JAVA

SWING

Presented by Bartosz Sakowicz

Overview of Swing

* The Swing package is part of the Java™ Foundation Classes
(JFC) in the Java platform.

* The JFC encompasses a group of features to help people build
GUIs; Swing provides all the components from buttons to split
panes and tables.

« The Swing package was first available as an add-on to JDK 1.1.
Prior to the introduction of the Swing package, the Abstract
Window Toolkit (AWT) components provided all the Ul
components in the JDK 1.0 and 1.1 platforms.

Presented by Bartosz Sakowicz
DMCS TUL

Overview of Swing(2)

Although the Java 2 Platform still supports the AWT components,
it is recommended to use Swing components instead.

Swing components names start with J. The AWT button class, for
example, is named Button, whereas the Swing button class is
named JButton.

The AWT components are in the java.awt package, whereas the
Swing components are in the javax.swing package.

Presented by Bartosz Sakowicz
DMCS TUL

HelloWorldSwing

Import javax.swing.”;

public class HelloWorldSwing {

public static void main(String[] args) {
JFrame frame = new JFrame("HelloWorldSwing"),
final JLabel label = new JLabel("Hello World");
frame.getContentPane().add(label);
frame.setDefaultCloseOperation(JFrame.EXIT _ON_CLOSE);

// set close button to close - available from jdk1.3
frame.pack();, // size the window to fit the preferred size and
// layouts of its subcomponents.

frame.setVisible(true); // show window

/ [25 HelloWorldSwing =] E3

Hello World

Basic Swing Application

The basic code in every Swing program:

1. Import necessary packages:

Import javax.swing.*; // for swing components
import java.awt.”;

import java.awt.event.”,

// Swing components use the AWT

// infrastructure, including the AWT event model.

2. Set up a top-level container.
JFrame - implements a single main window.

JDialog - implements a secondary window (a window that's
dependent on another window).

JApplet - implements an applet's display area within a browser
window.

Presented by Bartosz Sakowicz
DMCS TUL

Look and feel

There are few views of a GUI that uses Swing components:
UlManager.setLookAndFeel...)

gﬁ SimpleExample - |0] =

‘ Hello, world ‘ ™ Metal 0 Motif O Windows

gﬁ SimpleE xample - |0 =

* Hello,world |) Metal [Motif | _) Windows

gﬁ SimpleExample

1
H
X,

Hello, world

Presented by Bartosz Sakowicz
DMCS TUL

Setting Look and feel

Arguments you can use for setLookAndFeel:
UlManager.getCrossPlatformLookAndFeelClassName()

Returns the string for the one look-and-feel guaranteed to work
-- the Java Look & Feel.

UlManager.getSystemLookAndFeelClassName()

Specifies the look and feel for the current platform. On
Microsoft Windows platforms, this specifies the Windows Look
& Feel. On Mac OS platforms, this specifies the Mac OS Look
& Feel. On Sun platforms, it specifies the CDE/Motif Look &
Feel.

"Javax.swing.plaf.metal. MetalLookAndFeel"

Specifies the Java Look & Feel. (The codename for this look
and feel was Metal.) This string is the value returned by the
getCrossPlatformLookAndFeelClassName niestiatrd by Bartosz Sakowicz

DMCS TUL

Setting Look and feel(2)

"com.sun.java.swing.plaf.windows. WindowsLookAndFeel"

Specifies the Windows Look & Feel. Currently, you can use
this look and feel only on Microsoft Windows systems.

"com.sun.java.swing.plaf.motif. MotifLookAndFeel"

Specifies the CDE/Motif Look & Feel. This look and feel can be
used on any platform.

"Javax.swing.plaf.mac.MacLookAndFeel"

Specifies the Mac OS Look & Feel, which can be used only on
Mac OS platforms.

Presented by Bartosz Sakowicz
DMCS TUL

Handling Events

» Every time the user types a character or pushes a mouse button,
an event occurs.

* Any object can be notified of the event.

* All the object has to do is implement the appropriate interface
and be registered as an event listener on the appropriate event
source.

* Event-handling code executes in an single thread, the event-
dispatching thread. This ensures that each event handler
finishes execution before the next one executes.

Presented by Bartosz Sakowicz
DMCS TUL

Event handlers

Every event handler requires three pieces of code:

1. In the declaration for the event handler class, one line of code
specifies that the class either implements a listener interface or
extends a class that implements a listener interface. Example:

public class MyClass implements ActionListener {

2. Another line of code registers an instance of the event handler
class as a listener on one or more components. Example:

someComponent.addActionListener(instanceOfMyClass);

3. In the event handler class, a few lines of code implement the
methods in the listener interface. For example:

public void actionPerformed(ActionEvent e) {
...//code that reacts to the action... }

Presented by Bartosz Sakowicz
DMCS TUL

Event handlers(2)

Event handlers can be instances of any class.

Often an event handler that has only a few lines of code is
Implemented using an anonymous inner class. Anonymous inner
classes can be confusing.

Example:

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
numClicks++;
label.setText(labelPrefix + numClicks),

ActionEvent . -
T Actionlistener

Presented by Bartosz Sakowicz
DMCS TUL

Writing event handlers

The code that implements the event handling for the button:
public class Beeper ... implements ActionListener {
... //where Iinitialization occurs:

button.addActionListener(this);

public void actionPerformed(ActionEvent e) {

..../Make a beep sound...

Presented by Bartosz Sakowicz
DMCS TUL

Kinds of events

Examples of Events and Their Associated Event Listeners

Act that Results in the Event Listener Type
User clicks a button, presses Return while typing

in a text field, or chooses a menu item ActionListener
User closes a frame (main window) WindowlListener
User presses a mouse button while the cursor is

over a component MouseListener
User moves the mouse over a component MouseMotionListener
Component becomes visible ComponentListener
Component gets the keyboard focus FocusListener
Table or list selection changes ListSelectionListener

Presented by Bartosz Sakowicz
DMCS TUL

Using adapters

Most listener interfaces contain more than one method. For
example, the MouselListener interface contains five methods:
mousePressed, mouseReleased, mouseEntered,
mouseExited, and mouseClicked.

Even if you care only about mouse clicks, if your class directly
Implements MouseListener, then you must implement all five
MouseListener methods. Methods for those events you don't care
about can have empty bodies.

To help you avoid cluttering your code with empty method bodies,
the API generally includes an adapter class for each listener
interface with more than one method. For example, the
MouseAdapter class implements the MouseListener interface. An
adapter class implements empty versions of all its interface's
methods.

Presented by Bartosz Sakowicz
DMCS TUL

Using adapters(2)

Example:
public class MyClass extends MouseAdapter {
someObject.addMouseListener(this),

public void mouseClicked(MouseEvent e) {
...//Event handler implementation goes here...

Presented by Bartosz Sakowicz
DMCS TUL

The action event API

The ActionListener interface contains a single method, and thus
has no corresponding adapter class:

void actionPerformed(ActionEvent)

Called just after the user informs the listened-to component
that an action should occur.

The actionPerformed method has a single parameter: an
ActionEvent object. The ActionEvent class defines two useful
methods:

String getActionCommand()

Returns the string associated with this action. Most objects
that can fire action events support a method called
setActionCommand that lets you set this string. If you don't set
the action command explicitly, then it's generally the text
displayed in the component.

Presented by Bartosz Sakowicz
DMCS TUL

The action event API(2)

int getModifiers()

Returns an integer representing the modifier keys the user was
pressing when the action event occurred. You can use the
ActionEvent-defined constants SHIFT MASK, CTRL MASK,
META MASK, and ALT MASK to determine which keys were
pressed.

For example, if the user Shift-selects a menu item, then the
following expression is nonzero:

actionEvent.getModifiers() & ActionEvent. SHIFT MASK

The rest of events can be handled in analogous way. Of
course different ones have different API. There is more
than 30 different types of listeners.

Swing components example

JPanel {custom content pane) JPanel (ConwversionPane1)

uses GridLayout

uses BoxL ayvout

Converter

1TextFi=1d

(DecimalField)

1511der

JPanal (container of text field and slider)
uses BoxL ayvout

JComboBox

Presented by Bartosz Sakowicz

DMCS TUL

Containment hierarchy
example

IF rame

JFane] (custom content pane)

JFanel

(ComversionFaneal)

JFanea]
(custon

JComboBEox

JFanel

(ConversionFaneal)

15Tider

JComboBEox

IJTextField

(DecimalField)

JFana]
(custom)

JTextField

(DacimalField)

15T1dear

Swing components

Top-Level Containers

The components at the top of any Swing containment hierarchy.
General-Purpose Containers

Intermediate containers that can be used under many different
circumstances.

Special-Purpose Containers
Intermediate containers that play specific roles in the Ul.

Basic Controls
Atomic components that exist primarily to get input from the user;
they generally also show simple state.

Uneditable Information Displays
Atomic components that exist solely to give the user information.

Editable Displays of Formatted Information
Atomic components that display highly formatted information that
(if you choose) can be edited by the user.

Top-level containers

@ .;;) I‘»fvnanﬂya 537
I\ _ o |

Applet Dialog Frame

Presented by Bartosz Sakowicz
DMCS TUL

General-purpose containers

’E"ﬁk@iﬁl

Home Search

—

All Folders

EOOT

g o

27 Adobe

cookies
propertie
urlpoal

Scroll pane

<2 LA

Tool bar

Split pane

Metric System

File Options Con

SplitPane | TableWView

DebugGraphics

Swing! | B

Tabbed pane

1254

Presented by Bartosz Sakowicz
DMCS TUL

Special-purpose containers

Document Choose Duke's Layer and Position

|Magenta {1} | [v] Top Position in Layer

Move the Mouse to Mowve Duke
Yellow (0)

Internal frame Layered pane

Layvered FPane

Content Fan

Foot Fane m—Glass Pane
v
-

Root pane

Presented by Bartosz Sakowicz
DMCS TUL

Basic controls

AR e - January -
- horday
® Radio 2 Wednesday March
| OK | Thursday April :
Fricay
Buttons Combo box List
Theme | Help | 11— George YWashington
Wmetal ctilm | v | Thormas Jefferson
v organic cti-o L R [Benjamin Franklin
[metal2 ctrl-2 T
iamas Faine

Menu Slider Text fields

Presented by Bartosz Sakowicz
DMCS TUL

Uneditable information
displays

f

Lahel 1 MENNENENNN |

Label Progress bar Tooltip

Presented by Bartosz Sakowicz
DMCS TUL

Editable information displays

|j| ’[ahSEglf Verify that the RJ45 First Ma... LEIE'I:NE”TIE.
@ [Tree Yiew cable is connectad hark Andrewms
] _ to the WAM plug on Tom Hall
Fatin
o LI arawng | the back orie
[treeview ' Jeff Dinking
Tree Text Table
*'E%I]pen [FSWEIt[:hES HSB |HGE |
- . - S I
Lookin: |5 C (=[] = T EEEEEEEEE T
_ Wi [] W
1 emacslib ol TOEEEEE
] hostnews R T]
. — |
] java ||| o
3 mbin | == =

File chooser

Color chooser

Presented by Bartosz Sakowicz
DMCS TUL

Layout management

Eovoler Cowll.

)

 BramLatoo |

Fudlnin 1 (MORTH]

Btk 3 0w ES 1D d TCEM TEKD

Ewtton 5 [EAYN |P

| 2 |

Buttmin F

| nmg—Mziere il Rull

FEmilnn 1 |

nn 4 |

| wmy—Mzired Bulionn 4 [SOUTH)

Enllnn &

J—'i F ol AL ot

| Cutton | | 2 | moutmon 3 Lann

Marmed Cukton < | Outoan & |

= af cEagla oLt 2 =

arld_zn o at

- |

Fmilunm 1 | i, | Fulinn 3

Fulinmn 1 I

2

Outoan] I Lonqg MNemed Tuoion d

lnmg—Miirmi:d Bulinn 4

buthan 3

Outman &

Different layouts with identical code.

Presented by Bartosz Sakowicz

DMCS TUL

Layout management(2)

Layout management is the process of determining the size and
position of components.

By default, each container has a layout manager -- an object that
performs layout management for the components within the
container.

Components can provide size and alignment hints to layout
managers, but layout managers have the final say on the size and
position of those components.

The Java platform supplies five (there are more - eg. CardLayout)
commonly used layout managers: BorderLayout, BoxLayout,
FlowLayout, GridBagLayout, and GridLayout.

Presented by Bartosz Sakowicz
DMCS TUL

BorderLayout

BorderLayout is the default layout manager for every content
pane. A BorderLayout has five areas available to hold
components: north, south, east, west, and center. All extra space
Is placed in the center area.

| = EorderLavout |- |]
Eutton 1 (NORTH})

Button 3 (WEST) 2 (CENTER) Button 5 (EAST)

Long—Named Button 4 (SOUTH)

Presented by Bartosz Sakowicz
DMCS TUL

BoxLayout

The BoxLayout class puts components in a single row or column.
It respects the components' requested maximum sizes, and also
lets you aligh components.

|

. |

IJ‘

—| Boxlawvout

[‘ Eutton 1 ‘
2
‘ Eutton 3 ‘

J Long—MNamed Button 4 ‘

‘ Eutton 5 ‘

Presented by Bartosz Sakowicz
DMCS TUL

CardLayout

The CardLayout class lets you implement an area that contains
different components at different times. A CardLayout is often
controlled by a combo box , with the state of the combo box
determining which panel (group of components) the CardLayout
displays.

—| CardlLavout

‘JF‘EH'IEl with JEuttons

‘ Eutton 1 H Eutton 2 H Eutton 3 ‘

Presented by Bartosz Sakowicz
DMCS TUL

FlowLayout

FlowLayout is the default layout manager for every JPanel. It
simply lays out components from left to right, starting new rows if
necessary.

—| FlowlLawvout |« |l

‘ Eutton 1 H 2 H Eutton 3 H Long—MNamed Button 4 H Eutton 5 |

Presented by Bartosz Sakowicz
DMCS TUL

GridLayout

GridLayout simply makes a bunch of components equal in size
and displays them in the requested number of rows and columns.

GridlLavout

2

Long—Named Eutton 4

Presented by Bartosz Sakowicz
DMCS TUL

GridBagLayout

GridBagLayout is the most sophisticated, flexible layout manager
the Java platform provides. It aligns components by placing them
within a grid of cells, allowing some components to span more
than one cell. The rows in the grid aren't necessarily all the same
height; similarly, grid columns can have different widths.

Long—Named BEutton 4

Eutton 5

Presented by Bartosz Sakowicz
DMCS TUL

Setting the Layout Manager

JPanel pane = new JPanel(),
pane.setlLayout(new BorderLayout()),

It is possible perform layout without managers. By setting a
container's layout property to null, you make the container use no
layout manager. With this strategy, called absolute positioning,
you must specify the size and position of every component within
that container.

Providing Hints about a Component

You do this by specifying the minimum, preferred, and maximum
sizes of the component. You can invoke the component's
methods for setting size hints -- setMinimumSize,
setPreferredSize, and setMaximumSize.

Presented by Bartosz Sakowicz
DMCS TUL

Putting space between
components

Three factors influence the amount of space between visible
components in a container:

The layout manager - Some layout managers automatically put
space between components; others don't. Some let you specify
the amount of space between components.

Invisible components - You can create lightweight
components that perform no painting, but that can take up
space in the GUI.

Empty borders - No matter what the layout manager, you can
affect the apparent amount of space between components by

addlng empty borders to Components_ Presented by Bartosz Sakowicz
DMCS TUL

Adding borders around
components

To add borders to yours components you use setBorder method:

pane.setBorder(BorderFactory.createEmptyBorder(

30, //top

30, //left

10, //bottom

30) //right

)’. gﬁ SwingApplication - |0 x|
I'm a Swing button! ~—

JLabel] ———— m Number of button clicks: 4

——— JButton

Presented by Bartosz Sakowicz

DMCS TUL

Absolute positioning

public class NoneWindow extends JFrame {

private boolean laidOut = false;

private JButton b1, b2, b3;

public NoneWindow() {
Container contentPane = getContentPane(),
contentPane.setLayout(null);
b1 = new JButton("one"); contentPane.add(b1),
b2 = new JButton("two"); contentPane.add(b2),
b3 = new JButton("three"); contentPane.add(b3),

Presented by Bartosz Sakowicz
DMCS TUL

Absolute positioning(2)

Insets insets = contentPane.getinsets();

b1.setBounds(25 + insets.left, 5 + insets.top, 75, 20);
b2.setBounds(55 + insets.left, 35 + insets.top, 75, 20);
b3.setBounds(150 + insets.left, 15 + insets.top, 75, 30);

E%% Ab=solute Postioning

ahe
three |
two|

twyo

Presented by Bartosz Sakowicz
DMCS TUL

Using intermediate Swing
Swing provides sevga%ggg—%!aogeﬁ’%%ediate containers:

Panel

The most flexible, frequently used intermediate container.
Implemented with the JPanel class, panels add almost no
functionality beyond what all JComponent objects have. They are
often used to group components, whether because the
components are related or just because grouping them makes
layout easier. A panel can use any layout manager, and you can
give it a border. The content panes of top-level containers are
often implemented as JPanel instances.

Scroll Pane

Provides scroll bars around a large or growable component.

Presented by Bartosz Sakowicz
DMCS TUL

Using intermediate Swing
components(2)

Split Pane

Displays two components in a fixed amount of space, letting the
user adjust the amount of space devoted to each component.

Tabbed Pane

Contains multiple components but shows only one at a time. The
user can easily switch between components.

Tool Bar

Holds a group of components (usually buttons) in a row or
column, optionally allowing the user to drag the tool bar into
different locations.

Presented by Bartosz Sakowicz
DMCS TUL

Using intermediate Swing
components(3)

The rest of the Swing intermediate containers are more
specialized:

Internal Frame

Looks like a frame and has much the same API, but must appear
within another window.

Layered Pane

Provides a third dimension, depth, for positioning components.
You specify the position and size of each component. One type of
layered pane, a desktop pane, is designed primarily to contain
and manage internal frames.

Presented by Bartosz Sakowicz
DMCS TUL

Using atomic components

The following atomic components exist primarily to get input from
the user:

Button, Check Box, Radio Button

Provides easy-to-use, easy-to-customize button implementations.

Combo Box

Provides both uneditable and editable combo boxes -- buttons
that bring up menus of choices.

List
Displays a group of items that the user can choose.

Menu

Includes menu bar, menu, and menu item implementations,
Including specialized menu items such as check box menu items.

Using atomic components(2)

Slider

Lets the user choose one of a continuous range of values.

Spinner

Using tiny up/down arrows, lets the user choose from an ordered
sequence of items.

Text Field

Lets the user enter a single line of text data.

Presented by Bartosz Sakowicz
DMCS TUL

Using atomic components(3)

Atomic components which exist only to give information:
Label

Presents some text, an icon, or both.

Progress Bar

Displays progress toward a goal.
Tool Tip

Brings up a small window that describes another component.

Presented by Bartosz Sakowicz

DMCS TUL

Using atomic components(4)

Atomic components which provide formatted information and a
way of editing it:

Color Chooser

A Ul for choosing colors; can be used inside or outside a dialog.

File Chooser

A Ul for choosing files and directories.
Table

An extremely flexible component that displays data in a grid
format.

Presented by Bartosz Sakowicz
DMCS TUL

Using atomic components(5)

Text Support

A framework including everything from simple text components,
such as text fields, to a full-featured, extensible kit for building text
editors.

Tree

A component that displays hierarchical data.

Every component has his own API. For details please refer to API
specification and Java Tutorial: http://java.sun.com.

Presented by Bartosz Sakowicz
DMCS TUL

