J2EE

JDBC

Connection pooling

Presented by Bartosz Sakowicz

JDBC

There are seven standard steps in querying databases:

. Load the JDBC driver.

. Define the connection URL.
. Establish the connection.

. Create a statement object.

. Execute a query or update.
. Process the results.

. Close the connection.

NOoOOh,WN=-

Presented by Bartosz Sakowicz
DMCS TUL

Loading the driver

The driver is the piece of software that knows how to talk to the
actual database server. To load the driver, all you need to do is to
load the appropriate class; a static block in the class itself
automatically makes a driver instance and registers it with the
JDBC driver manager.

Example:

try {
Class.forName("connect.microsoft.MicrosoftDriver");

Class.forName("oracle.jdbc.driver.OracleDriver®);
Class.forName("com.sybase.jdbc.SybDriver");
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver”);
} catch(ClassNotFoundException cnfe) {
System.err.printin("Error loading driver: " + cnfe);

/

Presented by Bartosz Sakowicz
DMCS TUL

Loading the driver(2)

JDBC driver translates calls written in the Java programming
language into the specific format required by the server.

Most database vendors supply free JDBC drivers for their
databases, but there are many third-party vendors of drivers for
older databases.

An up-to-date list is avaliable at:
http://java.sun.com/products/jdbc/drivers.html.

Presented by Bartosz Sakowicz
DMCS TUL

Defining the connection URL

Once you have loaded the JDBC driver, you need to specify the
location of the database server. URLs referring to databases use
the jdbc: protocol and have the server host, port, and database
name (or reference) embedded within the URL. The exact format

will be defined in the documentation that comes with the particular
driver.

Examples:

String host = "dbhost.yourcompany.com”,

String dbName = "someName";

int port = 1234,

String oracleURL = "jdbc:oracle:thin:@" + host +
"""+ port + ":" + dbName,

String sybaseURL = "jdbc:sybase:Tds:" + host +
"+ port + """+ "?SERVICENAME=" + dbName,

Presented by Bartosz Sakowicz

DMCS TUL

Applets and JDBC

JDBC is most often used from servlets or regular desktop
applications but is also sometimes employed from applets.

If you use JDBC from an applet, remember that browsers prevent
applets from making network connections anywhere except to the
server from which they were loaded. Consequently, to use JDBC
from applets, either the database server needs to reside on the
same machine as the HT TP server or you need to use a proxy
server that reroutes database requests to the actual server.

Presented by Bartosz Sakowicz
DMCS TUL

Establishing the connection

To make the actual network connection, pass the URL, the
database user-name, and the password to the getConnection
method of the Driver-Manager class. Note that getConnection
throws an SQLEXxception, so you need to use a try/catch block:

String username = "myname”;
String password = "secret";
Connection connection =

DriverManager.getConnection(oracleURL, username, password),

Presented by Bartosz Sakowicz

DMCS TUL

Establishing the ... (2)

An optional part of this step is to look up information about the
database by using the getMetaData method of Connection. This
method returns a DatabaseMetaData object which has methods to
let you discover the name and version of the database itself
(getDatabaseProductName, getDatabaseProductVersion) or of
the JDBC driver (getDriverName, getDriverVersion). Example:

DatabaseMetaData dbMetaData = connection.getMetaData();
String productName =
dbMetaData.getDatabaseProductName();
System.out.printin("Database: " + productName),

String productVersion =
dbMetaData.getDatabaseProductVersion(),
System.out.printin("Version: " + productVersion),

Presented by Bartosz Sakowicz
DMCS TUL

Creating a statement

A Statement object is used to send queries and commands to the
database and is created from the Connection as follows:

Statement statement = connection.create Statement();

Presented by Bartosz Sakowicz
DMCS TUL

Executing a query

Once you have a Statement object, you can use it to send SQL
queries by using the executeQuery method, which returns an
object of type ResultSet. Example:

String query = "SELECT col1, col2, col3 FROM sometable”;
ResultSet resultSet = statement.executeQuery(query),;

To modify the database, use executeUpdate instead of
executeQuery, and supply a string that uses UPDATE, INSERT,
or DELETE. Other useful methods in the Statement class include
execute (execute an arbitrary command) and setQueryTimeout
(set a maximum delay to wait for results).

Presented by Bartosz Sakowicz
DMCS TUL

Processing the resulit

The simplest way to handle the results is to process them one row
at a time, using the ResultSet’'s next method to move through the
table a row at a time.

Within a row, ResultSet provides various getXxx methods that
take a column index or column name as an argument and return
the result as a variety of different Java types. For instance, use
getint if the value should be an integer, getString for a String, and
so on for most other data types.

The first column in a ResultSet row has index 1, not 0
following SQL conventions.

Presented by Bartosz Sakowicz
DMCS TUL

Processing the result(2)

Example:

while(resultSet.next()) {
System.out.printin(results.getString(1) + " " +
results.getString(2) + " " +
results.getString(3));

/

In addition to the getXxx and next methods, other useful methods
In the ResultSet class include findColumn (get the index of the
named column), wasNull (was the last getXxx result SQL
NULL?), and getMetaData (retrieve information about the
ResultSet in a ResultSetMetaData object).

Presented by Bartosz Sakowicz
DMCS TUL

Closing the connection

To close the connection explicitly, you would do:

connection.close();

You should postpone this step if you expect to perform additional
database operations, since the overhead of opening a connection
Is usually large.

Presented by Bartosz Sakowicz

DMCS TUL

try { JDBC example

Class.forName(driver);
Connection connection =
DriverManager.getConnection(url, username, password);
Statement statement = connection.create Statement(),
String query = "SELECT * FROM fruits";
ResultSet resultSet = statement.executeQuery(query);
while(resultSet.next()) {
System.out.print(" " + resultSet.getInt(1)),
System.out.print(" " + resultSet.getInt(2)),
System.out.print(" $" + resultSet.getFloat(3));
/
} catch(ClassNotFoundException cnfe) {
System.err.printin("Error loading driver: " + cnfe);
} catch(SQLException sqle) {

System.err.printin("Error connecting: " + sqle);
} Presented by Bartosz Sakowicz
DMCS TUL

Prepared statements

* If you are going to execute similar SQL statements multiple
times, using “prepared” statements can be more efficient than
executing a raw query each time.

* The idea Is to create a parameterized statement in a
standard form that is sent to the database for compilation
before actually being used.

* You use a question mark to indicate the places where a value
will be substituted into the statement.

« Each time you use the prepared statement, you replace some of
the marked parameters, using a setXxx call corresponding to the
entry you want to set (using 1-based indexing) and the type of the
parameter (e.g., setint, setString, and so forth).

* You then use executeQuery (if you want a ResultSet back) or
execute/executeUpdate as with normal statements.

Presented by Bartosz Sakowicz
DMCS TUL

Prepared ... - example

Connection connection =
DriverManager.getConnection(url, user, password);
String template =
"UPDATE employees SET salary = ? WHERE id = 7",
PreparedStatement statement =
connection.prepareStatement(template);
float[] newSalaries = getNewSalaries();
int[] employeelDs = getIDs(),
for(int i=0; i<employeelDs.length; i++) {
statement.setFloat(1, newSalaries[i]);
statement.setint(2, employeelDs[i]);
statement.execute();
/
The performance advantages of prepared statements can vary ,
depending on how well the server supports precompiled queries
and how efficiently the driver handles raw queries (up to 50%).

executeUpdate

Whereas executeQuery returns a ResultSet object containing the
results of the query sent to the DBMS, the return value for
executeUpdate is an int that indicates how many rows of a
table were updated.

Example:
updateSales.setint(1, 50);
updateSales.setString(2, "Espresso”),

int n = updateSales.executeUpdate();

// n equals number of updated rows

Presented by Bartosz Sakowicz
DMCS TUL

Transactions

A transaction is a set of one or more statements that are
executed together as a unit, so either all of the statements are
executed, or none of the statements is executed.

When a connection is created, it is in auto-commit mode. This
means that each individual SQL statement is treated as a
transaction and will be automatically committed right after it is
executed. The way to allow two or more statements to be grouped
Into a transaction is to disable auto-commit mode.

Example (con is an active connection):

con.setAutoCommit(false),

Presented by Bartosz Sakowicz

DMCS TUL

Commiting a transaction

con.setAutoCommit(false);
PreparedStatement updateSales = con.prepareStatement(
"UPDATE COFFEES SET SALES = ? WHERE COF _NAME LIKE
"),

updateSales.setint(1, 50),

updateSales.setString(2, "Colombian”);
updateSales.executeUpdate();

PreparedStatement update Total = con.prepare Statement(
"UPDATE COFFEES SET TOTAL = TOTAL + ? WHERE

COF _NAME LIKE ?");
updateTotal.setInt(1, 50);
updateTotal.setString(2, "Colombian”),
updateTotal.executeUpdate();
con.commit();
con.setAutoCommit(true);

Presented by Bartosz Sakowicz
DMCS TUL

Rollbacking a transaction

Calling the method rollback aborts a transaction and returns any
values that were modified to their previous values.

If you are trying to execute one or more statements in a
transaction and get an SQLException , you should call the
method rollback to abort the transaction and start the transaction
all over again. That is the only way to be sure of what has been
committed and what has not been committed. Catching an
SQLException tells you that something is wrong, but it does not
tell you what was or was not committed. Since you cannot count
on the fact that nothing was committed, calling the method
rollback is the only way to be sure.

Presented by Bartosz Sakowicz
DMCS TUL

Stored procedures

Stored procedures are supported by most DBMSs, but there is a
fair amount of variation in their syntax and capabilities. Example:

String createProcedure =

"create procedure SHOW SUPPLIERS " + "as " +

"select SUPPLIERS.SUP_NAME, COFFEES.COF _NAME " +
"from SUPPLIERS, COFFEES " +

"where SUPPLIERS.SUP _ID = COFFEES.SUP _ID " +

"order by SUP_NAME";
Statement stmt = con.createStatement(),

stmt.executeUpdate(createProcedure),

The procedure SHOW SUPPLIERS will be compiled and stored
In the database as a database object that can be called, similar to

the way you would call a method.

Presented by Bartosz Sakowicz
DMCS TUL

Stored procedures(2)

JDBC allows you to call a database stored procedure from an
application written in the Java programming language. The first
step is to create a CallableStatement object. Than you should
call proper execute method (depending on what is procedure
created: SELECT, UPDATE and so on). Example:

CallableStatement cs =

con.prepareCall("{call SHOW SUPPLIERS}"),
ResultSet rs = cs.executeQuery();
// or executeUpdate() or execute()

Presented by Bartosz Sakowicz
DMCS TUL

Catching SQLException

} catch(SQLException ex) {
System.out.printin("\n--- SQLEXxception caught ---\n");
while (ex I= null) {
System.out.printin("Message:" + ex.getMessage()),
// a string that describes the error
System.out.printin("SQLState: " + ex.getSQL State ());
// a string identifying the error according to the X/Open
// SQLState conventions
System.out.printin("ErrorCode: " + ex.getErrorCode ());
// a number that is the driver vendor's error code number
ex = ex.getNextException(); // there can be more than 1
System.out.printin(" "),

/

Presented by Bartosz Sakowicz
DMCS TUL

SQLWarninig

*SQLWarning objects are a subclass of SQLException that deal
with database access warnings.

*\Warnings do not stop the execution of an application, as
exceptions do; they simply alert the user that something did not
happen as planned. For example, a warning might let you know
that a privilege you attempted to revoke was not revoked. Or a
warning might tell you that an error occurred during a requested
disconnection.

A warning can be reported on a Connection object, a Statement
object (including PreparedStatement and CallableStatement
objects), or a ResultSet object. Each of these classes has a
getWarnings method, which you must invoke in order to see the
first warning reported on the calling object.

Presented by Bartosz Sakowicz
DMCS TUL

SQLWarninig(2)

If getWarnings returns a warning, you can call the SQLWarning
method getNextWarning on it to get any additional warnings.

Executing a statement automatically clears the warnings from a
previous statement, so they do not build up. This means,
however, that if you want to retrieve warnings reported on a
statement, you must do so before you execute another
statement.

Usage of warnings is analogous to usage of exceptions.

Presented by Bartosz Sakowicz
DMCS TUL

Cursor in scrollable
ResultSet

One of the new features in the JDBC 2.0 API is the ability to move
a result set's cursor backward as well as forward.

There are also methods that let you move the cursor to a
particular row and check the position of the cursor.

Creating a scrollable ResultSet object example:

Statement stmt =

con.createStatement(ResultSet. TYPE _SCROLL SENSITIVE,
ResultSet. CONCUR_READ ONLY);

ResultSet srs = stmt.executeQuery("SELECT COF_NAME,
PRICE FROM COFFEES");

Presented by Bartosz Sakowicz
DMCS TUL

createStatement arguments

First argument must be one of the following:

TYPE_FORWARD ONLY creates a nonscrollable result set in
which the cursor moves only forward. If you do not specify any

constants for the type and updatability of a ResultSet object, you
will automatically get one that is TYPE_ FORWARD ONLY

TYPE_SCROLL _INSENSITIVE - scrollable ResultSet, it does not
reflect changes made while it is still open

TYPE_SCROLL SENSITIVE - scrollable ResultSet, it reflect
changes made while it is still open

Second argument must be: CONCUR_READ_ ONLY (default) or
CONCUR_UPDATABLE

Presented by Bartosz Sakowicz
DMCS TUL

previous() method

Statement stmt =
con.createStatement(ResultSet. TYPE SCROLL INSENSITIVE,

ResultSet. CONCUR_READ ONLY);

ResultSet srs = stmt.executeQuery("SELECT COF_NAME,
PRICE FROM COFFEES"),

srs.afterLast();

while (srs.previous()) {
String name = srs.getString("COF_NAME"),

float price = srs.getFloat("PRICE"),
System.out.printin(name +" " + price);

Presented by Bartosz Sakowicz
DMCS TUL

Other methods

The methods first, last , beforeFirst , and afterLast move the
cursor to the row indicated in their names.

The method absolute will move the cursor to the row number
iIndicated in the argument passed to it. If the number is positive,
the cursor moves the given number from the beginning, so calling
absolute(1) puts the cursor on the first row. If the number is
negative, the cursor moves the given number from the end, so
calling absolute(-1) puts the cursor on the last row.

Presented by Bartosz Sakowicz
DMCS TUL

Other methods(2)

With the method relative , you can specify how many rows to
move from the current row and also the direction in which to
move. A positive number moves the cursor forward the given
number of rows; a negative number moves the cursor backward
the given number of rows.

The method getRow lets you check the number of the row where
the cursor is positioned.

isFirst, isLast, isBeforeFirst, isAfterLast verify whether the
cursor is at a particular position.

Presented by Bartosz Sakowicz
DMCS TUL

Making updates

* An update is the modification of a column value in the current
row.

* To update ResultSet you need to create one that is updatable. In
order to do this, you supply the ResultSet constant
CONCUR_UPDATABLE to the createStatement method.

« Using the JDBC 1.0 API, the update would look like this:

stmt.executeUpdate("UPDATE COFFEES SET PRICE = 10.99" +
"WHERE COF_NAME = FRENCH_ROAST_DECAF");

 The following code fragment shows another way to accomplish
the update using the JDBC 2.0 API:

uprs.last(); //position cursor
uprs.updateFloat("PRICE", 10.99), // update row

Presented by Bartosz Sakowicz
DMCS TUL

Making updates(2)
« Update operations in the JDBC 2.0 API affect column values in
the row where the cursor is positioned.

* The ResultSet. update XXX methods take two parameters: the
column to update and the new value to put in that column. As with
the ResultSet. getXXX methods, the parameter designating the
column may be either the column name or the column number.

* There is a different updateXXX method for updating each
datatype (updateString , updateBigDecimal , updatelnt , and so
on) just as there are different getXXX methods for retrieving
different datatypes.

Presented by Bartosz Sakowicz
DMCS TUL

Making updates(3)
« To make the update take effect in the database and not just the
result set, we must call the ResultSet method updateRow
uprs.last(),
uprs.updateFloat("PRICE", 10.99f);
uprs.updateRow();
* If you had moved the cursor to a different row before calling the
method updateRow , the update would have been lost.
* If would like to change the update you can cancel the update by
calling the method cancelRowUpdates .
* You have to invoke cancelRowUpdates before invoking the
method updateRow ; once updateRow is called, calling the
method cancelRowUpdates does nothing.
* Note that cancelRowUpdates cancels all of the updates in a row,
so if there are many invocations of the update XXX methods on
the same row, you cannot cancel just one of them

Presented by Bartosz Sakowicz
DMCS TUL

Making updates(4)

Example:

uprs.last();
uprs.updateFloat("PRICE", 10.99),
uprs.cancelRowUpdates();
uprs.updateFloat("PRICE", 10.79);
uprs.updateRow();

Updates and related operations apply to the row where the cursor
Is positioned. Even if there are many calls to update XXX methods,
It takes only one call to the method updateRow to update the
database with all of the changes made in the current row.

Presented by Bartosz Sakowicz
DMCS TUL

Inserting rows

When you have a ResultSet object with results from the table, you
can build the new row and then insert it into both the result set
and the table in one step.

You build a new row in what is called the insert row, a special
row associated with every ResultSet object. This row is not part of

the result set; it is a kind of separate buffer in which you compose
a NeEW row.

Presented by Bartosz Sakowicz

DMCS TUL

Inserting rows(2)

To insert row programatically you should perform following steps:

* Move the cursor to the insert row, which you do by invoking the
method moveTolnsertRow.

» Set a value for each column in the row. You do this by calling the
appropriate updateXXX method for each value.

 Call the method insertRow to insert the row you have just
populated with values into the result set. This one method
simultaneously inserts the row into both the ResultSet object and
the database table from which the result set was selected.

Presented by Bartosz Sakowicz
DMCS TUL

Inserting rows(3)

Example:

uprs.moveTolnsertRow(),
uprs.updateString("COF_NAME", "Kona");
uprs.updatelnt("SUP_ID", 150);
uprs.updateFloat("PRICE", 10.99);
uprs.updatelnt("SALES", 0);
uprs.updatelnt("TOTAL", 0),
uprs.insertRow(),

After you have called the method insertRow , you can start
building another row to be inserted, or you can move the cursor
back to a result set row. You can use any of earlier mentioned

methods or moveToCurrentRow. Presented by Bartosz Sakowicz
DMCS TUL

Deleting Rows

Move the cursor to the row you want to delete and then call the
method deleteRow:

uprs.absolute(4);
uprs.deleteRow();

With some JDBC drivers, a deleted row is removed and is no
longer visible in a result set. Some JDBC drivers use a blank row
as a placeholder (a "hole") where the deleted row used to be. If
there is a blank row in place of the deleted row, you can use the
method absolute with the original row positions to move the cursor
because the row numbers in the result set are not changed by the
deletion.

In any case, you should remember that JDBC drivers handle
deletions differently.

Presented by Bartosz Sakowicz
DMCS TUL

Making Batch Updates

A batch update is a set of multiple update statements that is
submitted to the database for processing as a batch. Sending
multiple update statements to the database together as a unit can,
In some situations, be much more efficient than sending each
update statement separately.

Multiple executeUpdate statements can be sent in the same
transaction, but even though they are committed or rolled back as
a unit, they are still processed individually.

With the JDBC 2.0 API, Statement, PreparedStatement, and
CallableStatement objects have the ability to maintain a list of
commands that can be submitted together as a batch. They are
created with an associated list, which is initially empty. You can
add SQL commands to this list with the method addBatch, and
you can empty the list with the method clearBatch. You send all
of the commands in the list to the database with the method
executeBatch.

Making Batch Updates(2)

Example:
con.setAutoCommit(false),
Statement stmt = con.createStatement(),

stmt.addBatch("INSERT INTO COFFEES " +
"VALUES('Amaretto’, 49, 9.99, 0, 0)");

stmt.addBatch("INSERT INTO COFFEES " +
"VALUES('Amaretto _decaf’, 49, 10.99, 0, 0)");

int [] updateCounts = stmt.executeBatch(),

Only commands that return an update count (commands such
as INSERT INTO , UPDATE , DELETE , CREATE TABLE , DROP
TABLE , ALTER TABLE , and so on) can be executed as a
batch with the executeBatch method.

Presented by Bartosz Sakowicz
DMCS TUL

BatchUpdateException

If one of the commands cannot be executed for some other
reason, the method executeBatch will throw a
BatchUpdateException . In addition to the information that all
exceptions have, this exception contains an array of the update
counts for the commands that executed successfully before the
exception was thrown. Because the update counts are in the
same order as the commands that produced them, you can tell
how many commands were successful and which commands they
are.

BatchUpdateException is derived from SQLException.

Presented by Bartosz Sakowicz
DMCS TUL

BatchUpdateException(2)

Usage example:

try {

// make some updates

} catch(BatchUpdateException b) {
System.err.printin("SQLException: " + b.getMessage());
System.err.printin("SQLState: " + b.getSQLState());
System.err.printin("Message: " + b.getMessage());
System.err.printin("Vendor: " + b.getErrorCode());
System.err.print("Update counts: ");
int [] updateCounts = b.getUpdateCounts();

for (int i = 0; i < updateCounts.length; i++ pdsented by Bartosz Sakowicz
System.err.print(updateCounts[i] + " "); } } DMCS TUL

SQL3 datatypes

The datatypes commonly referred to as SQL3 types are the new
datatypes being adopted in the next version of the ANSI/ISO SQL
standard.

The new SQL3 datatypes give a relational database more
flexibility in what can be used as a type for a table column.

SQL3 datatypes:

BLOB (Binary Large Obiject), which can store very large amounts
of data as raw bytes.

CLOB (Character Large Object), which is capable of storing very
large amounts of data in character format.

ARRAY makes it possible to use an array as a column value.

User-defined types (UDTs), structured types and distinct types,
can now be stored as column values. Presented by Bartosz Sakowicz
DMCS TUL

SQL3 datatypes(2)

SQL3 types getXXX methods (setXXX and updateXXX by
analogy):

BLOB getBlob

CLOB getClob

ARRAY getArray
Structured type getObject

Presented by Bartosz Sakowicz
DMCS TUL

ARRAY usage example

ResultSet rs = stmt.executeQuery("SELECT SCORES FROM
STUDENTS WHERE ID = 2238");

rs.next(),
Array scores = rs.getArray("SCORES");

Presented by Bartosz Sakowicz
DMCS TUL

Connection pooling

Opening a connection to a database is a time-consuming process.
For short queries, it can take much longer to open the connection
than to perform the actual database retrieval. Consequently, it
makes sense to reuse Connection objects in applications that
connect repeatedly to the same database.

A connection pool class should be able to perform the
following tasks:

1. Preallocate the connections.

2. Manage available connections.

3. Allocate new connections.

4. Wait for a connection to become available.
5. Close connections when required.

Presented by Bartosz Sakowicz
DMCS TUL

Prealocating the
connections

Perform this task in the class constructor. Allocating more con-
nections in advance speeds things up if there will be many con-
current requests later but causes an initial delay. As a result, a
servlet that preallocates very many connections should build the
connection pool from its init method, and you should be surethat
the servlet is initialized prior to a “real” client request:

availableConnections = new Vector(initialConnections);
busyConnections = new Vector (),
for(int i=0; i<initialConnections; i++) {

availableConnections.addElement(makeNewConnection());

Presented by Bartosz Sakowicz
DMCS TUL

Managing available
connections

If a connection is required and an idle connection is
available, put it in the list of busy connections and then
return it. The busy list is used to check limits on the total number
of connections as well as when the pool is instructed to explicitly
close all connections.

Connections can time out, so before returning the connection,
confirm that it is still open. If not, discard the connection and
repeat the process.

Discarding a connection opens up a slot that can be used by
processes that needed a connection when the connection limit
had been reached, so use notifyAll to tell all waiting threads to
wake up and see if they can proceed (e.g., by allocating a new
connection).

Presented by Bartosz Sakowicz
DMCS TUL

Managing available
connections(2)

public synchronized Connection getConnection()throws
SQLEXxception {

if (lavailableConnections.isEmpty()) {
Connection existingConnection =
(Connection)available Connections.lastElement();
int lastindex = availableConnections.size() - 1,

availableConnections.removeElementAt(lastindex);

verte-->

Presented by Bartosz Sakowicz
DMCS TUL

Managing available
connections(3)

if (existingConnection.isClosed()) {

notifyAll(); // Freed up a spot for anybody waiting.
return(getConnection()); // Repeat process.

Jelse {
busyConnections.addElement(existingConnection);

return(existingConnection);

/

Presented by Bartosz Sakowicz
DMCS TUL

Allocating new connections

If a connection is required, there is no idle connection available,
and the connection limit has not been reached, then start a

background thread to allocate a new connection. Then, walit for
the first available connection, whether or not it is the newly allo-

cated one.

if ((fotalConnections() < maxConnections)
makeBackgroundConnection(),

try {

wait(); // Give up lock and suspend self.
} catch(InterruptedException ie) {}
return(getConnection()); // Try again.

Presented by Bartosz Sakowicz
DMCS TUL

Waiting for a connection to
become available

This situation occurs when there is no idle connection and you've
reached the limit on the number of connections. The natural
approach is to use the wait method, which gives up the thread
synchronization lock and suspends the thread until notify or
notifyAll is called. Since notifyAll could stem from several
possible sources, threads that wake up still need to test to see if
they can proceed. In this case, the simplest way to accomplish
this task is to recursively repeat the process of trying to obtain a
connection.

try {
wait(),
} catch(InterruptedException ie) {}

Presented by Bartosz Sakowicz

return(getConnection()); AMES TUL

Closing the connections

private void closeConnections(Vector connections) {

try {
for(int i=0, i<connections.size(); i++) {
Connection connection =
(Connection)connections.elementAt(i),
if (lconnection.isClosed()) {
connection.close(),;

/

/

} catch(SQLEXxception sqle) { }

} Presented by Bartosz Sakowicz
DMCS TUL

ConnectionPoolServiet
public void init() {

// declare variables for database driver, username, ...

try {

connectionPool =

new ConnectionPool(driver, url, username, password,
initialConnections(),maxConnections());

} catch(SQLException sqle) {

System.err.printin("Error making pool: " + sqle);
getServietContext().log("Error making pool: " + sqle),

connectionPool = null;

} } Presented by Bartosz Sakowicz
DMCS TUL

ConnectionPoolServiet(2)
public void destroy() {

connectionPool.closeAllConnections();

/

protected int initialConnections() {
return(10);

/

protected int maxConnections() {

return(50);

Presented by Bartosz Sakowicz
DMCS TUL

Using the ServietContext to
share connection pool

Group of servlets that all use the books database could
share pools by having each servlet perform the following steps:
ServietContext context = getServietContext();
ConnectionPool bookPool =
(ConnectionPool)context.getAttribute("book-pool”);
if (bookPool == null) {

bookPool = new ConnectionPool(...),

context.setAttribute("book-pool”, bookPool),

Presented by Bartosz Sakowicz
DMCS TUL

Using the singleton class

A singleton class is a class for which only a single instance can be
created, enforced through use of a private constructor.

The instance is retrieved through a static method that checks if
there is already an object allocated, returning it if so and allocating
and returning a new one if not.

Presented by Bartosz Sakowicz
DMCS TUL

Using the singleton class

Example:
public class BookPool extends ConnectionPool {
private static BookPool pool = null;
private BookPool(...) {
super(...); // Call parent constructor }
public static synchronized BookPool getinstance() {
if (pool == null) { pool = new BookPool(...); }

return(pool);

}

Presented by Bartosz Sakowicz
DMCS TUL

