled systems

● Cray T3E, SGI Origin, IBM SP, HP 9000, Sun Enterprise
● Loosely coupled systems, e.g., networks of workstations

● Compaq, HP, IBM, SGI, Sun
● PCs running Linux or Windows

● PETSc funding and support
● Department of Energy: MICS Program, DOE2000, SciDAC
● National Science Foundation, Multidisciplinary Challenge Program, CISE

5

Interfaced SolversInterfaced Solvers
● LU (Sequential)

● SuperLU (Demmel and Li, LBNL)
● ESSL (IBM)
● Matlab
● LUSOL (from MINOS - Michael Saunders, Stanford)
● LAPACK
● PLAPACK (van de Geijn, UT Austin)
● UMFPACK (Timothy A. Davis)

● Parallel LU
● SuperLU_DIST (Demmel and Li, LBNL)
● SPOOLES (Ashcroft, Boeing, funded by ARPA)
● MUMPS (European)
● PLAPACK (van de Geijn, UT Austin)

● Parallel Cholesky
● DSCPACK (Raghavan, Penn. State)
● SPOOLES (Ashcroft, Boeing, funded by ARPA)
● PLAPACK (van de Geijn, UT Austin)

6

Interfaced Solvers (continued)Interfaced Solvers (continued)
● XYTlib – parallel direct solver (Fischer and Tufo, ANL)
● SPAI – Sparse approximate inverse (parallel)

● Parasails (Chow, part of Hypre, LLNL)
● SPAI 3.0 (the Grote/Barnard implementation)

● Algebraic multigrid
● Parallel BoomerAMG (part of Hypre, LLNL)
● Sequential RAMG (Ruge and Stueben’s original code)
● Sequential SAMG (Stueben’s modern version for systems of

eqns)
● Parallel ICC(0) – BlockSolve95 (Jones and Plassman, ANL)
● Parallel ILU

● BlockSolve95 (Jones and Plassman, ANL)
● PILUT (part of Hypre, LLNL)
● EUCLID (Hysom – also part of Hypre, ODU/LLNL)

● Sequential ILUDT (part of Saad’s SPARSEKIT2, U of MN)

7

Interfaced PackagesInterfaced Packages

● Parititioning
● Parmetis
● Chaco
● Jostle
● Party
● Scotch

● ODE integrators
● Sundials (LLNL)

● Eigenvalue solvers
● BLOPEX (developed by Andrew Knyazev)

8

Computation and Communication Kernels
MPI, MPI­IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object­Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers

ODE Integrators Visualization

Interface

Structure of PETScStructure of PETSc

9

PETSc Numerical ComponentsPETSc Numerical Components

Compressed
Sparse Row

(AIJ)

Blocked Compressed
Sparse Row

(BAIJ)

Block
Diagonal
(BDIAG)

Dense Other

Indices Block Indices Stride Other

Index Sets
Vectors

Line Search Trust Region

Newton-based Methods
Other

Nonlinear Solvers

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC

LU
(Sequential only) Others

Preconditioners

Euler
Backward

Euler
Pseudo Time

Stepping
Other

Time Steppers

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other

Krylov Subspace Methods

Matrices

10

PETSc codeUser code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC

PETSc

Main Routine

Linear Solvers (KSP)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Flow of Control for PDE SolutionFlow of Control for PDE Solution

11

Levels of Abstraction in Mathematical SoftwareLevels of Abstraction in Mathematical Software

PETSc
emphasis

● Application-specific interface
● Programmer manipulates objects associated with the

application
● High-level mathematics interface

● Programmer manipulates mathematical objects
● Weak forms, boundary conditions, meshes

● Algorithmic and discrete mathematics interface
● Programmer manipulates mathematical objects

● Sparse matrices, nonlinear equations
● Programmer manipulates algorithmic objects

● Solvers
● Low-level computational kernels

● BLAS-type operations
● FFT

12

OO Programming & DesignOO Programming & Design

● Design based not on the data in object, but instead based
on operations you perform with or on the data

● For example a vector is not a 1d array of numbers but an
abstract object where addition and scalar multiplication is
defined

● Added difficulty is the efficient use of the computer

13

The PETSc Programming ModelThe PETSc Programming Model

● Goals
● Portable, runs everywhere
● Performance
● Scalable parallelism

● Approach
● Distributed memory, “shared-nothing”
● Requires only a compiler (single node or processor)

● Access to data on remote machines through MPI
● Still exploits “compiler discovered” parallelism on each node

● e.g., SMP
● Hide within objects the details of the communication
● User orchestrates communication at a higher abstract level

14

CollectivityCollectivity

● MPI communicators (MPI_Comm) specify collectivity
● Processes involved in a computation

● PETSc constructors are collective over a communicator
● VecCreate(MPI_Comm comm, int m, int M, Vec *x)
● Use PETSC_COMM_WORLD for all processes (like

MPI_COMM_WORLD, but allows the same code to work when
PETSc is started with a smaller set of processes)

● Some operations are collective, while others are not
● collective: VecNorm()
● not collective: VecGetLocalSize()

● If a sequence of collective routines is used, they must be
called in the same order by each process.

15

Design Principles IDesign Principles I

● Principle of Fairness
● “If you can do it, your users will want to do it”

● Principle of Contrariness
● “If you do it, your users will want to undo it”

● Both principles point to symmetric interfaces
● Creation and query interfaces should be paired

16

Design Principles IIDesign Principles II

● The Hangover Principle
● “You will not be smart enough to pick the solver”
● “Never assume structure outside of the interface”

● Common in FE code
● PETSc DA and HYPRE MatStruct?

● We assume continuous fields that are discretized
● It is unclear what structure a field must have
● Temptation to put metadata in a different place

17

Experimentation is Essential!Experimentation is Essential!

● Proof is not enough to examine solvers
● N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast

are nonsymmetric matrix iterations?, SIAM J. Matrix Anal.
Appl., 13:778--795, 1992.

● Anne Greenbaum, Vlastimil Ptak, and Zdenek Strakos, Any
Nonincreasing Convergence Curve is Possible for GMRES,
SIAM J. Matrix Anal. Appl., 17 (3), pp.465-469, 1996.

18

What is not in PETSc?What is not in PETSc?

But PETSc does interface to external software that
provides some of this functionality.

More is coming in PETSc 3!

● Higher level representations of PDEs
● Unstructured mesh generation and manipulation
● Discretizations
● Load balancing
● Sophisticated visualization capabilities
● Optimization and sensitivity

19

Application InteractionApplication Interaction

● Be willing to experiment with algorithms
● Optimality is rarely achieved without interplay between physics

and algorithmics
● Adopt flexible, extensible programming

● Algorithms and data structures not hardwired
● Be willing to play with the real code

● If possible, profile before seeking help
● Automatic in PETSc

20

IntegrationIntegration

● PETSc is a set a library interfaces
● We do not seize main()
● We do not control output
● We propagate errors from underlying packages
● We present the same interfaces in:

● C
● C++
● F77
● F90

21

InitializationInitialization

● Call PetscInitialize()
● Setup static data and services
● Setup MPI if it is not already

● Call PetscFinalize()
● Calculates logging summary
● Shutdown and release resources
● Checks compile and link

22

ProfilingProfiling

● -log_summary for a performance profile
● Event timing
● Memory usage
● MPI messages

● Call PetscLogStagePush/Pop()
● User can add new stages

● Call PetscLogEventBegin/End()
● User can add new events

23

Command Line ProcessingCommand Line Processing

● Check for an option
● PetscOptionsHasName()

● Retrieve a value
● PetscOptionsGetInt(), PetscOptionsGetIntArray()

● Set a value
● PetscOptionsSetValue()

● Clear, alias, reject, etc.

24

Linear Algebra ILinear Algebra I

● Vectors
● Has a direct interface to the values
● Supports all vector space operations

● VecDot(), VecNorm(), VecScale()
● Also unusual ops, e.g. VecSqrt(), VecInverse()
● Automatic communication during assembly
● Customizable communication (scatters)

25

VectorsVectors

proc 3

proc 2

proc 0

proc 4

proc 1

● What are PETSc vectors?
● Fundamental objects for storing field solutions, right-

hand sides, etc.
● Each process locally owns a subvector of contiguously

numbered global indices
● Create vectors via

● VecCreate(MPI_Comm,Vec *)
● MPI_Comm - processes that share the vector

● VecSetSizes(Vec, int, int)
● number of elements local to this process or total number

of elements
● VecSetType(Vec,VecType)

● Where VecType is
● VEC_SEQ, VEC_MPI, or VEC_SHARED

● VecSetFromOptions(Vec) lets you set the type at
runtime

26

Vec x;
int n;
…
PetscInitialize(&argc,&argv,(char*)0,help);
PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);
…
VecCreate(PETSC_COMM_WORLD,&x);
VecSetSizes(x,PETSC_DECIDE,n);
VecSetType(x,VEC_MPI);
VecSetFromOptions(x);

Creating a VectorCreating a Vector

Global size

PETSc determines
local size

Use PETSc to get
value from command

line

27

How Can We Use a PETSc VectorHow Can We Use a PETSc Vector

● PETSc supports “data structure-neutral” objects
● distributed memory “shared nothing” model
● single processors and shared memory systems

● PETSc vector is a “handle” to the real vector
● Allows the vector to be distributed across many processes
● To access the elements of the vector, we cannot simply do

 for (i=0; i<n; i++) v[i] = i;
● We do not require that the programmer work only with the

“local” part of the vector; we permit operations, such as
setting an element of a vector, to be performed globally

● Recall how data is stored in the distributed memory
programming model…

28

SMP

Sample Parallel System ArchitectureSample Parallel System Architecture

● Systems have an increasingly deep memory hierarchy (1,
2, 3, and more levels of cache)

● Time to reference main memory 100’s of cycles
● Access to shared data requires synchronization

● Better to ensure data is local and unshared if possible

Interconnect

CPUs

Cache

Main Memory

CPUs

Cache

Main Memory

29

Vector AssemblyVector Assembly

● A three step process
● Each process tells PETSc what values to set or add to a vector

component.
● Once all values provided, begin communication between

processes to ensure that values end up where needed (allow
other operations, such as some computation, to proceed)

● Complete the communication
● VecSetValues(Vec,…)

● number of entries to insert/add
● indices of entries
● values to add
● mode: [INSERT_VALUES,ADD_VALUES]

● VecAssemblyBegin(Vec)
● VecAssemblyEnd(Vec)

30

Parallel Matrix and Vector AssemblyParallel Matrix and Vector Assembly

● Processes may generate any entries in vectors and
matrices

● Entries need not be generated on the process on which they
ultimately will be stored

● PETSc automatically moves data during the assembly
process if necessary

31

One Way to Set the Elements of A Vector One Way to Set the Elements of A Vector

Vector index

Vector value

PetscScalar d;
VecGetSize(x,&N); /* Global size */
MPI_Comm_rank(PETSC_COMM_WORLD, &rank);
if (rank == 0) {
 for (i=0; i<N; i++)
 VecSetValues(x,1,&i,&d,INSERT_VALUES);
}
/* These two routines ensure that the data is
 distributed to the other processes */
VecAssemblyBegin(x);
VecAssemblyEnd(x);

32

A Parallel Way to Set the Elements of A Distributed Vector A Parallel Way to Set the Elements of A Distributed Vector

PetscScalar d;
VecGetOwnershipRange(x,&low,&high);
for (i=low; i<high; i++)
 VecSetValues(x,1,&i,&d,INSERT_VALUES);
/* These two routines must be called
 (in case some other process contributed
 a value owned by another process) */
VecAssemblyBegin(x);
VecAssemblyEnd(x);

33

Selected Vector OperationsSelected Vector Operations

Function Name Operation

VecAXPY(Scalar *a, Vec x, Vec y)

y = y + a*x

VecAYPX(Scalar *a, Vec x, Vec y) y = x + a*y
VecWAXPY(Scalar *a, Vec x, Vec y, Vec w) w = a*x + y
VecScale(Scalar *a, Vec x) x = a*x
VecCopy(Vec x, Vec y) y = x
VecPointwiseMult(Vec x, Vec y, Vec w) w_i = x_i *y_i
VecMax(Vec x, int *idx, Real *r) r = max x_i
VecShift(Scalar *s, Vec x) x_i = s+x_i
VecAbs(Vec x) x_i = |x_i |
VecNorm(Vec x, NormType type, Real *r) r = ||x||

34

A Complete PETSc ProgramA Complete PETSc Program

#include <petscvec.h>
int main(int argc,char **argv)
{
 Vec x;
 int n = 20;
 PetscScalar one = 1.0, dot;

 PetscInitialize(&argc,&argv,0,0);
 PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);
 VecCreate(PETSC_COMM_WORLD,&x);
 VecSetSizes(x,PETSC_DECIDE,n);
 VecSetFromOptions(x);
 VecSet(x,one);
 VecDot(x,x,&dot);
 PetscPrintf(PETSC_COMM_WORLD,"Vector length %d\n",(int)dot);
 VecDestroy(x);
 PetscFinalize();
 return 0;
}

35

Working With Local VectorsWorking With Local Vectors

● It is sometimes more efficient to directly access the storage
for the local part of a PETSc Vec.
● E.g., for finite difference computations involving elements of the

vector
● PETSc allows you to access the local storage with

VecGetArray(Vec, double *[])
● You must return the array to PETSc when you finish

VecRestoreArray(Vec, double *[])
● Allows PETSc to handle data structure conversions
● For most common uses, these routines are inexpensive and

do not involve a copy of the vector.

36

Example of VecGetArrayExample of VecGetArray

Vec vec;
PetscScalar *avec;
…
VecCreate(PETSC_COMM_SELF,&vec);
VecSetSizes(vec,PETSC_DECIDE,n);
VecSetFromOptions(vec);
VecGetArray(vec,&avec);
/* compute with avec directly, e.g., */
PetscPrintf(PETSC_COMM_WORLD,
 "First element of local array of vec"
 "in each process is %f\n", avec[0]);
VecRestoreArray(vec,&avec);

37

Linear Algebra IILinear Algebra II

● Matrices
● Must use MatSetValues()

● Automatic communication
● Supports many data types
● AIJ, Block AIJ, Symmetric AIJ, Block Diagonal, etc.
● Supports structures for many packages

● Spooles, MUMPS, SuperLU, UMFPack, DSCPack

38

MatricesMatrices

● What are PETSc matrices?
● Fundamental objects for storing linear operators (e.g., Jacobians)

● Create matrices via
● MatCreate(…,Mat *)

● MPI_Comm - processes that share the matrix
● number of local/global rows and columns

● MatSetType(Mat,MatType)
● where MatType is one of

● default sparse AIJ: MPIAIJ, SEQAIJ
● block sparse AIJ (for multi-component PDEs): MPIAIJ, SEQAIJ
● symmetric block sparse AIJ: MPISBAIJ, SAEQSBAIJ
● block diagonal: MPIBDIAG, SEQBDIAG
● dense: MPIDENSE, SEQDENSE
● matrix-free
● etc.

● MatSetFromOptions(Mat) lets you set the MatType at runtime.

39

Matrices and PolymorphismMatrices and Polymorphism

● Single user interface, e.g.,
● Matrix assembly

● MatSetValues()
● Matrix-vector multiplication

● MatMult()
● Matrix viewing

● MatView()
● Multiple underlying implementations

● AIJ, block AIJ, symmetric block AIJ, block diagonal, dense, matrix-
free, etc.

● A matrix is defined by its interface, the operations that you
can perform with it.

● Not by its data structure

40

Matrix AssemblyMatrix Assembly

● Same form as for PETSc Vectors:
● MatSetValues(Mat,…)

● number of rows to insert/add
● indices of rows and columns
● number of columns to insert/add
● values to add
● mode: [INSERT_VALUES,ADD_VALUES]

● MatAssemblyBegin(Mat)
● MatAssemblyEnd(Mat)

41

Mat A;
int column[3], i;
PetscScalar value[3];
…
MatCreate(PETSC_COMM_WORLD,
 PETSC_DECIDE,PETSC_DECIDE,n,n,&A);

MatSetFromOptions(A);
/* mesh interior */
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
if (rank == 0) { /* Only one process creates matrix */
 for (i=1; i<n-2; i++) {
 column[0] = i-1; column[1] = i; column[2] = i+1;
 MatSetValues(A,1,&i,3,column,value,INSERT_VALUES);
 }
}
/* also must set boundary points
 (code for global row 0 and n-1 omitted) */
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

Matrix Assembly ExampleMatrix Assembly Example

simple 3-point stencil for 1D discretization

Choose the global
size of the matrix

Let PETSc decide how to allocate
matrix across processes

42

Parallel Matrix DistributionParallel Matrix Distribution

Each process locally owns a submatrix of contiguously numbered
global rows.

proc 0

} proc 3: locally owned rowsproc 3
proc 2
proc 1

proc 4

MatGetOwnershipRange(Mat A, int *rstart, int *rend)
rstart: first locally owned row of global matrix
rend -1: last locally owned row of global matrix

43

Mat A;
int column[3], i, start, end, istart, iend;
PetscScalar value[3];
…
MatCreate(PETSC_COMM_WORLD,
 PETSC_DECIDE,PETSC_DECIDE,n,n,&A);

MatSetFromOptions(A);
MatGetOwnershipRange(A,&start,&end);
/* mesh interior */
istart = start; if (start == 0) istart = 1;
iend = end; if (iend == n-1) iend = n-2;
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
for (i=istart; i<iend; i++) {
 column[0] = i-1; column[1] = i; column[2] = i+1;
 MatSetValues(A,1,&i,3,column,value,INSERT_VALUES);
}
/* also must set boundary points
 (code for global row 0 and n-1 omitted) */
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

Matrix Assembly Example with Parallel AssemblyMatrix Assembly Example with Parallel Assembly

simple 3-point stencil for 1D discretization

Choose the global
size of the matrix

Let PETSc decide how to allocate
matrix across processes

44

Why Are PETSc Matrices The Way They Are?Why Are PETSc Matrices The Way They Are?

● No one data structure is appropriate for all problems
● Blocked and diagonal formats provide significant performance

benefits
● PETSc provides a large selection of formats and makes it (relatively)

easy to extend PETSc by adding new data structures
● Matrix assembly is difficult enough without being forced to worry

about data partitioning
● PETSc provides parallel assembly routines
● Achieving high performance still requires making most operations

local to a process but programs can be incrementally developed.
● Matrix decomposition by consecutive rows across processes is

simple and makes it easier to work with other codes.
● For applications with other ordering needs, PETSc provides

“Application Orderings” (AO), described later.

45

Solver CategoriesSolver Categories

● Explicit: Field variables are updated using neighbor
information (no global linear or nonlinear solves)

● Semi-implicit: Some subsets of variables (e.g., pressure) are
updated with global solves

● Implicit: Most or all variables are updated in a single global
linear or nonlinear solve

46

Linear SolversLinear Solvers

● Krylov Methods
● Using PETSc linear algebra, just add:

● KSPSetOperators(), KSPSetRhs(), KSPSetSolution()
● KSPSolve()

● Preconditioners must obey PETSc interface
● Basically just the KSP interface

● Can change solver dynamically from the cmd line

47

Nonlinear SolversNonlinear Solvers

● Using PETSc linear algebra, just add:
● SNESSetFunction(), SNESSetJacobian()
● SNESSolve()

● Can access subobjects
● SNESGetKSP()
● KSPGetPC()

● Can customize subobjects from the cmd line
● Could give –sub_pc_type ilu, which would set the subdomain

preconditioner to ILU

48

Higher Level AbstractionsHigher Level Abstractions

● DA
● Structured grid interface

● Fixed simple topology
● Supports stencils, communication, reordering

● No idea of operators
● Nice for simple finite differences

49

PETSc Programming AidsPETSc Programming Aids

● Correctness Debugging
● Automatic generation of tracebacks
● Detecting memory corruption and leaks
● Optional user-defined error handlers

● Performance Debugging
● Integrated profiling using -log_summary
● Profiling by stages of an application
● User-defined events

50

DebuggingDebugging

● Support for parallel debugging
● -start_in_debugger [gdb,dbx,noxterm]
● -on_error_attach_debugger [gb,dbx,noxterm]
● -on_error_abort
● -debugger_nodes 0,1
● -display machinename:0.0

● When debugging, it is often useful to place a breakpoint in
the function PetscError().

51

Sample Error TracebackSample Error Traceback

Breakdown in ILU factorization due to a zero pivot

52

Sample Memory Corruption ErrorSample Memory Corruption Error

53

Sample Out-of-Memory ErrorSample Out-of-Memory Error

54

Sample Floating Point ErrorSample Floating Point Error

55

Profiling and Performance TuningProfiling and Performance Tuning

● Profiling:
● Integrated profiling using -log_summary
● User-defined events
● Profiling by stages of an application

● Performance Tuning:
● Matrix optimizations
● Application optimizations
● Algorithmic tuning

56

ProfilingProfiling

● Integrated monitoring of
● time
● floating-point performance
● memory usage
● communication

● Active if PETSc was compiled with -DPETSC_LOG (default)
● Can also profile application code segments

● Print summary data with option: -log_summary
● Print redundant information from PETSc routines: -log_info
● Print the trace of the functions called: -log_trace

57

Sample -log_summarySample -log_summary

--
Event Count Time (sec) Flops/sec --- Global --- --- Stage --- Total
 Max Ratio Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s
--

--- Event Stage 0: Main Stage

PetscBarrier 2 1.0 1.1733e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0

--- Event Stage 1: SetUp

VecSet 2 1.0 9.3448e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatMultTranspose 1 1.0 1.8022e-03 1.0 1.85e+08 1.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 57 0 0 0 185
MatAssemblyBegin 3 1.0 1.0057e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatAssemblyEnd 3 1.0 2.0356e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 5 0 0 0 0 0
MatFDColorCreate 2 1.0 1.5341e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 4.6e+01 1 0 0 0 16 36 0 0 0 74 0

--- Event Stage 2: Solve

VecDot 2 1.0 3.2985e-03 1.0 9.56e+07 1.0 0.0e+00 0.0e+00 2.0e+00 0 0 0 0 1 0 0 0 0 2 96
VecMDot 45 1.0 9.3093e-02 1.0 1.59e+08 1.0 0.0e+00 0.0e+00 1.5e+01 0 0 0 0 5 1 1 0 0 19 159
VecNorm 112 1.0 2.0851e-01 1.0 8.47e+07 1.0 0.0e+00 0.0e+00 5.2e+01 1 1 0 0 18 2 1 0 0 64 85

MatMultTranspose 1 1.0 1.8022e-03 1.0 1.85e+08 ...
VecNorm 112 1.0 2.0851e-01 1.0 8.47e+07 ... 5.2e+01 …

58

More –log_summaryMore –log_summary

Memory usage is given in bytes:

Object Type Creations Destructions Memory Descendants' Mem.

--- Event Stage 0: Main Stage

--- Event Stage 1: SetUp

 Distributed array 4 0 0 2.37475e+06
 Index Set 104 24 2376480 0
 Map 40 10 2000 0
 Vec 36 10 2846384 0
 Vec Scatter 12 0 0 0
IS Local to global mapping 8 0 0 0
 Matrix 8 0 0 0
 Matrix FD Coloring 4 0 0 0
 SNES 4 0 0 0
 Krylov Solver 10 0 0 0
 Preconditioner 10 0 0 0

--- Event Stage 2: Solve

 Distributed array 0 4 822496 3.16488e+06
 Index Set 20 100 3578544 0
 Map 26 56 11200 0
 Vec 160 186 92490656 2864
 Vec Scatter 0 12 2374784 0

59

Still more –log_summaryStill more –log_summary

===
Average time to get PetscTime(): 1.13389e-08
Compiled without FORTRAN kernels
Compiled with double precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 4 sizeof(void*) 4
Libraries compiled on Fri May 28 01:39:58 PDT 2004 on MBuschel
Machine characteristics: CYGWIN_NT-5.1 MBuschel 1.5.9(0.112/4/2) 2004-03-18 23:05
Using PETSc directory: /home/Kris/petsc/petsc-dev
Using PETSc arch: cygwin

Using C compiler: gcc -Wall -O -fomit-frame-pointer -Wno-strict-aliasing -I/home/K
c-dev/bmake/cygwin -I/home/Kris/petsc/petsc-dev/include -I/software/MPI/mpich-nt

EXTERN_CXX -D__SDIR__='. '
C Compiler version:
gcc (GCC) 3.3.1 (cygming special)\nCopyright (C) 2003 Free Software Foundation,

60

Performance Requires Managing MemoryPerformance Requires Managing Memory

● Real systems have many levels of memory
● Programming models try to hide memory hierarchy

● Except C—register
● Simplest model: Two levels of memory

● Divide at largest (relative) latency gap
● Processes have their own memory

● Managing a processes memory is known (if unsolved) problem
● Exactly matches the distributed memory model

61

Sparse Matrix-Vector ProductSparse Matrix-Vector Product

● Common operation for optimal (in floating-point operations)
solution of linear systems
● Sample code:

for row=0,n-1

 m = i[row+1] - i[row];

 sum = 0;

 for k=0,m-1

 sum += *a++ * x[*j++];

 y[row] = sum;
● Data structures are a[nnz], j[nnz], i[n], x[n], y[n]

62

Simple Performance AnalysisSimple Performance Analysis

● Memory motion:
● nnz (sizeof(double) + sizeof(int)) +

n (2*sizeof(double) + sizeof(int))
● Perfect cache (never load same data twice)

● Computation
● nnz multiply-add (MA)

● Roughly 12 bytes per MA
● Typical WS node can move ½-4 bytes/MA

● Maximum performance is 4-33% of peak

63

More Performance AnalysisMore Performance Analysis

● Instruction Counts:
● nnz (2*load-double + load-int + mult-add) +

n (load-int + store-double)
● Roughly 4 instructions per MA
● Maximum performance is 25% of peak (33% if MA overlaps

one load/store)
● Changing matrix data structure (e.g., exploit small block

structure) allows reuse of data in register, eliminating some
loads (x and j)

● Implementation improvements (tricks) cannot improve on
these limits

64

Alternative Building BlocksAlternative Building Blocks

Mflops Format Number
of Vectors Ideal Achieved

AIJ 1 49 45
AIJ 4 182 120
BAIJ 1 64 55
BAIJ 4 236 175

● Performance of sparse matrix - multi-vector multiply:

● Results from 250 MHz R10000 (500 MF/sec peak)
● BAIJ is a block AIJ with blocksize of 4
● Multiple right-hand sides can be solved in nearly the same

time as a single RHS

65

Matrix Memory Pre-allocationMatrix Memory Pre-allocation

● PETSc sparse matrices are dynamic data structures. Can
add additional nonzeros freely

● Dynamically adding many nonzeros
● requires additional memory allocations
● requires copies
● can kill performance

● Memory pre-allocation provides the freedom of dynamic
data structures plus good performance

66

Indicating Expected Nonzeros - Sequential Sparse MatricesIndicating Expected Nonzeros - Sequential Sparse Matrices

row 0

row 1

row 2

row 3

another sample

nonzero pattern
sample nonzero pattern

● MatCreateSeqAIJ(…., int *nnz,Mat *A)
● nnz[0] - expected number of nonzeros in row 0
● nnz[1] - expected number of nonzeros in row 1

67

Symbolic Computation of Matrix Nonzero StructureSymbolic Computation of Matrix Nonzero Structure

● Create matrix with MatCreate()
● Set type with MatSetType()
● Form the nonzero structure of the matrix

● loop over the grid for finite differences
● loop over the elements for finite elements
● etc.

● Preallocate matrix
● MatSeqAIJSetPreallocation()
● MatMPIAIJSetPreallocation()

68

} proc 3: locally owned rows

proc 0

proc 3

proc 2

proc 1

proc 4

diagonal portions
off-diagonal portions

Parallel Sparse MatricesParallel Sparse Matrices

● Each process locally owns a submatrix of contiguously
numbered global rows.

● Each submatrix consists of diagonal and off-diagonal parts.

69

Indicating Expected Nonzeros - Parallel Sparse MatricesIndicating Expected Nonzeros - Parallel Sparse Matrices

● MatMPIAIJSetPreallocation(Mat A,
 int d_nz, int *d_nnz,
 int o_nz, int *o_nnz)

● d_nnz[] - expected number of nonzeros per row in diagonal
portion of local submatrix

● o_nnz[] - expected number of nonzeros per row in off-
diagonal portion of local submatrix

70

Verifying PredictionsVerifying Predictions

● Use runtime option: -log_info
● Output:

● [proc #] Matrix size: %d X %d; storage space:
 %d unneeded, %d used

● [proc #] Number of mallocs during MatSetValues() is %d

	Introduction to PETSc 2
	Slide 2
	Slide 3
	What is PETSc?
	Interfaced Solvers
	Interfaced Solvers (continued)
	Slide 7
	Structure of PETSc
	Slide 9
	Flow of Control for PDE Solution
	Levels of Abstraction in Mathematical Software
	OO Programming & Design
	The PETSc Programming Model
	Collectivity
	Design Principles I
	Design Principles II
	Experimentation is Essential!
	What is not in PETSc?
	Application Interaction
	Integration
	Initialization
	Profiling
	Command Line Processing
	Linear Algebra I
	Vectors
	Creating a vector
	How Can We Use a PETSc Vector
	Sample Parallel System Architecture
	Vector Assembly
	Parallel Matrix and Vector Assembly
	One Way to Set the Elements of A Vector
	A Parallel Way to Set the Elements of A Distributed Vector
	Selected Vector Operations
	A Complete PETSc Program
	Working With Local Vectors
	Example of VecGetArray
	Linear Algebra II
	Matrices
	Matrices and Polymorphism
	Matrix Assembly
	Matrix Assembly Example
	Parallel Matrix Distribution
	Matrix Assembly Example With Parallel Assembly
	Why Are PETSc Matrices The Way They Are?
	Solver Categories
	Linear Solvers
	Nonlinear Solvers
	Higher Level Abstractions
	PETSc Programming Aids
	Debugging
	Sample Error Traceback
	Sample Memory Corruption Error
	Sample Out-of-Memory Error
	Sample Floating Point Error
	Profiling and Performance Tuning
	Slide 56
	Sample -log_summary
	More –log_summary
	Still more –log_summary
	Performance Requires Managing Memory
	Sparse Matrix-Vector Product
	Simple Performance Analysis
	More Performance Analysis
	Alternative Building Blocks
	Matrix Memory Pre-allocation
	Indicating Expected Nonzeros Sequential Sparse Matrices
	Symbolic Computation of Matrix Nonzero Structure
	Parallel Sparse Matrices
	Indicating Expected Nonzeros Parallel Sparse Matrices
	Verifying Predictions

