J2EE

Applets

Servlet - Applet communication

Presented by Bartosz Sakowicz

Overview of Applets

Every applet is implemented by creating a subclass of the
Applet class(AWT) or JApplet (Swing). The following figure
shows the inheritance hierarchy of the Applet class.

¢ Java.lang.Object i

[Jawa.awt.omponent i
| java.awt.Containear i

| java, awt . Fane i

[Jjawa.applet. Applet i

Presented by Bartosz Sakowicz
DMCS TUL

Simple Applet
public class Simple extends Applet {. . .
public void init() {. ..}
public void start() {. ..}
public void stop() {. ..}
public void destroy() {. ..}

)

init - To initialize the applet each time it's loaded (or reloaded).
start - To start the applet's execution, such as when the applet's
loaded or when the user revisits a page that contains the applet.
stop - To stop the applet's execution, such as when the user
leaves the applet's page or quits the browser.

destroy - To perform a final cleanup in preparation for unloading.

Trusted applets

JDK 1.0 assumed all applets were untrusted and ran them under
the watch of a SecurityManager that severely limited what they
could do.

JDK 1.1 introduced the concept of trusted applets--applets that
can operate like normal applications with full access to the client
machine. For an applet to be trusted, it has to be digitally signed
by a person or company the client trusts

JDK 1.2 is introducing a fine-grained access control system.
Under this new system, a digitally signed applet can be partially
trusted, given certain abilities without being given free reign on the
system.

All following transparencies are presented for untrusted
applets in any context of security considerations.

Presented by Bartosz Sakowicz
DMCS TUL

Security restrictions

Current browsers impose the following restrictions on applet that
Is loaded over the network:

* An applet cannot load libraries or define native methods.

* It cannot ordinarily read or write files on the host that's executing
it.

* |t cannot make network connections except to the host that it
came from.

* It cannot start any program on the host that's executing it.

* It cannot read certain system properties.

« Windows that an applet brings up look different than windows
that an application brings up.

Each browser has a SecurityManager object that implements its
security policies. When a SecurityManager detects a violation, it
throws a SecurityException. Your applet can catch this
SecurityException and react appropriately.

Presented by Bartosz Sakowicz
DMCS TUL

Finding and loading data
files

Whenever an applet needs to load some data from a file that's
specified with a relative URL, the applet usually uses either the
code base or the document base to form the complete URL.

The code base, returned by the Applet getCodeBase method, is a
URL that specifies the directory from which the applet's classes
were loaded.

The document base, returned by the Applet getDocumentBase
method, specifies the directory of the HTML page that contains
the applet.

Unless the <APPLET> tag specifies a code base, both the code
base and document base refer to the same directory on the same
server.

Presented by Bartosz Sakowicz
DMCS TUL

Finding and loading data

files(2)
The Applet class defines convenientforrns of image-loading and

sound-loading methods that let you specify images and sounds
relative to a base URL. Example:

Mo Package Staterments in Applet Code package Com. myCo, myproject

soime Directons soime Directohs

O
itngDir Class imgDir |
‘ file: ‘ myfﬂ

iy project

a.q1f a.q1f
file

To create an Image object using the a.gif image file under imgDir,
the applet can use the following code:

Image image = getlmage(getCodeBase(), "imgDir/a.qgif");
Presented by Bartosz Sakowicz
DMCS TUL

Displaying short status
strin

All applet viewers - from the Applet Viewer to Java-compatible
browsers - allow applets to display a short status string.

In current implementations, this string appears on the status line
at the bottom of the applet viewer window.

In browsers, all applets on the page, as well as the browser
itself, generally share the same status line.

Applets display status lines with the showStatus method. Example:
showStatus("MyApplet: Loading image file " + file);

Presented by Bartosz Sakowicz
DMCS TUL

Displaying documents in the
browser

With the AppletContext showDocument methods, an applet can
tell the browser which URL to show and in which browser window.
(the JDK Applet Viewer ignores these methods, since it can't
display documents.) Here are the two forms of showDocument:
public void showDocument(java.net. URL url)
public void showDocument(java.net. URL url,
String targetWindow)
TargetWindow can be one of the following:
" blank"
"windowName"
" self"
" parent”
" top"
Presented by Bartosz Sakowicz
DMCS TUL

Sending messages to other
applets

Applets can find other applets and send messages to them, with
the following security restrictions:

« Many browsers require that the applets originate from the same
server.

« Many browsers further require that the applets originate from the
same directory on the server (the same code base).

« The Java API requires that the applets be running on the same
page, in the same browser window.

Presented by Bartosz Sakowicz

DMCS TUL

Finding an applet by name

You can specify an applet's name in two ways:

» By specifying a NAME attribute within the applet's <APPLET>
tag. Example:

<APPLET CODEBASE=example/ CODE=Sender.class
WIDTH=450 HEIGHT=200 NAME="one"> . .. </APPLET>

* By specifying a NAME parameter with a <PARAM> tag.
Example:

<APPLET CODEBASE=example/ CODE=Receiver.class
WIDTH=450 HEIGHT=35>

<PARAM NAME="name" value="two"> . . . </APPLET>

Presented by Bartosz Sakowicz

DMCS TUL

Finding an applet by name(2)

The getApplet method looks through all of the applets on the
current page to see if one of them has the specified name. If so,
getApplet returns the applet's Applet object.

The getApplets method returns an Enumeration of all the applets
on the page.

public void printApplets() {
Enumeration e = getAppletContext().getApplets();
while (e.hasMoreElements()) {
Applet applet = (Applet)e.nextElement(),
String info = ((Applet)applet).getAppletinfo();
// do Sth with Applet

} Presented by Bartosz Sakowicz
DMCS TUL

Playing sounds

Currently, the Java API supports only one sound format: 8 bit,
ulaw, 8000 Hz, one-channel, Sun ".au" files.
Sound - related methods:
getAudioClip(URL), getAudioClip(URL, String)

Return an object that implements the AudioClip interface.
play(URL), play(URL, String)

Play the AudioClip corresponding to the specified URL.

The AudioClip interface defines the following methods:

loop
Starts playing the clip repeatedly.

play
Plays the clip once.

stop
Stops the clip. Works with both looping and one-time sounds.

Presented by Bartosz Sakowicz
DMCS TUL

Playing sounds(2)
Example:

AudioClip onceClip, loopClip;

onceClip = applet.getAudioClip(getCodeBase(), "bark.au”);
loopClip = applet.getAudioClip(getCodeBase(), "train.au”);
onceClip.play(); //Play it once.

loopClip.loop(), //Start the sound loop.
loopClip.stop(), //Stop the sound loop.

Presented by Bartosz Sakowicz
DMCS TUL

Applet parameters

Parameter values are all strings. Whether or not the user puts
guotation marks around a parameter value, that value is passed to
your applet as a string.

Applet can interpret the string in many ways. Applets typically
interpret a parameter value as one of the following types:

« AURL

* An integer

* A floating-point number

* A boolean value -- typically "true"/"false" or "yes"/"no"

* A string -- for example, the string to use as a window title
* A list of any of the above

Applets should attempt to provide useful default values for
each parameter, so that the applet will execute even if the user
doesn't specify a parameter or specifies it incorrectly.

Applet parameters(2)

Applets use the Applet getParameter method to get user-
specified values for applet parameters:

public String getParameter(String name)
Example:

int requestedWidth = 0,
String windowWidthString = getParameter("WINDOWWIDTH"),
if (windowWidthString != null) {
try { requestedWidth =
Integer.parselnt(windowWidthString),
} catch (NumberFormatException e) { } }

Besides using the getParameter method to get values of applet-

specific parameters, you can also use getParameter to get the
values of attributes of the applet's <APPLET> tag.

Presented by Bartosz Sakowicz

DMCS TUL

Debugging applets

Where exactly the standard output and error are displayed varies,
depending on how the applet's viewer is implemented, what
platform it's running on, and (sometimes) how you launch the
browser or applet viewer:

* When you launch the Applet Viewer from a UNIX shell window
strings displayed to the standard output and error appear in that
shell window, unless you redirect the output.

« When you launch the Applet Viewer from an X Windows menu,
the standard output and error go to the console window.

* Netscape Navigator always displays applet standard output and
error to the Java Console.

Presented by Bartosz Sakowicz
DMCS TUL

Debugging applets(2)

Applets display to the standard output or error stream using
System.out or System.err. Example:

boolean DEBUG = true;
if (DEBUG) { System.out.printin("Called someMethod(" + x + "," +
y+")";)

Note: Displaying to the standard output and error streams is
relatively slow. If you have a timing-related problem, printing
messages to either of these streams might not be helpful.

You should be sure to disable all debugging output before
you release your applet.

Presented by Bartosz Sakowicz

DMCS TUL

Getting system properties

Applets can read the following system properties:

Key Meaning

"file.separator" File separator (for example, "/")
"java.class.version" Java class version number
"java.vendor" Java vendor-specific string
"java.vendor.url" Java vendor URL

"java.version" Java version number

"line.separator" Line separator

"os.arch" Operating system architecture
"os.name" Operating system name
"path.separator" Path separator (for example, ".")

Others can't.

Presented by Bartosz Sakowicz
DMCS TUL

Threads in applets

Every applet can run in multiple threads.

If an applet performs some time-consuming initialization -- loading
iImages, for example -- in its init method this might mean that the
browser can't display the applet or anything after it until the applet
has finished initializing itself.

The thread that invokes init can not do anything else until init
returns. So if the applet is at the top of the page, for example,
then nothing would appear on the page until the applet has
finished initializing itself.

If an applet performs a time-consuming task, it should create
and use its own thread to perform that task.

Presented by Bartosz Sakowicz
DMCS TUL

Using threads to perform
repeated task

Applets typically create threads for repetitive tasks in the applet
start method.

Creating the thread there makes it easy for the applet to stop the
thread when the user leaves the page by using stop method.

When the user returns to the applet's page, the start method is

called again, and the applet can again create a thread to perform
the repetitive task.

Presented by Bartosz Sakowicz
DMCS TUL

Using threads ...- example

public void start() {

if (frozen) {
/Do nothing. The user has requested that we
//stop changing the image.

Jelse {
//Start animating!
if (animatorThread == null) {

animatorThread = new Thread(this);

/
animatorThread.start();

/

}
public void stop() {

animatorThread = null;
} verte-->

Presented by Bartosz Sakowicz
DMCS TUL

Using threads ...- example(2)

public void run() {
while (Thread.currentThread() == animatorThread){
//Display a frame of animation and then sleep.
/

/

If animatorThread refers to the same thread as the currently
executing thread, the thread continues executing.

If, on the other hand, animatorThread is null, the thread exits.

Presented by Bartosz Sakowicz

DMCS TUL

Using threads to perform one
time initialization

Anything that requires making a network connection should

generally be done in a background thread. GIF and JPEG

Image loading is automatically done in the background using
threads (but sound files loading is not).

Using a thread to perform a one-time initialization task for an
applet is a variation of the classic producer/consumer scenario.

Presented by Bartosz Sakowicz
DMCS TUL

Using threads to perform one
time initialization(2)

Sound loading example:

« SoundLoader (Thread)

« SoundList (List of sounds)
« SoundExample (Applet)

Scenario:

« SoundExample asks in init method SoundList object to load
sounds

* SoundList creates separate thread (SoundLoader) for each file

* When SoundLoader finishes loading, it puts file to the SoundList
* When user asks an Applet to play a sound, SoundExample
checks if it is already available (checks for proper position in
SoundList). If it is, plays it. Otherway asks user to wait.

Presented by Bartosz Sakowicz
DMCS TUL

Before you use your applet

. Have you removed or disabled debugging output?
. Does the applet stop running when it's offscreen?
. If the applet does something that might get annoying --

play sounds or animation, for example -- does it give the
user a way of stopping the annoying behavior?

Presented by Bartosz Sakowicz
DMCS TUL

Well finished applet

Make your applet as flexible as possible.

You can often define parameters that let your applet be
used in a variety of situations without any rewriting.

Implement the getParameterInfo and getAppletinfo
methods.

Implementing this method now might make your applet
easier to customize. Currently browsers doesn't support
these methods but they are expected to do it in the future.

Presented by Bartosz Sakowicz
DMCS TUL

Packaging an Applet into
JAR file

An important use of the JAR utility is to optimize applet
loading.

Even if applet consists of one .class file this file is
uncompressed so downloading is slower than it could be.
Example of packaging multiple .class files into one file:

Jar cf TicTacToe.jar *.class

Usage on HTML page:
<applet code=TicTacToe.class
archive=TicTacToe.jar
width=200
height=100>
</applet>

Presented by Bartosz Sakowicz

DMCS TUL

Serviet - Applet
comunnication

There are three (generally six) ways of communication
between servlet and applet:

Using HTTP protocol (messages as text or as serialized
objects - ObjectinputStream and ObjectOutputStream)
Using socket connections (the same)

Using RMI (or CORBA)

Presented by Bartosz Sakowicz
DMCS TUL

Using HTTP protocol

Advantages:

« |t's easy to write. The applet can take advantage of the
java.net.URL and java.net.URLConnection classes to manage
the communication channel.

« |t works even for applets running behind a firewall.

Disadvantages:

« |t's slow. It has to be reestablished a new communication
channel for each request and response.

* |t requires requests to be formed as an array of name/value
pairs

* Only the applet can initiate communication.

Presented by Bartosz Sakowicz
DMCS TUL

Using socket connections

Advantages:

It allows bidirectional, sustained communication. The applet
and servlet can use the same socket (or even several sockets)
to communicate interactively, sending messages back and
forth.

Disadvantages:

It fails for applets running behind firewalls.

It can be complicated to write the code that runs on the server.
There must always be some process listening on a well-known
port on the server machine.

It may require the development of a custom protocol. The
applet and server need to define the protocol they use for the

commun iCation. Presented by Bartosz Sakowicz
DMCS TUL

Using RMI

Advantages:

It allows applets and server objects to communicate using an
elegant high-level, object-oriented paradigm.

It allows server objects to make callbacks to the methods of
the applet.

It can be made to work through firewalls (though it doesn't like
it, and current browsers don't support it very well). The RMI
transport layer normally relies on direct socket connections to
perform its work. When an applet executes behind a firewall its
socket connections fail. In this case, the RMI transport layer
can automatically begin operating entirely within the HTTP
protocol. This is not without cost. The HTTP overhead affects
performance, and the HTTP request/response paradigm
cannot support callbacks.

Presented by Bartosz Sakowicz
DMCS TUL

Using RMI(2)

Disadvantages:

It's complicated. RMI communication uses special stub and
skeleton classes for each remote object, and it requires a
naming registry from which clients can obtain references to
these remote objects.

It's supported in few browsers (Netscape 4 +). Microsoft's
Internet Explorer do not support RMI without installing a
special plug-in.

It can be used only by Java clients.

Presented by Bartosz Sakowicz
DMCS TUL

The hybrid approach

How should our applet communicate with its stock feed
server? It depends:

If we can guarantee that all our potential clients support it,
RMI's elegance and power make it an ideal choice.

When RMI isn't available, the bidirectional capabilities of the
non-HTTP socket connection could be attractive.
Unfortunately, that bidirectional communication becomes
nonexistent communication when the applet ends up on the far
side of a firewall.

If there is no other solution use HTTP communication. It's
straightforward to implement and works on every Java-enabled
client. And if you can guarantee that the client supports JDK
1.1 you can use object serialization.

Presented by Bartosz Sakowicz
DMCS TUL

The hybrid approach(2)

The best solution is to use every solution, with serviets.
Servlets make it possible to combine the HTTP, non-HTTP,
and RMI applet-server communication techniques, supporting
them all with a single servlet.

Why would anyone want to do this?

It's a handy technigue when an applet wants to communicate
using RMI or a non-HTTP protocol but needs to fallback to
HTTP when necessary (such as when it finds itself behind a
firewall).

By using the same servlet to handle every client, the core
server logic and the server state can be collected in one
place. When you control your environment you can drop one
or more of these protocols.

Presented by Bartosz Sakowicz
DMCS TUL

Implementations

HTTP:
Applet needs to send to server normal text containg HTTP well
formed request. Useful classes are URL and URLConnection.

Sockets:
Traditional multithreaded server - client solution usually served
by additional class on the server side.

RMI:
Introduced later.

Presented by Bartosz Sakowicz
DMCS TUL

