J2EE

JavaMail API

Presented by Bartosz Sakowicz

Java Mail API: Instalation

http://java.sun.com/products/javamail/index.html

Java Activation Framework
http://java.sun.com/products/javabeans/glasgow/jaf.html

Used for automatic recognition of data. It allows to operate in easy
way on data and call data-specific methods.

Installation: put mail.jar and activation.jar to /lib directory
(tomcat/lib for all applications or WEB-INF/lib for particular
application)

Note:
Sun One Studio 4 (Forte for Java) already has necessary files, so
using JavaMail from JSP pages is possible without any changes.

Presented by Bartosz Sakowicz
DMCS TUL

JavaMail overview

The JavaMail APl is designed to make adding electronic mail
capability to simple applications easy, while also supporting the
creation of sophisticated user interfaces.

It includes appropriate convenience classes which encapsulate

common mail functions and protocols. It fits with other packages
for the Java platform in order to facilitate its use with other Java

APls, and it uses familiar programming models.

Presented by Bartosz Sakowicz
DMCS TUL

Architecture

Mail-enabled Application

Java Bean - used to interact and

. 1
display message content :

______________ .
JavaMail _ s I
| API JavaMail " m |
| Abstract Class Layer P
I - = |
] .
| " [nternet Mail |
| Implementation Class Layer |
§

---1-

-

IMAP /POP3 / NNTP implementation Layer

Presented by Bartosz Sakowicz
DMCS TUL

Architecture(2)

The Abstract Layer declares classes, interfaces and abstract
methods intended to support mail handling functions that all mail
systems support. API elements comprising the Abstract Layer are
Intended to be subclassed and extended as necessary in order to
support standard data types, and to interface with message
access and message transport protocols as necessary.

The internet implementation layer implements part of the
abstract layer using internet standards.

Presented by Bartosz Sakowicz
DMCS TUL

Message Handling Process

MESSAGE Ij Send a MESSAGE W

Message

| 1

Submit a Contains =
TRANSPORT
Message Messages FOLDERS
Network
Infrastructure

Receive a f j
Message STORE
| >

Presented by Bartosz Sakowicz

DMCS TUL

API

The Message Class

The Message class is an abstract class that defines a set of
attributes and a content for a mail message. Attributes of the
Message class specify addressing information and define the
structure of the content, including the content type.

Message Composition and Transport

A client creates a new message by instantiating an appropriate
Message subclass. It sets attributes like the recipient addresses
and the subject, and inserts the content into the Message object.
Finally, it sends the Message by invoking the Transport.send
method.

The Transport class models the transport agent that routes a
message to its destination addresses. This class provides
methods that send a message to a list of recipients.

Presented by Bartosz Sakowicz
DMCS TUL

API(2)

The Session Class

The Session class defines global and per-user mail-related
properties that define the interface between a mail-enabled client
and the network. JavaMail system components use the Session
object to set and get specific properties.

The Session class also provides a default authenticated session
object that desktop applications can share. The Session class is a
final class. It cannot be subclassed.

Presented by Bartosz Sakowicz
DMCS TUL

Sending Messages

<%@

page import="java.util.*, javax.mail.*, javax.mail.internet.*" %>
<%

Properties props = new Properties(),
props.put("mail.smtp.host”, "smtp.mail.example.com”);

Session s = Session.getinstance(props,null);
MimeMessage message = new MimeMessage(s),

InternetAddress from = new
InternetAddress("you@example.com”);

message.setFrom(from);

Presented by Bartosz Sakowicz
DMCS TUL

Sending Messages(2)

InternetAddress to =
new InternetAddress("you@example.com”);

message.addRecipient(Message.RecipientType.TO, to);

// Add rest of recipients in analogous way...

message.setSubject("Test from JavaMail.");
message.setText("Hello from JavaMail!");
Transport.send(message),

%>

Presented by Bartosz Sakowicz

DMCS TUL

Recipients

RecipientType.TO
The basic "to" address of an email.

RecipientType.CC
Carbon Copy; An address that should be sent a copy of the
message. Other recipients will be aware of the copy sent.

RecipientType.BCC
Blind Carbon Copy; An address that should recieve a copy of the
message, but all other addresses will not be notified of the copy.

Presented by Bartosz Sakowicz
DMCS TUL

Attachments

Message message = new MimeMessage(session),
// set from, to , subject ...

BodyPart messageBodyPart = new MimeBodyPart(),
messageBodyPart.setText("Pardon Ideas”),
Multipart multipart = new MimeMultipart(),
multipart.addBodyPart(messageBodyPart);

messageBodyPart = new MimeBodyPart(),

DataSource source = new FileDataSource(filename);
messageBodyPart.setDataHandler(new DataHandler(source));
messageBodyPart.setFileName(filename);
multipart.addBodyPart(messageBodyPart);

message.setContent(multipart);

Presented by Bartosz Sakowicz
DMCS TUL

Getting messages

String host = ...;

String username = ...;

String password = ...;

Properties props = new Properties(),

Session session = Session.getDefaultinstance(props, null);
Store store = session.getStore("pop3”);
store.connect(host, username, password);

Folder folder = store.getFolder("INBOX"),
folder.open(Folder.READ ONLY);

message([] = folder.getMessages();

for (int =0, n=message.length; i<n; i++) {
System.out.printin(i + ": " + message]i].getFrom()[0] + "\t" +
message(il.getSubject()); }

folder.close(false);

store.close();

Presented by Bartosz Sakowicz
DMCS TUL

Other features

With JavaMail it is also possible:

* Replying messages

* Forwarding messages

* Deleting messages

« Searching through messages

Presented by Bartosz Sakowicz

DMCS TUL

