Servlets

Presented by Bartosz Sakowicz

APl documentation

* http://java.sun.com/products/jsp/download.html
This site lets you download either the 2.1/1.0 API or the 2.2/1.1

API to your local system.

* http://java.sun.com/products/serviet/2.2/javadoc/

This site lets you browse the servlet 2.2 API on-line.

* http://www.java.sun.com/j2eel/j2sdkee/techdocs/api/
This address lets you browse the complete API for the Java 2
Platform, Enterprise Edition (J2ZEE), which includes the serviet

2 . 2 a n d J S P 1 . 1 paCkag eS . Presented by Bartosz Sakowicz

DMCS TUL Lodz

The Java Platform

Java Technology

Enabled Devices Jawa Technology

Enabled Desktop Workgroup
Server

Micro : ‘

E e Standard

- 3 Enterprise
Te— it Edition

Presented by Bartosz Sakowicz
DMCS TUL Lodz

J2EE architecture

BluePrints

"EJBs |l USPs

s

Transactions

Container Messaging Mail

C
Ly
@
=
v
>
cu
ﬂ

Connectors

,I

Java™ 2 SDK, Standard Edition

e —
- CORBA Security | Database Directory

Applels

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Overview of Serviets

Servlets are modules that extend request/response-oriented
servers, such as Java-enabled web servers. For example, a
servlet might be responsible for taking data in an HTML
order-entry form and applying the business logic used to
update a company's order database. Servlets are to servers
what applets are to browsers. Unlike applets serviets have no
graphical user interface.

R =

Order-Entry Client —m Order-Entry Servlet —# |pyentory

| srammamE | | Database

E=
|"=I —L HTTF
Ffr——\ server |~

Architecture of the Serviet
Package

The central abstraction in the Servilet APl is the Serviet
interface. All serviets implement this interface, either directly
or, more commonly, by extending a class that implements it
such as HttpServiet

Servlets

Leneric aerylet

Httphervlatk

=

Mybary] at

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Client interaction

When a servlet accepts a call from a client, it receives two
objects:

*A ServletRequest , which encapsulates the communication
from the client to the server.

*A ServletResponse , which encapsulates the communication
from the servlet back to the client.

ServletRequest and ServietResponse are interfaces defined
by the javax.servlet package.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The ServietRequest Interface

The ServietRequest interface allows the servlet access to:

*Information such as the names of the parameters passed in by
the client, the protocol (scheme) being used by the client, and the
names of the remote host that made the request and the server
that received it.

*The input stream, ServletinputStream . Servlets use the input

stream to get data from clients that use application protocols such
as the HTTP POST and PUT methods.

Interfaces that extend ServletRequest interface allow the servlet
to retrieve more protocol-specific data. For example, the
HttpServietRequest interface contains methods for accessing
HTTP-specific header information.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The ServietResponse Interface

The ServietResponse interface gives the serviet methods for
replying to the client. It:

*Allows the servlet to set the content length and MIME type of the
reply.

*Provides an output stream, ServletOutputStream , and a Writer
through which the servlet can send the reply data.

Interfaces that extend the ServietResponse interface give the
servlet more protocol-specific capabilities. For example, the
HttpServietResponse interface contains methods that allow the
servlet to manipulate HTTP-specific header information.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Basic Serviet Structure

*To be a servlet, a class should extend HttpServlet and
override doGet or doPost, depending on whether the data is
being sent by GET or by POST.

* If you want the same servlet to handle both GET and POST
and to take the same action for each, you can simply have
doGet call doPost, or vice versa.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Basic Serviet Structure(2)

public class SimpleServiet extends HttpServiet {

public void doGet (HttpServietRequest request,

HttpServlietResponse response) throws ServletException,
IOException {

PrintWriter out;

String title = "Simple Serviet Output”,
response.setContentType("text/html”);

out = response.getWriter();

out.printin(HTML>\n" +"<HEAD><TITLE>Hello
WWW</TITLE></HEAD>\n" +"<BODY>\n" +"<H1>" + title+
"</H1>\n" +"</BODY></HTML>"),

out.close();

Presented by Bartosz Sakowicz
1 1 DMCS TUL Lodz

The Serviet Life Cycle

Server -

servlet Code 3

seret Code —cual_

—

Handle
Client

Client |

Feguests |

T

Client

Unload

init()

service()

destroy()

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The Init Method

* The init method is called when the servlet is first created and is
not called again for each user request.

* The servlet can be created when a user firstinvokes a URL
corresponding to the servlet or when the server is first started.

* There are two versions of init. one that takes no arguments and
one that takes a ServletConfig object as an argument. The first
version is used when the servlet does not need to read any
settings that vary from server to server.

* The method definition :
public void init() throws ServietException {

// Initialization code...

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The Init Method(2)

* The second version of init is used when the servlet needs to
read server-specific settings before it can complete the
Initialization. For example, the servlet might need to know about
database settings, password files or server-specific performance
parameters.

* The method definition:

public void init(ServletConfig config)
throws ServletException {
supetr.init(config); // must be first line !

// Initialization code...

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The Init Method(3)

Note that although you look up parameters in a portable manner,
you set them in a server-specific way. For example:

*with Tomcat, you embed servlet properties in a file called
web.xml

*with the WebLogic application server you use weblogic.properties

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Initialization example

web.xml :
... <web-app>
<servlet>
<servlet-name>ShowMsg</servilet-name>
<servlet-class>coreserviets.ShowMessage
</servlet-class>
<init-param>
<param-name>message</param-name>
<param-value>Bla Bla</param-value>
</init-param>

</serviet>

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Initialization example(2)
<servlet-mapping>
<servlet-name>ShowMsg</servilet-name>
<url-pattern>/showmsg/*</url-pattern>
</serviet-mapping>
<session-config>
<session-timeout>30</session-timeout>
</session-config>
<mime-mapping>
<extension>pdf</extension>
<mime-type>application/pdf</mime-type>

</mime-mapping>

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Initialization example(3)

<welcome-file-list>
<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file-list>
<error-page>
<error-code>404</error-code>
<location>/404.html</location>
</error-page>

</web-app>

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The Init Example

public class DBServiet ... {

Connection connection = null;

public void init() throws ServietException {

// Open a database connection to prepare for requests
try {

databaseUrl = getinitParameter("databaseUr!");

// get user and password parameters the same way

connection = DriverManager.getConnection(databaseUrl, user,
password);

} catch(Exception e) {

throw new UnavailableException (this, "Could not open a
connection to the database”); } } ... }

The service Mt?otrbsoerglet, the

Each time the server receives a reques

server spawns a new thread and calls service. The service
method checks the HTTP request type (GET, POST, PUT,
DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc., as
appropriate. Even if you have a servlet that needs to handle both
POST and GET requests identically do not override service
directly. Instead invoke one method into another:

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {// Servlet Code }
public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

Presented by Bartosz Sakowicz

doGet(request, response); } DMCS TUL Lodz

The Service Method(2)

Web Server HttpServlet sublos
GET request :
rﬁwnsﬂ P » dﬂGEt []
| service
POST request —— "ldoPost ()
[ESPONSE +— _A
KEY:

implemented by subchass

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The SingleThreadModel
Interface

Normally, the system makes a single instance of your servilet and
then creates a new thread for each user request, with multiple
simultaneous threads running if a new request comes in while a
previous request is still executing. This means that your doGet
and doPost methods must be careful to synchronize access to
fields and other shared data, since multiple threads may be trying
to access the data simultaneously. If you want to prevent this
multithreaded access, you can have your servilet implement the
SingleThreadModelinterface, as below.

public class YourServilet extends HttpServiet
implements SingleThreadModel {...}

Synchronous access to your servilets can significantly hurt
performance if your servlet is accessed extremely frequently.

The Destroy Method

The destroy method provided by the HttpServlet class destroys
the servlet and logs the destruction. To destroy any resources
specific to your servlet, override the destroy method. The destroy
method should undo any initialization work and synchronize
persistent state with the current in-memory state.

The following example shows the destroy method that
accompanies the init method in the previous transparency:

public class DBServlet ... {
Connection connection = null;
... I/ the init method

public void destroy() {

Il Close the connection and allow it to be garbage collected
connection.close(); connection = null; } }

Debugging serviets

Naturally, when you write servlets, you never make mistakes.
However, some of your colleagues might make an occasional
error, and you can pass advice on to them.

Debugging serviets can be tricky because you don’t execute them
directly. Instead, you trigger their executionby means of an HTTP
request, and they are executed by the Web server. This remote
execution makes it difficult to insert break points or to read debug-
ging messages and stack traces. So, approaches to servlet
debugging differ somewhat from those used in general
development. There are some general strategies that can make
finding mistakes easier.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Debugging serviets(2)

1. Look at HTML source.

Use ,View Source” from the browser's menu or use a formal
HTMLvalidator on the serviet’s output.

2. Start the server from a command line.

Do not execute server as a background process. Than
System.out.println or System.err.printin calls can be easily
read from the window in which the server was started.

3. Use log file.

The HttpServlet class has a method called log that lets you
write information into a logging file on the server. The exact
location of the log file is server-specific.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Debugging serviets(3)

4. Look at the request and response data separately.
Use some EchoServer or write your own implementation.
5. Stop and restart the server.

Most full-blown Web servers that support servlets have a
designated location for serviets that are under development.
Servlets in this location are supposed to be automatically
reloaded when their associated class file changes. At times,
however, some servers can get confused, especially when
your only change is to a lower-level class, not to the top-level
servlet class. So, if it appears that changes you make to your
servlets are not reflected in the servlet's behavior, try restarting
the server. With the Tomcat (3.0),you have to do this every
time you make a change, since this mini-server have no
support for automatic servlet reloading.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Reading form data from serviets

In servlets all of parameter parsing is handled automatically. To
read parameters you can use following methods:

String getParameter(String)

An empty String is returned if the parameter exists but has no
value, and null is returned if there was no such parameter.

String [] getParameterValues(String)
Useful when parameter has multiple values.
Enumeration getParametersNames()

This method returns an Enumeration that contains the parameter
names in an unspecified order.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Reading parameters - example

Enumeration paramNames = request.getParameterNames(),
while(paramNames.hasMoreElements()) {
String paramName = (String)paramNames.nextElement(),
out.print("<TR><TD>" + paramName + "\n<TD>");

String[] paramValues =
request.getParameterValues(paramName),

verte 2>

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Reading parameters -
example(2)
if (paramValues.length == 1) {
String paramValue = paramValues[0];
if (paramValue.length() == 0)
out.printin("<I>No Value</I>"),
else out.printin(paramValue),
} else { out.printin("");
for(int i=0; i<paramValues.length; i++) {
out.printin("" + paramValues[i]);
} out.printin("");

} } Presented by Bartosz Sakowicz
DMCS TUL Lodz

Filtering Strings for HTML

specific characters
public static String filter(String input) {

StringBuffer filtered = new StringBuffer(input.length()),
char c;
for(int i=0; i<input.length(); i++) {

¢ = input.charAt(i);
if(c=="<){

filtered.append("<");
}elseif (c ==">'){

filtered.append(">");

}else - [€ turn (flltered' to Strlng())’ } Presented by Bartosz Sakowicz

DMCS TUL Lodz

Reading request headers from
serviets

To read headers just call the getHeader method of
HttpServletRequest, which returns a String if the specified

header was supplied on this request, null otherwise. Header
names are not case sensitive. Example:

request.getHeader("Connection”)

There are a couple of headers that are so commonly used that
they have special access methods in HttpServietRequest.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

HTTP headers overview

Accept

This header specifies the MIME types that the browser or other
client can handle. A servlet that can return a resource in more
than one format can examine the Accept header to decide
which format to use. For example, images in PNG format have
some compression advantages over those in GIF, but only a
few browsers support PNG. If you had images in both formats,
a servlet could call request.getHeader("Accept"), check for
image/png, and if it finds it, use xxx.png filenames in all the
IMG elements it generates. Otherwise it would just use xxx.gif.

Accept-Charset

This header indicates the character sets (e.g., ISO-8859-1) the
browser can use.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

HTTP headers overview(2)
Accept-Encoding

This header designates the types of encodings that the client
knows how to handle. It is critical that you explicitly check the
Accept-Encoding header before using any type of content
encoding. Values of gzip or compress are the two standard
possibilities.

Accept-Language

This header specifies the client’s preferred languages, in case
the servilet can produce results in more than one language.
The value of the header should be one of the standard
language codes such as en, en-us, da, etc. (RFC 1766).

Cookie

This header is used to return cookies to servers that previously
sent them to the browser.

HTTP headers overview(3)

Referer

This header indicates the URL of the referring Web page. For
example, if you are at Web page 1 and click on a link to Web
page 2, the URL of Web page 1 is included in the Referer
header when the browser requests Web page 2. Note that this
header is Referer, not the expected Referrer, due to a spelling
mistake by one of the original HTTP authors.

User-Agent

This header identifies the browser or other client making the
request and can be used to return different content to different
types of browsers.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Compressed Web Pages

import java.util.zip.”; // omitted standard imports
public class EncodedPage extends HttpServiet {
public void doGet(HttpServiletRequest request,

HttpServlietResponse response) throws ServietException,
IOException {

response.setContentType("text/html");
String encodings = request.getHeader("Accept-Encoding”),
PrintWriter out;

String ftitle;

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Compressed Web Pages(2)

if ((encodings = null) &&(encodings.indexOf("gzip”) I=-1)) {
title = "Page Encoded with GZip";
OutputStream out1 = response.getOutputStream();
out = new PrintWriter(new GZIPOutputStream(out1), false);

non

response.setHeader("Content-Encoding”, "gzip");
Jelse {

title = "Unencoded Page”,

out = response.getWriter();

/
out.printin(... // add content of page here

Presented by Bartosz Sakowicz
DMCS TUL Lodz

HTTP-based authorization

import sun.misc.BASE64Decoder; // not always included in JDK
...// inside doGet or doPost:
String authorization = request.getHeader("Authorization”);
if (authorization == null) {
askForPassword(response);
Jelse {
String userinfo = authorization.substring(6).trim(); //cut ,,BASIC ,,
BASE64Decoder decoder = new BASE64Decoder();

String nhameAndPassword = new
String(decoder.decodeBuffer(userinfo)),

int index = nameAndPassword.indexOf(":");

String user = nameAndPassword.substring(0, index); // and so on

HTTP-based authorization(2)

private void askForPassword(HtipServietResponse response) {
response.setStatus(response.SC_UNAUTHORIZED); // le 401

response.setHeader("WWW:-Authenticate","BASIC
realm=\"privileged-few\"");

}// SC — status code

HTTP-based authorization versus e-commerce form- based
authorization:

« simple

« small possibilities of configuration (only simple dialog box — no
additional explanations allowed)

« impossible to ask about other information than username and
password

Response Headers
setContentType

This method sets the Content-Type header and is used by the
majority of servlets (MIME type).

setContentLength

This method sets the Content-Length header, which is useful
if the browser supports persistent (keep-alive) HTTP
connections.

addCookie

This method inserts a cookie into the Set-Cookie header.
sendRedirect

The sendRedirect method sets the Location header as well as
setting the status code to 302.

Common MIME (Mul |pulrl|c¥>Is§In$¥|Pet%l§l Extension) types:
application/msword Microsoft Word document
application/octet-stream Unrecognized or binary data
application/pdf (.pdf) file

application/postscript PostScript file
application/vnd.lotus-notes Lotus Notes file
application/vnd.ms-excel Excel spreadsheet
application/vnd.ms-powerpoint Powerpoint presentation
application/x-gzip Gzip archive
application/x-java-archive JAR file
application/x-java-serialized-object Serialized Java object

application/x-java-vm Java bytecode (.class) file

MIME types(2)

application/zip Zip archive

audio/basic Sound file in .au or .snd format
audio/x-wav Microsoft Windows sound file
text/css HTML cascading style sheet
text/html HTML document

text/plain Plain text

image/gif GIF image

image/jpeg JPEG image

image/png PNG image

image/tiff TIFF image

image/x-xbitmap X Window bitmap image

video/mpeg MPEG video clip

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Using persistent HTTP
connections

Servlets can take advantage of persistent connections if the
servlets are embedded in servers that support them.

The server should handle most of the process, but it has no
way to determine how large the returned document is. So the
servlet needs to set the Content-Length response header by
means of response.setContentLength. A servlet can determine
the size of the returned document by buffering the output by
means of a ByteArray-OutputStream,retrieving the number of
bytes with the byte stream’s size method, then sending the
buffered output to the client.

Using persistent connections is likely to pay off only for
servlets that load a large number of small objects, where those
objects are also servilet-generated. Otherwise Application
Server takes care about persistance.

Using serviets to generate GIF
" images

String fontName = request.getParameter("fontName");
String fontSizeString = request.getParameter("fontSize");
response.setContentType("image/qgif”);

OutputStream out = response.getOutputStream(),
Image messagelmage =
Messagelmage.makeMessagelmage(message, fontName,
fontSize),;

Messagelmage.sendAsGIF(messagelmage, out);

...//to create GIF image use one of available classess eg.

// Jef Poskanzer’s GifEncoder class, available free from
http.//www.acme.com/java/.

Cookies

Cookies are small bits of textual information that a Web server
sends to a browser and that the browser returns unchanged
when later visiting the same Web site or domain.

Benefits of cookies:

« Identifying a User During an E-commerce Session

« Avoiding Username and Password (dangerous but possible)
« Customizing a Site

* Focusing Advertising

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Problems with cookies

Cookies don’t present a serious security threat, they can
present a significant threat to privacy. Some people don't
like the fact that search engines can remember that they're the
user who usually does searches on certain topics. A second
privacy problem occurs when sites rely on cookies for overly
sensitive data.

Due to real and perceived privacy problems, some users turn
off cookies. So, even when you use cookies to give added
value to a site, your site shouldn’t depend on them.

As the author of servlets that use cookies, you should be
careful not to use cookies for particularly sensitive
information, since this would open users up to risks if
somebody accessed their computer or cookie files.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Creating cookies

You create a cookie by calling the Cookie constructor, which
takes twostrings: the cookie name and the cookie value.
Neither the name nor the value should contain white space or
any of the following characters:

[10)=,"1?7@:;
Cookie attributes:
public String getComment()
public void setComment(String comment)
These methods look up or specify a comment associated with the
cookie. With version 0 cookies the comment is used purely for

informational purposes on the server.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Creating cookies(2)
public String getDomain()

public void setDomain(String domainPattern)

These methods get or set the domain to which the cookie
applies. You can use setDomain method to instruct the
browser to return them to other hosts within the same domain.
To prevent servers setting cookies that apply to hosts outside
their domain, the domain specified is required to start with a
dot (e.qg., .prenhall.com), and must contain two dots for
noncountry domains like .com, .edu and .gov; and three dots
for country domains like .co.uk and .edu.es. Example:

Cookies sent from a servlet at bali.vacations.com would not
normally get sent by the browser to pages at
mexico.vacations.com. If the site wanted this to happen, the
servlets could specify cookie.setDomain(".vacations.com”).

Creating cookies(3)
public int getMaxAge()

public void setMaxAge(int lifetime)

These methods tell how much time (in seconds) should elapse
before the cookie expires. A negative value, which is the
default, indicates that the cookie will last only for the current
session and will not be stored on disk. Specifying a value of O
Instructs the browser to delete the cookie.

public String getName()
public void setName(String cookieName)

This pair of methods gets or sets the name of the cookie. The
name and the value are the two pieces you virtually always
care about. The name is supplied to the Cookie constructor, so
you rarely need to call setName. getName is used on almost
every cookie received on the server.

Creating cookies(4)
public String getPath()

public void setPath(String path)

These methods get or set the path to which the cookie applies.
If you don’t specify a path, the browser returns the cookie only
to URLs in or below the directory containing the page that sent
the cookie. Example:

If the server sent the cookie from:

http://ecommerce.site.com/toys/specials.html,

the browser would send the cookie back when connecting to
http://ecommerce.site.com/toys/bikes/beginners.html, but not
to http://ecommerce.site.com/cds/classical.html . The setPath
method can be used to specify something more general. For
example, someCookie.setPath("/") specifies that all pages on
the server should receive the cookie.

Creating cookies(5)

public boolean getSecure()
public void setSecure(boolean secureFlag)

This pair of methods gets or sets the boolean value indicating
whether the cookie should only be sent over encrypted (i.e.,
SSL) connections. The default is false.

public String getValue()
public void setValue(String cookieValue)

The getValue method looks up the value associated with the
cookie; the setValue method specifies it. Again, the name and
the value are the two parts of a cookie that you almost always
care about, although in a few cases, a name is used as a
boolean flag and its value is ignored (i.e., the existence of a
cookie with the designated name is all that matters).

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Creating cookies(5)

public int getVersion()
public void setVersion(int version)

These methods get/set the cookie protocol version the cookie
complies with. Version 0, the default, follows the original
Netscape specification

(http://www.netscape.com/newsref/std/cookie spec.html).

Version 1, not yet widely supported, adheres to RFC 2109.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Usage of cookies

Placing cookies in the response headers
Cookie userCookie = new Cookie("user”, "uid1234");
userCookie.setMaxAge(60*60*24*365), // 1 year
response.addCookie(userCookie);
Reading cookies:
Cookie[] cookies = request.getCookies(),
Cookie cookie;
for(int i=0; i<cookies.length; i++) {
cookie = cookies[i];

... // do something

} Presented by Bartosz Sakowicz
DMCS TUL Lodz

Cookies utilities

Long lived cookies:

import javax.servlet.http.”;
/** Cookie that persists 1 year. */
public class LongLivedCookie extends Cookie {
public static final int SEC_PER_YEAR = 60*60*24*365;
public LongLivedCookie(String name, String value) {
super(name, value),
setMaxAge(SEC PER YEAR);

Presented by Bartosz Sakowicz
} DMCS TUL Lodz

Cookies utilities(2)

public class ServletUtilities {
public static String getCookieValue(Cookie[] cookies,
String cookieName, String defaultValue) {
for(int i=0; i<cookies.length; i++) {
Cookie cookie = cookies]i];
if (cookieName.equals(cookie.getName()))
return(cookie.getValue());

}

return(defaultValue);

verte >

Cookies utilities(3)

public static Cookie getCookie(Cookie[] cookies,
String cookieName) {
for(int i=0; i<cookies.length; i++) {
Cookie cookie = cookies]i];
if (cookieName.equals(cookie.getName()))
return(cookie);

}

return(null);

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Session tracking

HTTP is a stateless protocol. each time a client retrieves a
Web page, it opens a separate connection to the Web server.

Even with servers that support persistent (keep-alive) HTTP
connections and keep a socket open for multiple client
requests that occur close together in time there is no built-in
support for maintaining contextual information.

There are three typical solutions for session tracking:
cookies
URL-rewriting

hidden form fields

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Session tracking(2)

Every from previous solutions has many disadvantages:

Cookies: a lot of processing in every request, possible to turn
them off in a browser

URL-rewriting: even more to do

Hidden fields: works only if every page is dynamically
generated

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Session tracking(3)

Servlets provide an outstanding technical solution: the
HttpSession APIL.

This high-level interface is built on top of cookies or URL-
rewriting. Most servers use cookies if the browser supports
them, but automatically revert to URL-rewriting when cookies
are unsupported or explicitly disabled.

The servlet author doesn’t need to bother with many of the
details, doesn’t have to explicitly manipulate cookies or
information appended to the URL, and is automatically given a
convenient place to store arbitrary objects that are associated
with each session.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

HttpSession

You look up the HttpSession object by calling the
getSession method of HttpServletRequest.

Behind the scenes, the system extracts a user ID from a
cookie or attached URL data, then uses that as a key into a
table of previously created HttpSession objects.

If getSession returns null, this means that the user is not
already participating in a session, so you can create a new
session.

Creating a new session in this case is so commonly done
that there is an option to automatically create a new session if
one doesn’t already exist- just pass true to getSession.

HttpSession session = request.getSession(true);

Presented by Bartosz Sakowicz
DMCS TUL Lodz

HttpSession(2)

The session object has a built-in data structure that lets
you store any number of keys and associated values.

In version 2.1 and earlier of the servilet API, you use
session.getValue("attribute") to look up a previously stored
value. The return type is Object, so you have to do a type-cast
to whatever more specific type of data was associated with
that attribute name in the session. The return value is null if
there is no such attribute, so you need to check for null
before calling methods on objects associated with sessions.

In version 2.2 of the servlet API, getValue is deprecated in
favor of getAttribute because of the better naming match with
setAttribute (in version 2.1 the match for getValue is putValue,
not setValue).

Presented by Bartosz Sakowicz
DMCS TUL Lodz

HttpSession(3)
Other methods:
public void removeValue(String name) //deprecated
public void removeAttribute(String name)

These methods remove any values associated with the
designated name.

public String[] getValueNames() //deprecated
public Enumeration getAttributeNames()

These methods return the names of all attributes in the
session.

public String getld()

This method returns the unique identifier generated for each
session.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

HttpSession(4)

public boolean isNew()

This method returns true if the client (browser) has never seen
the ses-sion,usually because it was just created rather than
being referenced by an incoming client request. It returns false
for preexisting sessions.

public long getCreationTime()

This method returns the time in milliseconds since midnight,
January 1, 1970 (GMT) at which the session was first built. To
get a value useful for printing out, pass the value to the Date
constructor or the setTimelnMillis method of
GregorianCalendar.

public long getLastAccessedTime()

This method returns the time in milliseconds as previous at
which the session was last sent from the client.

HttpSession(5)

public int getMaxInactivelnterval()
public void setMaxInactivelnterval(int seconds)

These methods get or set the amount of time, in seconds, that
a session should go without access before being automatically
Invalidated. A negative value indicates that the session should
never time out. The time out iIs maintained on the server and is

not the same as the cookie expiration date, which is sent to the
client.

public void invalidate()

This method invalidates the session and unbinds all objects
associated with it.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Encoding URLSs

If you are using URL-rewriting for session tracking and
you send a URL that references your site to the client, you
need to explicitly add on the session data.

String originalURL = someRelativeOrAbsoluteURL; //2.2 API
String encodedURL = response.encodeURL(originalURL),
out.printin("...");

OR:

String encodedURL =
response.encodeRedirectURL (original URL);

response.sendRedirect(encodedURL);,

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Serviets chaining

In many servers that support servlets, a request can be
handled by a sequence of servlets. The request from the client
browser is sent to the first servlet in the chain. The response
from the last servlet in the chain is returned to the browser. In
between, the output from each servlet is passed (piped) as
Input to the next servlet, so each servlet in the chain has the
option to change or extend the content.

Web Server

request

— Serviet]
Serviet?
.

[ESPONSE o e Sarviel3

