Java

New features in JDK 1.4

Presented by Bartosz Sakowicz

Overview of new features

New Input/Output
Java Web Start
Logging
Assertion facility
Exceptions
Collections

Regular Expressions

Presented by Bartosz Sakowicz
DMCS TUL

New Input/Output

The New 1/O (NIO) API introduced in JDK 1.4 provides a
completely new model of low-level I/0O.

Unlike the original I/O libraries in the java.io package, which were
strongly stream-oriented, the New I/O API in the java.nio package
Is block-oriented. This means that I/O operations, wherever
possible, are performed on large blocks of data in a single step,
rather than on one byte or character at a time.

Channels and buffers represent the two basic abstractions within
the New 1/O API.

Presented by Bartosz Sakowicz
DMCS TUL

Channels

Channels correspond roughly to input and output streams: they
are sources and sinks for sequential data.

However, whereas input and output streams deal most directly
with single bytes, channels read and write data in chunks.

Additionally, a channel can be bidirectional, in which case it
corresponds to both an input stream and an output stream.

Presented by Bartosz Sakowicz
DMCS TUL

Buffers

The chunks of data that are written to and read from channels are
contained in objects called buffers.

A buffer is an array of data enclosed in an abstraction that makes
reading from, and writing to, channels easy and convenient.

Presented by Bartosz Sakowicz
DMCS TUL

Copying files example

import java.io.”;

Import java.nio.™;

Import java.nio.channels.™;

public class CopyFile

{

static public void main(String args[]) throws Exception {
String infile = args[0], outfile = args[1];

FilelnputStream fin = new FilelnputStream(infile);

FileOutputStream fout = new FileOutputStream(outfile);

Presented by Bartosz Sakowicz
DMCS TUL

Copying files example(2)
FileChannel inc = fin.getChannel();
FileChannel outc = fout.getChannel();
ByteBuffer buffer = ByteBuffer.allocate(1024);
while (true) {
int ret = inc.read(buffer),
if (ret==-1) // nothing left to read
break;
buffer.flip(); // prepare buffer to reading
outc.write(buffer);

buffer.clear(), // Make room for the next read

} } } Presented by Bartosz Sakowicz
DMCS TUL

Java Web Start

- Java Web Start (JAWS) is a new application deployment
system.

* It allows you to install software with a single click within a web
browser that has been enhanced with the Java Web Start plug-
in.

* It transparently handles complex installation procedures, and it
caches software on the local hard drive so that successive
executions of the program are as fast as possible.

* |t can even use different versions of the JDK for different
applications, and will download new versions if that is required by
the applications.

« Java Web Start does not require that any special modifications
be made to an application before it can be used within the system.

Presented by Bartosz Sakowicz
DMCS TUL

Java Web Start(2)

JAWS execute applications within a sandbox, for security
reasons. This security barrier can be bypassed by frusted
applications (applications that have been digitally signed by a
trusted party).

Untrusted applications are provided with limited system access via
the javax.jnlp package.

JAWS is based on the Java Network Launching Protocol & API
(JNLP).

JNLP is the underlying technology that defines the underlying
abstractions; JAWS is the reference implementation.

JAWS represents a bridge between applets and full-fledged
applications, combining, as much as possible, the best features of
both.

Presented by Bartosz Sakowicz
DMCS TUL

JAWS execution model

The application files—data and Java classes—are placed on the
web server along with a special launch file (JNLP file)

When a JAWS application is launched, it is downloaded from the
web server, unless it has already been downloaded. The exact
way the user initiates the application depends on the operating
system, but for all platforms, there is a central client program
called the Application Manager. This program displays a list of
JAWS applications that it knows about, including those that were
first launched via a link in a web browser.

JAWS applications can also be run in offline mode. If a JAWS
application is fully downloaded and does not itself require network
access, then it can be run without access to the server from which
It was downloaded.

Presented by Bartosz Sakowicz
DMCS TUL

JLNP launch file example

<?xml version="1.0" encoding="utf-8"?>

<jnlp spec="1.0+" codebase="http.//server/PicoDraw/"
<I-- The relative URL of this file -->
href="PicoDraw.jnlp">

<information>

<title>PicoDraw</title>

</-- A web page containing more information about the
application. This URL will be displayed in

the JAWS Application Manager -->

<homepage href="http.//www.manning.com/"/>

Presented by Bartosz Sakowicz
DMCS TUL

JLNP launch file example(2)

<description>PicoDraw</description>
<description kind="short">

A *very* tiny draw program</description>

<!-- A URL pointing at a GIF or JPG icon file -->
<jcon href="images/picodraw.jpg"/>

<I-- Declares that the application can run without
access to the server it was downloaded from -->
<offline-allowed/>

</information>

Presented by Bartosz Sakowicz
DMCS TUL

JLNP launch file example(3)

<security>

</-- Request that the application be given full access to the local
(executing) machine, as if it were a reqular Java application.
Requires that all JAR files be signedby a trusted party -->

<all-permissions/>
</security>
<resources>

<I-- Specify the versions of the Java Runtime Environment (JRE)
that are supported by the application. Multiple entries of this kind
are allowed, in which case they are considered to be in order of
preference -->

<j2se version="1.4"/>

Presented by Bartosz Sakowicz
DMCS TUL

JLNP launch file example(4)

<!-- Specify the relative URL of a JAR file containing code or data.
Specifying lazy tells the JAWS system that the file does not need
to be downloaded before the application can be run -->

<jar href="lib/classes.jar"/>

<jar href="lib/backgrounds.jar'/>
</resources>

<!/-- Declare the class containing main() -->

<application-desc main-class="PicoDraw"/>

</jnlp>

Presented by Bartosz Sakowicz
DMCS TUL

Web Server configuration

The only requirement is that the web server recognize the
application/x-java-jnilp-file MIME type.

When the web server is asked for a JNLP file, it must send the file
as this type.

Presented by Bartosz Sakowicz
DMCS TUL

Sandbox restrictions

The sandbox offers the JAWS application restricted access to
system resources via the javax.jnip package.

For example, it is possible for the application to read and write
files, but each time a file is opened for reading or writing, the user
must explicitly approve this through a Load or Save dialog box.

This feature is intended to allow applications to load or save
documents, rather than to allow free access to any files on the
system.

Presented by Bartosz Sakowicz
DMCS TUL

Logging

The Logging API within JDK 1.4, in the java.util.logging package,
provides a flexible and powerful system for logging messages,
and for turning these messages on and off, without the need for
recompiling.

This means that logging messages can be turned on by the end
user, long after the software has shipped.

The Logging API uses a system-wide configuration file to define
default settings, and additional configuration files can be used to
provide greater control.

Programmatic control is also available—you can configure the
logging system directly from your program.

Presented by Bartosz Sakowicz
DMCS TUL

Logging (2)

The simplest way to log a message is as follows:
Logger logger = Logger.getLogger("current.package”),
logger.info("hi"),

This results, under the default JDK configuration, in the following
output:

Fimastamp Class Meathod

| 1 | |
Dec 19, 2001 2:41:13 PM MvyProgram main
INFD: hi
| 11 | |

Lagging Massaga
|l

Presented by Bartosz Sakowicz
DMCS TUL

Logging levels
SEVERE—Used for catastrophic errors—conditions from which
the program may not recover, and which, in any case, require
Immediate attention.

WARNING—Used for serious problems that may or may not be
catastrophic. These do not necessarily require immediate
attention, but they should definitely be noted.

INFO—Used for run-of-the-mill messages. The INFO level is the
default, and so messages logged at the INFO level are seen
during normal runs.

CONFIG—Used for logging configuration settings, generally at
startup.

FINE, FINER, FINEST—Used for detailed logging. This
iInformation is generally logged for debugging. The finer the level,
the more information is logged at that level.

Presented by Bartosz Sakowicz
DMCS TUL

The LogRecord class

A LogRecord object encapsulates a message sent to the logging
system. Most of the Logger.log() methods take a String as an
argument, but this string is encapsulated by the logger within a
LogRecord.

A LogRecord example elements:
*The raw message string

A logging level

*The logger’'s name

A timestamp

*A unigue sequence number

*The thread ID of the Thread that generated the LogRecord

Presented by Bartosz Sakowicz
DMCS TUL

Handlers

Each logger is assigned one or more Handlers. A logger is
assigned a handler by using its addHandler() method. A handler
takes a LogRecord and sends it some-where—the destination
depends on the handler . Each logger can have any number of
handlers installed.

Hardler ———» Fila

-_-l'_i|'=1=._-'l'.'1' T Harwdler 44 Conasole

Hapdler —J Window

Presented by Bartosz Sakowicz
DMCS TUL

Handlers(2)

The following handlers are included in the java.util.logging
package:

FileHandler—\Writes log messages to a particular file

ConsoleHandler—\Writes log messages to the console (or
command-line shell)

MemoryHandler—\Writes log messages to a circular buffer; can
dump recent messages, on command, to another handler

SocketHandler—\Writes log messages to a server listening on a
particular host and port

StreamHandler—\Writes log messages to a particular stream

Presented by Bartosz Sakowicz
DMCS TUL

Formatters

A Formatter is used by a Handler to turn a LogRecord into a
String so that it can be displayed or stored in some way. There
are two Formatters in the java.util.logging package:

SimpleFormatter—Produces the default format

XMLFormatter—Transforms a LogRecord into a standard XML
format

Presented by Bartosz Sakowicz
DMCS TUL

Configuring the logging system

All loggers are defined within the context of a LogManager.The
default LogManager reads its configuration from
jre/lib/logging.properties, formatted as a properties file, within
the JDK installation directory.

The java.util.logging.config.file system property allows a
different file to be specified,

Presented by Bartosz Sakowicz
DMCS TUL

Configuring handlers

The configuration file allows properties of each handler to be set:

jJjava.util.logging.FileHandler.limit = 50000
#The maximum number of bytes to write to file, or zero for no limit

jJjava.util.logging.FileHandler.formatter =
Jjava.util.logging.XMLFormatter

#A Formatter object to format LogRecords before output.
#java.util.logging. SimpleFormatter or java.util.logging. XML
#Formatter, depending on the handler

Presented by Bartosz Sakowicz
DMCS TUL

Configuring loggers

The configuration file permits the log level of a particular Logger to
be set. Since a Logger corresponds to a package within the larger
application, this allows you to configure your application’s logging
on a package-by-package basis. Example:

com.xyz.myapp.level = SEVERE
com.xyz.myapp.io.level = INFO
com.xyz.myapp.net.level = WARNING

A logger’s level can be set at runtime using the Logger.setLevel()
method.

Presented by Bartosz Sakowicz
DMCS TUL

Logging usage example
import java.util.logging.™;

static private Logger logger;

static {

logger = Logger.getLogger("myapp.package.com”);
//logger.setlLevel(Level. ALL),

/

Presented by Bartosz Sakowicz
DMCS TUL

Logging usage example
public MultiplexingChatServer(int port) {
new LoggerGUI();
this.port = port;
logger.config("Will listen on port "+port),
Thread t = new Thread(this, "MultiplexingChatServer");
t.start();

logger.fine("Started background I/O thread"),
}

Presented by Bartosz Sakowicz
DMCS TUL

Assertion facility

The assertion facility provides a mechanism for adding optional
“sanity checks” to your code.

These checks are used during the development and testing
phases, but are turned off when the software is deployed.

This allows the programmer to insert debugging checks that might
be too slow or memory-intensive to use in a real context, but that
help during development.

In a sense, assertions are a lot like error checks, except that they
are turned off for deployment.

Presented by Bartosz Sakowicz
DMCS TUL

Assertion example

public class aClass {
public void aMethod(int argument) {
Foo foo = null;
/I ... somehow get a Foo object

// Check to make sure we've managed to get one:

assert foo != null;

}

This asserts that foo is not null. If foo is in fact null, an
AssertionError is thrown. Any code that executes after this

line can safely assume that foo is not null.

Presented by Bartosz Sakowicz
DMCS TUL

Assertion vs. other error code

The programmer’s decision to use an assertion instead of other
error-handling code is often based on a general rule of
programming psychology:

the less likely a programmer thinks an error is, the less code
she will write to deal with it.

An assertion is easier to write than a RuntimeException; a
RuntimeException is easier to write than a regular Exception.

A good rule of thumb is that you should use an assertion for
exceptional cases that you would like to forget about. An
assertion is the quickest way to deal with, and forget, a condition
or state that you don’t expect to have to deal with.

Presented by Bartosz Sakowicz
DMCS TUL

Assertion vs. other error ... (2)

Example:

An application might have a hidden configuration file that it never
deletes. Since it's possible, but unlikely, that the user will ever
delete this hidden configuration file, it might be a good idea, after
trying toopen the file, to assert that the open worked. It almost
certainly will, but it's a good idea to check.

An assertion is a convenient syntax for checking for an error. In a
sense, it’s really just a shorthand for a full error check.

Presented by Bartosz Sakowicz
DMCS TUL

Assertion syntax

assert expression;

Meaning: if expression isn’t true throw an error
OR:

assert expression_1 : expression_2;

Meaning: if expression_1 isn’t true, throw an error containing the
value of expression 2. Example:

assert foo != null : "Can't get a Foo, argument="+argument;

Presented by Bartosz Sakowicz
DMCS TUL

Compiling with assertions

One of the most useful features of assertions is that they can be
turned off during normal usage, so that they don'’t incur any speed
penalty. Assertions are off by default.

Assertions are enabled on the command line via the -ea switch,
which is an abbreviation for the -enableassertions switch. The
following two commands are equivalent:

Jjava -ea myPackage.myProgram
Jjava -enableassertions myPackage.myProgram

Assertions are similarly disabled with either the -da or -
disableassertions commands:

Jjava -da myPackage.myProgram
Jjava -disableassertions myPackage.myProgram

Presented by Bartosz Sakowicz
DMCS TUL

Compiling with assertions(2)

One of the most useful features of assertions is that they can be
turned off during normal usage, so that they don'’t incur any speed
penalty. Assertions are off by default.

Assertions are enabled on the command line via the -ea switch,
which is an abbreviation for the -enableassertions switch. The
following two commands are equivalent:

Jjava -ea myPackage.myProgram
Jjava -enableassertions myPackage.myProgram

Assertions are similarly disabled with either the -da or -
Isableassertions commands:

Jjava -da myPackage.myProgram
Jjava -disableassertions myPackage.myProgram

Presented by Bartosz Sakowicz
DMCS TUL

Other features

* It is possible enable/disable assertions for particular class or
packages

* It is possible to enable/disable assertions programatically:
ClassLoader methods:

public void setClassAssertionStatus(String className,
boolean enabled);

public void setPackageAssertionStatus(String packageName,
boolean enabled);

* It is possible to catch AssertionError (as a normal Error) but than
It is recommended to rethrow it.

Presented by Bartosz Sakowicz
DMCS TUL

Exceptions

When a piece of code catches one exception, only to throw
another exception, the first exception can be thought of as the
cause of the second one. The chained exception feature
provides a formal recognition of this programming pattern.

Example (old technique):
public void write(byte b[]) throws IOException {

try {
/...

} catch(SomelnternalException e) {

throw new IOException(e.toString());

} Presented by Bartosz Sakowicz
DMCS TUL

Exceptions(2)

In order to formalize this technique and achieve consistency in the
way that these things are handled and displayed, every Throwable
now officially has a cause, which itself is another Throwable.

The value of a Throwable’s cause can be set in its constructor:
new Exception("message”, oldException);

Or it can be set using its initCause() method:
Exception e = new Exception("message");
e.initCause(oldException);

You can get the cause of an exception by calling its getCause()
method.

Presented by Bartosz Sakowicz
DMCS TUL

Collections

There are three new classes : LinkedHashMap, LinkedHashSet,
and ldentityHashMap.

The first two are variations on the HashMap and HashSet classes,
and they preserve the order in which objects are added to them.

The third, IdentityHashMap, is a Map that overrides the
hashCode() methods of its keys, allowing objects to be
differentiated based on identity rather than on content.

There is also a new marker interface, RandomAccess, which
allows a class to declare that it is suitable for fast random access.
This means that it has efficient implementations of the get() and
set() methods.

Presented by Bartosz Sakowicz
DMCS TUL

Collections(2)

There are new methods in Collection interface:

* Collections.rotate() method rotates the elements of a list, which
means that it advances each element a certain number of steps.
Elements that are advanced off the end of the list are wrapped
around to the beginning of the list.

* Collections.sublist()
* Collections.indexOfSublist()
* Collections.lastindexOfSublist()

» Collections.swap()

Presented by Bartosz Sakowicz
DMCS TUL

Regular Expressions

A regular expression, or regex, is an expression that defines a
subset of the space of all possible text strings. A regex is said to
match a string if the string is within that subset.

Regexes can be used to distinguish correct input from incorrect
iInput, or to look for particular kinds of text within a larger body of
text.

Since JDK 1.4, Java includes regexes as part of the core platform,
In the java.util.regex package.

Presented by Bartosz Sakowicz
DMCS TUL

Regular Expressions(2)

A literal is any character from the character set that doesn’t have
a special meaning within a regex. A literal in a regular expression
matches only itself.

The . character matches any single character, except newline.
Newlines are also recognized if the DOTALL flag is specified.

The + character, when placed after a regular expression, matches
one or more copies of that expression. The * character matches
Zero or more copies.

Parentheses can be placed around any regular expression in
order to treat it as a unit. This does not change what it matches,
but it does allow modifiers to affect an entire expression, rather
than a single character. For example, just as g* means zero or
more occurrences of g, (gh)* means zero or more occurrences of

g h . Presented by Bartosz Sakowicz
DMCS TUL

Regular Expressions(3)

A character class defines a set of individual characters. For
example, the regex [abc] matches an a, a b, or a c; the regex
[abc]+ matches one or more characters, each of which is an a, b,
or ¢. You can also use the notation a-z to specify, in this case, all
the characters between a and z.

Putting a caret (*) at the start of such an expression negates the
category, which means the expression matches only characters
that are not in the set. Thus, the regex [*abc] matches any
character which is not an a, b, or c.

There are also predefined characters. Examples:
\s Any white space character [\t\n\xOB\f\r]

\S Any character except a white space character [* \t\n\xOB\f\r]

Presented by Bartosz Sakowicz
DMCS TUL

Regular Expressions(4)

The regex facility in java.util.regex is defined by only three
classes:

Pattern — Represents a regular expression
Matcher — Matches a Pattern against a string

PatternSyntaxException — Exception thrown while attempting to
compile a regular expression

Creating a Pattern object :
Pattern pattern = Pattern.compile("\S+\\s+\\S+");

This regex matches two words (made of any non-white space
characters) separated by some white space.

Presented by Bartosz Sakowicz
DMCS TUL

Regular Expressions(4)

Once you have a Pattern object, you create a Matcher object for
a particular input string:

Matcher matcher = pattern.matcher("hey there");

The argument to Pattern.matcher() does not have to be a String—
It has to be an object that implements the
java.lang.CharSequence interface. The following classes
Implement CharSequence:

java.lang.String
java.lang.StringBuffer

java.nio.CharBuffer

Matcher has special useful methods for finding and
replacing.

