J2EE

Serviets and JSP

Advanced topics

Presented by Bartosz Sakowicz



JSP and serviets integration

Advantages and disadvantages of servilets and JSP:

» Servlets are good when your application requires a lot of real
programming.

» Generating HTML with servlets can be tedious and can yield a
result that is hard to modify.

« JSP document provides a single overall presentation. Beans and
custom tags, although very flexible, don’t overcome the limitation
that the JSP page defines a relatively fixed top-level page
appearance.

* The solution is to use both servilets and JSP. If you have a
complicated application that may require several substantially
different presentations, a servlet can handle the initial request,
partially process the data, set up beans, then forward the results
to one of a number of different JSP pages, depending on the

CirCU mStanCeS Presented by Bartosz Sakowicz
DMCS TUL



RequestDispatcher class

To let servlets forward requests or include external content you
use a RequestDispatcher. You obtain a RequestDispatcher by
calling the getRequestDispatcher method of ServletContext,
supplying a URL relativeto the server root. Example:

String url = "/presentations/presentation.jsp”;
RequestDispatcher dispatcher =
getServietContext().getRequestDispatcher(url);

Once you have a RequestDispatcher, you use forward to
completely transfer control to the associated URL and use
include to output the associated URL'’s content.

Presented by Bartosz Sakowicz
DMCS TUL



Forwarding example

public void doGet(HttpServletRequest request,
HttpServietResponse response)
throws ServiletException, IOException {
String operation = request.getParameter("operation");
If (operation == null) { operation = "unknown"; }
if (operation.equals("operation1")) {
gotoPage("/operations/presentation1.jsp”,
request, response);
} else if (operation.equals("operation2")) {
gotoPage("/operations/presentation2.jsp”,
request, response);
} else {
gotoPage("/operations/unknownRequestHandler.jsp",
request, response);

}

} Presented by Bartosz Sakowicz
DMCS TUL



Forwarding example(2)

private void gotoPage(String address,
HttpServletRequest request, HttpServietResponse response)
throws ServiletException, IOException {

RequestDispatcher dispatcher =
getServietContext().getRequestDispatcher(address);

dispatcher.forward(request, response);

Presented by Bartosz Sakowicz
DMCS TUL



Supplying Data to the
destination page

Main reasons why the destination page shouldn't look up and
process all the data itself:

« Complicated programming is easier in a servilet than in a JSP
page.

* Multiple JSP pages may require the same data, so it would be
wasteful for each JSP page to have to set up the same data.

A better approach is for the original serviet to set up the
information that the destination pages need, then store it
somewhere that the destination pages can easily access.

There are two main places for the servlet to store the data
that the JSP pages will use: in the HttpServletRequest and as
a bean in the location specific to the scope attribute of

jsp:use Bean Presented by Bartosz Sakowicz
DMCS TUL



Supplying ... (2)

The originating servlet would store arbitrary objects in the
HttpServletRequest by using:

request.setAttribute("key 1", value1),

The destination page would access the value by using a JSP
scripting element to call:

Type1 value1 = (Type)request.getAttribute("key1"),

Presented by Bartosz Sakowicz
DMCS TUL



Supplying ... (3)

For complex values a better approach is to represent the value as
a bean and store it in the location used by jsp:useBean for shared
beans. To make a bean accessible to all serviets or JSP pages in

the server or Web application, the originating servlet would do the

following:

Type1 value1 = computeValueFromRequest(request),
getServietContext().setAttribute("key1”, valuel),

The destination JSP page would normally access the previously
stored value by using jsp:useBean as follows:

<jsp:useBean id="key1" class="Type1" scope="application" />
Alternatively, the destination page could use a scripting element to
explicitly call application.getAttribute("key1") and cast the result to

TypeT.

Presented by Bartosz Sakowicz
DMCS TUL



Supplying ... (4)

The Servlet 2.2 specification adds a third way to send data to the
destination page when using GET requests: append the query
data to the URL. Example:

String address = "/path/resource.jsp?newParam=value”,

RequestDispatcher dispatcher =
getServietContext().getRequestDispatcher(address),

dispatcher.forward(request, response);

Presented by Bartosz Sakowicz
DMCS TUL



Differences between
forwarding and sendRedirect

» sendRedirect requires the client to reconnect to the new
resource, whereas the forward method of RequestDispatcher is
handled completely on the server.

» sendRedirect does not automatically preserve all of the request
data; forward does.

* sendRedirect results in a different final URL whereas with
forward the URL of the original serviet is maintained.

Presented by Bartosz Sakowicz
DMCS TUL



Differences between
forwarding and sendRedirect

» sendRedirect requires the client to reconnect to the new
resource, whereas the forward method of RequestDispatcher is
handled completely on the server.

» sendRedirect does not automatically preserve all of the request
data; forward does.

* sendRedirect results in a different final URL whereas with
forward the URL of the original serviet is maintained.

Presented by Bartosz Sakowicz
DMCS TUL



Interpreting relative URL In
the destination page

If the destination page uses relative URLs for images or style
sheets, it needs to make them relative to the server root, not
to the destination page’s actual location. Example:

<LINK REL=STYLESHEET HREF="my-styles.css" >
If the JSP page containing this entry is accessed by means of a
forwarded request, mystyles.css will be interpreted relative to the
URL of the originating serviet, not relative to the JSP page itself,
almost certainly resulting in an error. The solution is to give the full
server path to the style sheet file:

<LINK REL=STYLESHEET HREF="/path/my-styles.css" >

The same approach is required for addresses used in <IMG
SRC=...> and <A HREF=...>.

Presented by Bartosz Sakowicz
DMCS TUL



Alternative ways of getting
RequestDispatcher

In servers that support version 2.2 of the servlet specification,
there are two additional ways of obtaining a RequestDispatcher
besides the getRequestDispatcher method of ServietContext:

Since most servers let you give explicit names to servlets or JSP
pages, it is possible access them by name rather than by path.
Use the getNamedDispatcher method of ServietContext for this
task.

Presented by Bartosz Sakowicz
DMCS TUL



Alternative ways of getting
RequestDispatcher(2)

If you might want to access a resource by a path relative to the
current servlet’s location, rather than relative to the server root
you can use the getRequestDispatcher method of

HttpServietRequest rather than the one from ServletContext.

Example:

If the originating servlet is at http.//host/travel/TopLevel
getServietContext().getRequestDispatcher("/travel/cruises.jsp”)
could be replaced by

request.getRequestDispatcher("cruises.jsp”);

Presented by Bartosz Sakowicz
DMCS TUL



Including static or dynamic
content

If the serviet wants to generate some of the content itself but use
a JSP page or static HTML document for other parts of the result,
the servlet can use the include method of RequestDispatcher.

The process is very similar to that for forwarding requests: call the
getRequestDispatcher method of ServletContext with an address
relative to the server root, then call include with the
HttpServietRequest and HttpServietResponse.

Presented by Bartosz Sakowicz
DMCS TUL



Including static or dynamic
content (2)

Whatever request data was associated with the original request is
also associated with the auxiliary request, and you can add new

parameters (in version2.2 only) by appending them to the URL
supplied to getRequestDispatcher.

Also supported in version 2.2 is the ability to get a
requestDispatcher by name (getNamedDispatcher) or by using a

relative URL (use the getRequestDispatcher method of the
HttpServletRequest);

Presented by Bartosz Sakowicz

DMCS TUL



Including static or dynamic
content (3)

include does one thing that forward does not: it automatically
sets up attributes in the HttpServletRequestobject that describe
the original request path in case the included serviet or JSP page
needs that information. These attributes, available to the included
resource by calling getAttribute on the HttpServietRequest, are:

* Javax.servlet.include.request_uri

* Javax.servlet.include.context_path
» javax.servlet.include.servlet_path
* javax.servlet.include.path_info

* javax.servlet.include.query_string

Presented by Bartosz Sakowicz
DMCS TUL



Differences between include
directive and include method

* In the JSP include directive the actual source code of JSP
files was included in the page

* The include method of RequestDispatcher just includes the
result of the specified resource.

* The jsp:include action has behavior similar to that of the include
method, except that jsp:include is available only from JSP pages,
not from servlets.

Presented by Bartosz Sakowicz
DMCS TUL



Forwarding requests from
JSP pages

In JSP, the jsp:forward action is simpler and easier to use than
wrapping up RequestDispatcher code in a scriptlet. This action
takes the following form:
<jsp.forward page="Relative URL" />
The page attribute is allowed to contain JSP expressions so that
the destination can be computed at request time. Example:
<% String destination;
if (Math.random() > 0.5) {
destination = "Jexamples/page1.jsp”;
Jelse {
destination = "Jexamples/page2.jsp"”;
/
%>
<jSp.’fOI'W3rd page="<%= deStinatiOn %>" /> Presented by Bartosz Sakowicz
DMCS TUL



