Java

Object, classes, interfaces and
packages

Presented by Bartosz Sakowicz

Creating Objects

Each statement has three parts:

1.Declaration: When you create an object, you do not have to
declare a variable to refer to it. However, a variable declaration
often appears on the same line as the code to create an object.

2.Instantiation: new is a Java operator that creates the new
object (allocates space for it).

3.Initialization: The new operator is followed by a call to a
constructor. For example, Point(23, 94) is a call to Point's only
constructor. The constructor initializes the new object.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Creating Objects(2)

1) Declaration

type nhame

Declarations do not create new objects. The code Point
origin_one does not create a new Point object; it just
declares a variable, named origin_one, that will be used to
refer to a Point object. The reference is empty until assigned.
An empty reference is known as a null reference.

To create an object you must instantiate it with the new
operator.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Creating Objects(3)

2) Instantiating an object

The new operator instantiates a class by allocating
memory for a new object. The new operator requires a
single, postfix argument: a call to a constructor. The name of
the constructor provides the name of the class to instantiate.
The constructor initializes the new object.

The new operator returns a reference to the object it
created. Often, this reference is assigned to a variable of the
appropriate type. If the reference is not assigned to a
variable, the object is unreachable after the statement in
which the new operator appears finishes executing.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Creating Objects(3)

3) Intializing an object
Example:
public class Point {
public int x = 0O;
public int'y = 0;
public Point(int x, int y) {
this.x = x;

origin_one

this.y = y;

Point origin_one =

new Point(23, 94);

APoint Ohbject

Variables and Methods

Referencing an Object's Variables:

objectReference.variableName

Calling an Object's Methods
objectReference.methodName(argumentList);
or

objectReference.methodName();

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The Garbage Collector

* In some object oriented languages (ex. C++) is necessary to
keep the track of all used objects and destroy them when
they are no longer needed. This process is error prone.

 The Java runtime environment deletes objects when it
determines that they are no longer being used. This process
Is called garbage collection.

* An object is eligible for garbage collection when there are no
more references to that object. References that are held in a
variable are usually dropped when the variable goes out of
scope. Or, you can explicitly drop an object reference by
setting the variable to the special value null. Remember that
a program can have multiple references to the same object;
all references to an object must be dropped before the object
is eligible for garbage collection.

The Garbage Collector(2)

Garbage collector periodically frees the memory used by
objects that are no longer referenced.

The garbage collector does its job automatically

In some situations, you may want to run the garbage
collection explicitly by calling the gc method in the System
class.

Before an object gets garbage-collected, the garbage
collector gives the object an opportunity to clean up after
itself through a call to the object's finalize method. This
process is known as finalization.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Finalization

* The finalize method is a member of the Object class, which
is the top of the Java platform's class hierarchy and a
superclass of all classes.

* A class can override the finalize method to perform any
finalization necessary for objects of that type.

« |f you override finalize, your implementation of the method
should call super.finalize as the last thing it does.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Creating Objects (4)
Question:
What's wrong with the following program?
public class Somethingls\Wrong {
public static void main(String[] args) {

Rectangle myRect; =new RECtangle();

myRect.width = 40;

myRect.height = 50;

System.out.printin("myRect's area is " + myRect.area());

} Answer:

} The Rectangle Object is never created. This code will cause a
compiler warning or NullPointerException during runtime.

Creating Objects (5)
Excercise:

Given the following class write some code that creates
an instance of the class, initializes its member variable,
and then displays the value of it.

public class NumberHolder { public int anint; }

Answer:
public class NumberHolderDisplay {

public static void main(String[] args) {
NumberHolder aNH = new NumberHolder();
aNH.anint = 1;
System.out.printin(aNH.anlnt);}}

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Characters and Strings

The Java platform contains three classes that you can use
when working with character data:

« Character -- A class whose instances can hold a single
character value. This class also defines handy methods that
can manipulate or inspect single-character data.

« String -- A class for working with immutable (unchanging)
data composed of multiple characters.

« StringBuffer -- A class for storing and manipulating mutable
data composed of multiple characters.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Characters

An object of Character type contains a single character
value.

You use a Character object instead of a primitive char
variable when an object is required-for example, when
passing a character value into a method that changes the
value or when placing a character value into a data structure,
such as a vector, that requires objects.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Characters(2)

Constructors and methods provided by the Character class:

Character(char)

The Character class's only constructor, which creates a
Character object containing the value provided by the
argument. Once a Character object has been created, the
value it contains cannot be changed.

compare To(Character)
An instance method that compares the values held by two
character objects: the object on which the method is called
and the argument to the method. This method returns an
Integer indicating whether the value in the current object is
greater than, equal to, or less than the value held by the
argument. A letter is greater than another letter if its
numeric value is greater.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Characters(3)

Constructors and methods provided by the Character class:
equals(Object)
An instance method that compares the value held by the
current object with the value held by another. Returns
true if the values held by both objects are equal.
toString()
An instance method that converts the object to a string.
The resulting string is one character in length and
contains the value held by the character object.
charValue()
An instance method that returns the value held by the
character object as a primitive char value.
isUpperCase(char)
A class method that determines whether a primitive char
value is uppercase.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Strings and StringBuffers

Creating Strings and StringBuffers:

charl[] helloArray = {'h’, 'e’, ', T, '0" };
String helloString = new String(helloArray);
int len = helloString.length();

StringBuffer dest = new StringBuffer(len);

 Reasonable memory allocation - good first guess

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Strings and StringBuffers(2)

Getting characters and substrings from String and StringBuffer:
String aString = "Niagara. O roar again!”;

char aChar = aString.charAt(9),;

String roar = aString.substring(11,15);

0 1 2 3 4 5 = = g 10 11 12 13 14 15 16 17 18 19 20 21

Mlijalg|a|r|af. () r{ojajlr alelali|n]!
charAt(@) charAt(9) charAt({length{) - 1)

a1 2 3 4 5 & ¥ & 8 ® 1 @ 1\ MO A

m " 12 13 1t 13
Niji|algla|r|a]. & HE alglafi|n]|!
. v

"
substring(ll, 15)

Strings Accessor Methods

indexOf(int character)
lastindexOf(int character)

Return the index of the first (last) occurrence of the specified
character.

indexOf(int character, int from)
lastindexOf(int character, int from)

Return the index of the first (last) occurrence of the specified

character, searching forward (backward) from the specified
index.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Strings Accessor Methods(2)

indexOf(String string)
lastindexOf(String string)

Return the index of the first (last) occurrence of the specified
String.

indexOf(String string, int from)
lastindexOf(String string, int from)

Return the index of the first (last) occurrence of the specified
String, searching forward (backward) from the specified
index.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

StringBuffers Accessor

Methods
Question:

What is the difference between:
StringBuffer.length()

and

StringBuffer.capacity() ?

Answer:

StringBuffer.length() - returns amount of space used

StringBuffer.capacity() - returns the amount of space currently
allocated for the StringBuffer,

Strings conversions

Sometimes is necessary to convert an object to a String
because there are methods that accept only String values.

Example:

class ReverseString {
public static String reverselt(String source) {
int i, len = source.length(),
StringBuffer dest = new StringBuffer(len),

for (i=(len-1);i>=0;i-){
dest.append(source.charAt(i)),

}
return dest.toString();

}

} Presented by Bartosz Sakowicz
DMCS TUL Lodz

Strings conversions(2)

All classes inherit toString from the Object class

Many classes in the java.lang package override this
method to provide an implementation that is meaningful to
that class.

The valueOf Method

You can use valueOf to convert variables of different types
to Strings. Example:

System.out.printin(String.valueOf(Math.Pl)),
Converting Strings to numbers

The "type wrapper" classes (Integer, Double, Float, and
Long) provide a class method named valueOf that converts
a String to an object of that type. Example:

String piStr = "3.14159";
Float pi = Float.valueOf(piStr);

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Strings - cont.
Literal Strings

In Java, you specify literal strings between double quotes:

"Hello World!"

So, possible is:
int len = "Hello World!".length(),

Question: Answer:

What is the difference between: Efficiency. In the second

String s = "Hello World!": example there are two
o objects created.

and

String s = new String("Hello World!");

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Concatenation and +
operator

In the Java programming language, you can use + to concatenate
Strings together:

String cat = "cat”;
System.out.printin("con" + cat + "enation”);

Question:

Is the above efficient?

Answer:

Yes, it is. The second line is compiled to:

System.out.printin(new StringBuffer().append("con”).
append(cat).append("enation”).toString()),

Numbers

Java.lang.Number class and its subclasses:

{ Mumber I

| Byte i [Double . ! Float ' { Integer ' { Long i
[Short ' (BigInteger il BigDhecimal i

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The wrapper classes

Number classes: Wrappers for other data types:

Number

* Byte
Double

eFloat

e |nteger

*Long
e Short

e BigDecimal (java.Math)

* BigIinteqger (java.Math)

Boolean

e Character
*\oid

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The Integer class overview

Field Overview

static int MAX VALUE
A constant holding the maximum value an int can have, 231-1.

static int MIN VALUE
A constant holding the minimum value an int can have, -231.

Constructor Overview

Integer(int value)
Constructs a newly allocated Integer object that represents the

specified int value.

Integer(String s)
Constructs a newly allocated Integer object that represents the int
value indicated by the String parameter.

The Integer class ...(2)

Method Overview

byte byteValue()
Returns the value of this Integer as a byte.

int intValue()
Returns the value of this Integer as an int.

static int parselnt(String s)

Parses the string argument as a signed decimal integer. static
String toBinaryString(int i)

Returns a string representation of the integer argument as an
unsigned integer in base 2.

String toString()

Returns a String object representing this Integer's value. static
Integer valueOf(String s)

Returns an Integer object holding the value of the specified String.

Numbers(2)

By invoking the methods provided by the NumberFormat class,
you can format numbers, currencies, and percentages according
to Locale. Example:

Double amount = new Double(345987.246),

NumberFormat numberfFormatter;

String amountOut;

numberfFormatter =

NumberFormat.getNumberinstance(currentLocale),

amountOut = numberFormatter.format(amount);

System.out.printin(amountOut + " " +
currentLocale.toString());

The output shows how the format of the same number varies
with Locale:

345 987,246 fr FR
345.987,246 de DE
345,987246 en_US Presented by Bartosz Sakowicz

DMCS TUL Lodz

Currencies and Percentages

To have currency or percentage format, you need to change
following line:

NumberFormat.getCurrencylnstance(currentLocale); or
NumberFormat.getPercentinstance(currentLocale);

The output for currencies with different Locale:

9 876 543,21 F fr FR
90.876.54321 DM de DE
$9,876,543.21 en US

Of course NumberFormat class is unaware of exchange
rates!

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Customizing Formats

You specify the formatting properties of DecimalFormat class
with a pattern String. The pattern determines what the formatted
number looks like.

For a full description of the pattern syntax, see:
http.//java.sun.com/docs/books/tutorial/java/data/numberpattern.html

Example:

DecimalFormat myFormatter = new DecimalFormat(pattern),
String output = myFormatter.format(value),
System.out.printin(value + " " + pattern +

nn

+ output),

Patterns examples:
HHE HHE HHH
000000.000

Sttt it 1t e es oL Lo

Local- sensitive formatting

If you want a DecimalFormat object for a nondefault Locale,
you instantiate a NumberFormat and then cast it to
DecimalFormat. Example:

NumberFormat nf =
NumberFormat.getNumberinstance(loc);
DecimalFormat df = (DecimalFormat)nf;
df.applyPattern(pattern),

String output = df.format(value);
System.out.printin(pattern + " " + output + " " +
loc.toString()),

The output varies with Locale:

HH#H HHHE . 123,456.789 en_US
HH A 123.456,789 de DE
HHH HHH HA#H 123 456,789 fr FR

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Altering the formating symbols

You can use the DecimalFormatSymbols class to change the
symbols that appear in the formatted numbers produced by the
format method. The unusual format is the result of the calls to the
setDecimalSeparator, setGroupingSeparator, and
setGroupingSize methods. Example:

DecimalFormatSymbols unusualSymbols =

new DecimalFormatSymbols(currentLocale),
unusualSymbols.setDecimalSeparator(|’);
unusualSymbols.setGroupingSeparator(™'),
String strange = "#,##0.###";
DecimalFormat weirdFormatter =

new DecimalFormat(strange, unusualSymbols);

weirdFormatter.setGroupingSize(4),;
String bizarre = weirdFormatter.format(12345.678),
System.out.printin(bizarre),

The output =? =1712345|678

Arrays

An array is a structure that holds multiple values of the
same type. The length of an array is established when the array
Is created (at runtime).

ﬂrstindez{gbfé)“l 2 3 4 5 &6 7 &5 4 }indicea

b £

Array length s 10 element (at index &)

To store data of different types in a single structure which
could dynamically change, use a Collection implementation,
such as Vector, instead of an array.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Arrays (2)

Example on using arrays:

public class ArrayDemo {
public static void main(String[] args) {
int[] anArray; // declare an array of integers
anArray = new int[10];// create an array of integers
// assign a value to each array element and print
for (int i = 0; i < anArray.length; i++) {
anArrayli] = i,
System.out.print(anArray[i] + " "),
/
/
/

Array initializers example:
boolean[] answers = { true, false, true, true, false };

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Arrays of Objects
Question:

What is wrong with following code:

String[] anArray = new String[5];

for (inti = 0; i < anArray.length; i++) {
System.out.printin(anArray[i].toLowerCase()),

}

Answer:

After first line of code is executed, the array called anArray exists
and has enough room to hold 5 string objects. However, the array
doesn't contain any strings yet. It is empty. The program must

explicitly create strings and put them in the array. The code will
cause NullPointerException.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Arrays of Arrays

Example:
public class ArrayOfArraysDemo {
public static void main(String[] args) {

String[][] letters =
{
{"a" "b", "c" "d", "e"},
(T "}
{ "q", "r", "s", "t", "u” "v" }
}’.

for (inti = 0; i < letters.length; i++) {
for (intj = 1; j < letters][i].length; j++) {
System.out.print(letters[iJfj] + " "); I8/

Notice that the sub-arrays are all of different lengths. The
names of the sub-arrays are letters[0], letters[1], and so on.

Arrays of Arrays (2)

As with arrays of objects, you must explicitly create the sub-
arrays within an array. So if you don't use an initializer, you need
to write code like the following:

public class ArrayOfArraysDemo?2 {
public static void main(String[] args) {
int[][] aMatrix = new int{4][];

//populate matrix
for (int i = O; | < aMatrix.length; i++) {
aMatrix[i] = new int[5]; //create sub-array
for (int j = O; j < aMatrix[i].length; j++) {
aMatrix[il[j] =i + J;
M

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The copying Arrays
The arraycopy method requires five arguments:
public static void arraycopy(Object source,i nt srcindex,
Object dest, int destindex, int length)

Diagram illustrates how the copy takes place:

srcindex

Uyt 2 3 4 3 & 7 &§ 3 1 0

. J
N
LE”EEH _f,ffffﬁ;;;:Index

¥

dest

Arrays (3)

Questions:

1. What is wrong with following code and how to repair it?

2. What kind of message you will get and when?

public class WhatHappens {

public static void main(String[] args) {

StringBuffer[] stringBuffers = new StringBuffer[10];
for (int i = O; i < stringBuffers.length; i ++) {
stringBuffers[i].append("StringBuffer at index " + i);

117 Answers:

1. Before appending to buffer following line is missing:

stringBuffers[i] = new StringBuffer(),
2. NullPointerException during runtime. Presented by Bartosz Sakowicz

DMCS TUL Lodz

Creating classes

Class Declaration Class Body

N

* public class Stack

1
ariahle » Private Vector items; ¥
public Stacki) {
Constructor Ttems = new Yector(le);

'

public Object push{Object Ttem)
Ttems.addETemant({item) ;
raturn item;

'

public synchronized Object popl) |
int len = itemns.sizel);
Object obj = null,
if (len == 8)

ethods throw new EmptyotackExceptiong),

ab] = Ttems.elamenthAt{len - 1)
Ttemns, ramoveE]l ementdtilen - 1)

Faturn obj,
'
public boolean isEmpty() {
if (items. size() == @)
Faturn true;
alsa
raturn falsea;
i

The class declaration

bl Class is publich accessible.
abstract Class cannot be instantiated.
final lass cannot be subclassed.

class Name(fLIass

MNarne of the Class.

axtands AUpar

Superclass ofthe class.

Tmplemants IRterfaces

Interfaces implemented by the class.

d
CTassHEody

If you do not explicitly declare the optional items, the Java
compiler assumes certain defaults: a nonpublic, nonabstract,
nonfinal subclass of Object that implements no interfaces.

Constructors

All Java classes have constructors that are used to initialize a
new object of that type. A constructor has the same name as the
class. A constructor is not a method. Examples:

public Stack() {

items = new Vector(10),

/

public Stack(int initialSize) {
items = new Vector(initialSize),

/

The compiler differentiates these constructors based on the
number of parameters in the list and their types. Based on the
number and type of the arguments that you pass into the
constructor, the compiler can determine which constructor to use:

new Stack(),
ne W Sta Ck(5) ; Presented by Bartosz Sakowicz

DMCS TUL Lodz

Constructors (2)

class AnimationThread extends Thread {
int framesPerSecond;
iInt numimages;
Image[] images,;
AnimationThread(int fps, int num) {

super("AnimationThread");
this.framesPerSecond = fps;
this.numlmages = num;
this.images = new Image[numlmages];
for (inti=0;i<=numlmages; i++) {
I/ Load all the images.
1

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Constructors (3)

super("AnimationThread");

*This line invokes a constructor provided by the superclass of
AnimationThread, namely, Thread.

*This particular Thread constructor takes a String that sets the
name of Thread.

«Often a constructor wants to take advantage of initialization
code written in a class's superclass.

*Some classes must call their superclass constructor in order
for the object to work properly.

If present, the superclass constructor must be the first
statement in the subclass's constructor: An object should
perform the higher-level initialization first.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Constructors (4)

Access specifiers in the constructors' declaration:

private
No other class can instantiate your class. Your class may
contain public class methods (sometimes called factory
methods), and those methods can construct an object and
return it, but no other classes can.

protected
Only subclasses of the class and classes in the same package
can create instances of it.

public
Any class can create an instance of your class.

no specifier gives package access
Only classes within the same package as your class can
construct an instance of it.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Declaring Member Variables

aecessleveal Indicates the access level for this member,
static Declares a class member.

Tihal Indicates that it is constant.

transieant Thiswariable is transient.

volatile This variable is volatile.

fve Hame The type and name of the variable.
transient

The transient marker is not fully specified by The Java

Language Specification but is used in object serialization to

mark member variables that should not be serialized.
volatile

The volatile keyword is used to prevent the compiler from

performing certain optimizations on a member.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Method Declaration

accesslevel Access [evel for this method.

static This iz a class method.

abstract Thiz method is not implemented.

final Method cannot be overridden.

native Method implemented in another language.
synchronized Method requires a monitar to run.

returp Ivpe methociVame The return type and method name.

[paramlist) The list of arguments.

throws exceptions The exceptions thrown by this method.

native

Methods implemented in a language other than Java are

called native methods and are declared as such using the
native keyword.

synchronized

Concurrently running threads often invoke methods that

operate on the same data. These methods may be declared
synchronized.

Returning a value

Suppose you have a class hierarchy illustrated here:

Db ject

And a method declared |
Mumber
to return a Number: <—’—)

public Number returnANumber() {. . .} Imaginaryhumber

Question:
What object can be returned from the method?

Answer:

The returnANumber method can return an ImaginaryNumber but
not an Object. ImaginaryNumber "is @a" Number because it's a
subclass of Number. However, an Object is not necessarily a
Number--it could be a String or some other type. You also can
use interface names as return types. In this case, the object
returned must implement the specified interface.

A Method’s name

Java supports method name overloading so that multiple
methods can share the same name. Example:

class DataRenderer {
void draw(String s){ ...}
void draw(inti){.. .}
void draw(float f) {. ..}

)
Question:

Is it correct add another method:
void draw(String t){...} to above example?

Answer:

No, because compiler cannot differentiate them and it will
cause an compiler error.

Passing information into a
method

In Java, you can pass an argument of any valid Java data type
Into a method. This includes primitive data types such as
doubles, floats, integers and reference data types such as
objects and arrays.
*You cannot pass methods into Java methods. But you can
pass an object into a method and then invoke the object's
methods.
Hiding variables:
class Circle {
int x, y, radius;
public Circle(int x, int y, int radius) {
this.x = x;
this.y =y,
this.radius = radius; 1y,

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Pass by value

In Java methods, arguments are passed by value. When
invoked, the method receives the value of the variable passed in.
When the argument is of primitive type, pass-by-value means that
the method cannot change its value. When the argument is of
reference type, pass-by-value means that the method cannot
change the object reference, but can invoke the object's methods
and modify the accessible variables within the object.

Question:
What is the final value of variable b:
intr=-1,g=-1,b=-1; Answer:

pen.getRGBColor(r, g, b),
b=? b=-1

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The super keyword

Example:
class ASillyClass {
boolean aVariable,
void aMethod() { aVariable = true; }

/
class ASillierClass extends ASillyClass {

boolean aVariable;

void aMethod() {
aVariable = false;
super.aMethod(),
System.out.printin(aVariable),
System.out.printin(super.aVariable),

3}
Question: Answer:

What is an output?

false

Presented by Bartosz Sakowicz

true DMCS TUL Lodz

Local variables

Within the body of the method you can declare more variables for
use within that method. These variables are local variables and
live only while control remains within the method. Example:

Object findObjectinArray(Object o, Object[] arrayOfObjects) {
int i; // local variable
for (i = 0; i < arrayOfObjects.length; i++) {
if (arrayOfObjects[i] == o)
return o;

/

return null;

/

After this method returns, i no longer exists.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Controlling Access to Members
of a Class

Question:

What is wrong:
class Alpha {
private int iamprivate;
private void privateMethod() {
System.out.printin("privateMethod");

I
class Beta {
void accessMethod() {
Alpha a = new Alpha(); Answer
a.iamprivate = 10; /lillegal

.privateMethod(); .
. a.privateMethod() Jlillegal

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Controlling Access to Members
of a Class(2)

Compiler errors:

Beta.java:9: Variable iamprivate in class Alpha not accessible
from class Beta.
a.lamprivate = 10;

A

1 error

Beta.java:12: No method matching privateMethod() found in
class Alpha.

a.privateMethod(),

1 error

Conclusion: Compiler is always right. Sometimes it is difficult
to underStand error message- Presented by Bartosz Sakowicz

DMCS TUL Lodz

Controlling Access to Members
of a Class(3)

Question:
What is wrong?

class Alpha {
private int iamprivate,
boolean isEqualTo(Alpha anotherAlpha) {
if (this.iamprivate == anotherAlpha.iamprivate)
return true,
else

Answer:

Everything is all right (!!!). Objects of the same type have
access to one another's private members. This is because access
restrictions apply at the class or type level rather than at the object
level (this particular instance of a class).

return false; }}

Controlling Access to Members
of a Class(4

Protected access level specifier allows the ?ass itself,
subclasses (with one caveat), and all classes in the same
package to access the members.

package Greek;
public class Alpha {
protected int iamprotected;
protected void protectedMethod() {
System.out.printin("protectedMethod”); }}

package Greek;
class Gamma {
void accessMethod() {
Alpha a = new Alpha();
a.iamprotected = 10, // legal
a nrotectedMethod(): // leaal 11

Controlling Access to Members
The caveat: Of a CIaSS(s)

The Delta class (introduced below) can access both iamprotected
and protectedMethod, but only on objects of type Delta or its
subclasses. The Delta class cannot access iamprotected or
protectedMethod on objects of type Alpha. Example:

package Latin;

import Greek.*,;

class Delta extends Alpha {

void accessMethod(Alpha a, Delta d) {

a.iamprotected = 10; // illegal
d.iamprotected = 10, // legal
a.protectedMethod(); // illegal
d.protectedMethod(); // legal

} } Presented by Bartosz Sakowicz
DMCS TUL Lodz

Controlling Access to Members
bric of a Class(6)

Any class, in any package, has access to a class's public
members.

Package:

The package access level is what you get if you don't explicitly set
a member's access to one of the other levels. This access level
allows classes in the same package as your class to access the
members

package Greek;
class Alpha {
int iampackage;
void packageMethod() {
System.out.printin("packageMethod"”);

}

Instance and Class members

Instance variable. Example:
class MyClass { float aFloat; }

Every time you create an instance of a class, the runtime system
creates one copy of each the class's instance variables for the
Instance.

Class variable. Example:
class MyClass { static float aFloat; }

The runtime system allocates class variables once per class
regardless of the number of instances created of that class. The
system allocates memory for class variables the first time it
encounters the class. All instances share the same copy of the
class's class variables. You can access class variables through an
instance or through the class itself. Presented by Bartosz Sakowicz

DMCS TUL Lodz

Instance and Class

members(2)
Methods:

*Instance methods operate on the current object's instance
variables but also have access to the class variables.

*Class methods cannot access the instance variables declared
within the class (unless they create a new object and access them

through the object).

*Class methods can be invoked on the class, you don't need an
Instance to call a class method.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Initializing Instance and Class
Members

You can use static initializers and instance initializers to
provide initial values for class and instance members
when you declare them in a class:

class BedAndBreakfast {
static final int MAX_CAPACITY = 10;
boolean full = false; }

This works well for members of primitive data type. Sometimes, it
even works when creating arrays and objects. But this form of
initialization has limitations, as follows:

1. Initializers can perform only initializations that can be
expressed in an assignment statement.

2. |Initializers cannot call any method that can throw a checked
exception.

3. If the initializer calls a method that throws a runtime exception,
then it cannot do error recovery.

Using static initialization
blocks

If you have some initialization to perform that cannot be done in
an initializer because of one of previous limitations, you have to
put the initialization code elsewhere. To initialize class
members, put the initialization code In a static initialization
block. To initialize instance members, put the initialization code in
a constructor. import Java.uti1]. ResourceBundle;

class Errors |
static ReszourceBundle errarStrings;

stakic |

try |
errorstrings = ResourceBundle.

getBundle("Errorstrings");

I catch (java.uti1l.Miss1ngResourceException e] §

£ oerror recovery code here

Initializing instance members

Example:
iImport java.util. ResourceBundle,
class Errors {
ResourceBundle errorStrings;
Errors() {

try {

errorStrings =
ResourceBundle.getBundle("ErrorStrings”),

} catch (java.util. MissingResourceException e) {
// error recovery code here)}

The code that initializes errorStrings is in a constructor for
the class.

Initializing instance
members(2)
Example.java.awt.Rectangle has these three constructors:
Rectangle();
Rectangle(int width, int height);
Rectangle(int x, int y, int width, int height),

Here are the possible implementations of the three Rectangle
constructors:

Rectangle() { this(0,0,0,0); }

Rectangle(int width, int height) { this(0,0,width,height); }
Rectangle(int x, int y, int width, int height) {

this.x = x; this.y = y;

Presented by Bartosz Sakowicz

this.width = width; this.height = height; } DMCS TUL Lodz

Inheritance

Extends clause declares that your class is a subclass of another.
You can specify only one superclass for your class (Java does
not support multiple class inheritance), and even though you
can omit the extends clause from your class declaration, your
class has a superclass.

The Object class defines and implements behavior that every
class in the Java system needs. It is the most general of all
classes. Its immediate subclasses, and other classes near top of
the hierarchy, implement general behavior; classes near the
bottom of the hierarchy provide for more specialized behavior.

% i |
FE.‘ Presented by Bartosz Sakowicz
o DMCS TUL Lodz

Inheritance(2)

The members that are inherited by a subclass:

*Subclasses inherit those superclass members declared as public
or protected.

*Subclasses inherit those superclass members declared with no
access specifier as long as the subclass is in the same package
as the superclass.

*Subclasses don't inherit a superclass's member if the subclass
declares a member with the same name. In the case of member
variables, the member variable in the subclass hides the one
in the superclass. In the case of methods, the method in the
subclass overrides the one in the superclass.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Hiding member variables

Lets consider the following superclass and subclass pair:
class Super { Number aNumber; }
class Subbie extends Super { Float aNumber; }

The aNumber variable in Subbie hides aNumber in Super. It is
possible to access Super's aNumber from Subbie with:

super.aNumber

super is a Java language keyword that allows a method to refer to
hidden variables and overridden methods of the superclass.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Overriding Methods

Object class contains the toString method, which returns a String

object containing the name of the object's class and its hash code.
Most, if not all, classes will want to override this method and print

out something meaningful for that class.

The output of toString should be a textual representation of the
object. For the Stack class, a list of the items in the stack would be
appropriate

public class Stack {
private Vector items;
public String toString() {

/I list of the items in the stack

b}

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Overriding Methods(2)

*The return type, method name, and number and type of the
parameters for the overriding method must match those in the
overridden method.

*The overriding method can have a different throws clause as long
as it doesn't declare any types not declared by the throws clause
In the overridden method.

*The access specifier for the overriding method can allow more
access than the overridden method, but not less. For example, a
protected method in the superclass can be made public but not
private.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Overriding Methods(3)

Calling the Overridden Method

Sometimes, you don't want to completely override a method.
Rather, you want to add more functionality to it. To do this, simply
call the overridden method using the super keyword:
super.overriddenMethodName();

Methods a Subclass Cannot Override

A subclass cannot override methods that are declared final in the
superclass Also, a subclass cannot override methods that are
declared static in the superclass. A subclass can hide a static
method in the superclass by declaring a static method in the
subclass with the same signature as the static method in the
superclass.

Methods a Subclass Must Override

A subclass must override methods that are declared abstract in
the ciinerclace or the ciihelace iteelf miuset he ahetract

Being Descendent of Object

Every class in the Java system is a descendent, direct or
indirect, of the Object class. This class defines the basic state

and behavior that all objects must have.
Your classes may want to override the following Object methods:

eclone
sequals/hashCode (must be overridden together.)
«finalize
toString
Your class cannot override these Object methods (they are final):
«getClass
* notify
o notifyAll

eWwalt
DMCS TUL Lodz

The clone Method

*You use the clone method to create an object from an existing
object.

*Object's implementation of this method checks to see if the object
on which clone was invoked implements the Cloneable interface,
and throws a CloneNotSupportedException if it does not. Note
that Object itself does not implement Cloneable, so subclasses
of Object that don't explicitly implement the interface are not
cloneable.

*If the object on which clone was invoked does implement the
Cloneable interface, Object's implementation of the clone method
creates an object of the same type as the original object and
Initializes the new object's member variables to have the same
values as the original object's corresponding member variables.

‘For some classes the default behavior of Object's clone

method works just fine. Other classes need to override clone
to aet correct hehavior.

The clone Method (2)

Lets consider the Stack class. If Stack relies on Object's
Implementation of clone, then the original stack and its clone will
refer to the same vector. Here then is an appropriate
implementation of clone for Stack class:

public class Stack implements Cloneable {

private Vector items;
protected Object clone() {
try {
Stack s = (Stack)super.clone(); // clone the stack
s.items = (Vector)items.clone();// clone the vector
return s; // return the clone
} catch (CloneNotSupportedException e) {
// this shouldn't happen because Stack is Cloneable
throw new InternalError(),

I

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The equals Method

*You must override the equals and hashCode methods together.

*The equals method compares two objects for equality and returns
true if they are equal. The equals method provided in the Object
class uses the identity function to determine if objects are equal (if
the objects compared are the exact same object the method
returns true).

*For some classes, two distinct objects of that type might be
considered equal if they contain the same information. Example:

Integer one = new Integer(1), anotherOne = new Integer(1),
if (one.equals(anotherOne))
System.out.printin("objects are equal”);

This program displays objects are equal even though one and
anotherOne reference two distinct objects. They are considered
equal because the objects compared contain the same int value.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The hashCode Method

*The value returned by hashCode is an int that maps an object
into a bucket in a hash table.

*An object must always produce the same hash code.

*The hashing function for some classes is relatively obvious. For
example, an obvious hash code for an Integer object is its integer
value.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

clone and hashCode - example

public class BingoBall {
public int number;
public boolean equals(Object obj) {
if (!(obj instanceof BingoBall))
return false;
return ((BingoBall)obj).number == number;

/
public int hashCode() {

return number;

public String toString() {
return new

StringBuffer().append(letter).append(number).toString();
}
}

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The finalize Method

* The ODbject class provides a method, finalize, that cleans up
an object before it is garbage collected.

* The finalize method is called automatically by the system and
most classes you write do not need to override it.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The toString Method

* Object's toString method returns a String representation
of the object.

* You can use toString along with System.out.printin to display
a text representation of an object, such as the current thread:

System.out.printin(Thread.currentThread().toString());

* The String representation for an object depends entirely
on the object. The String representation of an Integer object is
the integer value displayed as text. The String representation
of a Thread object contains various attributes about the thread,
such as its name and priority.

* The toString method is very useful for debugging. It
behooves you to override this method in all your classes.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The getClass Method

* The getClass method is a final method that returns a
runtime representation of the class of an object. This method
returns a Class object.

* Once you have a Class object you can query it for various
information about the class, such as its name, its superclass,
and the names of the interfaces that it implements.

 The following method gets and displays the class name of an
object:
void PrintClassName(Object obj) {
System.out.printin("The Object’s class is " +
obj.getClass().getName()),

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The getClass Method(2)

*One handy use of a Class object is to create a new instance of a
class without knowing what the class is at compile time.

* The following sample method creates a new instance of the
same class as obj, which can be any class that inherits from
Obiject (any class):

Object createNewlInstanceOf(Object obj) {
return obj.getClass().newlnstance();
}
The notify, notifyAll and wait Methods

*You cannot override Object's notify and notifyAll methods and its
three versions of wait. This is because they are critical for
ensuring that threads are synchronized.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Final classes and methods

You can declare that your class is final, that is, that your class
cannot be subclassed. There are (at least) two reasons why you
might want to do this:

1. Security

One mechanism that hackers use to subvert systems is to create
a subclass of a class and then substitute their class for the
original. The subclass looks and feels like the original class but
does vastly different things, possibly causing damage or getting
Into private information.

2. Design

You may also wish to declare a class as final for object-oriented
design reasons. You may think that your class is "perfect” or that,
conceptually, your class should have no subclasses.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Final classes and methods(2)

Example:

If you wanted to declare your (perfect) ChessAlgorithm class as
final, its declaration should look like this:

final class ChessAlgorithm { ...}
The final Methods

You might wish to make a method final if it has an implementation
that should not be changed and it is critical to the consistent state
of the object.Instead of making your ChessAlgorithm class final,
you might want instead to make the nextMove method final:

class ChessAlgorithm {
final void nextMove(ChessPiece pieceMoved,
BoardLocation newlLocation) { ... }

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Abstract classes

To declare that your class is an abstract class, use the keyword
abstract before the class keyword in your class declaration:

abstract class Number {

}

If you attempt to instantiate an abstract class, the compiler
displays an error similar to the following and refuses to compile
your program:
AbstractTest.java:6: class AbstractTest is an abstract class.
It can't be instantiated.
new AbstractTest();
A

1 error

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Abstract methods

An abstract class may contain abstract methods.Example:

{ Lraphiclbject i
| Rectangle i [Line i | EBezier ' [rcle i

The GraphicObject class would look like this:

abstract class GraphicObject {
int x, y;
void moveTo(int newX, int newY) { ...}
abstract void draw();, }

Each non-abstract subclass would have to provide an
implementation for the draw method:

class Circle extends GraphicObject {
void draw() {. ..} }

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Abstract classes and methods

* An abstract class is not required to have an abstract
method in it.

* Any class that has an abstract method in it or that does not
provide an implementation for any abstract methods declared
in its superclasses must be declared as an abstract class.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Questions

public class ClassA {
public void methodOne(inti) { }
public void methodTwo(inti) { }
public static void methodThree(inti) { }
public static void methodFour(inti) { }

/

public class ClassB extends ClassA {
public static void methodOne(inti) { }
public void methodTwo(inti) { }
public void methodThree(inti) { }
public static void methodFour(inti) { }

/

Answer:

/lcompiler error
lloverrides
llcompiler error
I/hides

1. Which method overrides a method in the superclass?
2. Which method hides a method in the superclass?

3. What do the other methods do?

A nested class

Java lets you define a class as a member of another class. Such a
class is called a nested class:

class EnclosingClass{
class ANestedClass {. . .}

/

* You use nested classes to reflect and enforce the relationship
between two classes.

* You should define a class within another class when the nested
class makes sense only in the context of its enclosing class or
when it relies on the enclosing class for its function. For example,
a text cursor makes sense only in the context of a particular text
component.

* The nested class has unlimited access to its enclosing class's
members, even if they are declared private. Question: Why ?

Answer: Nested class is a normal member of enclosing class.

A nested class(2)

A nested class can be declared static (or not). A static nested
class is called just that: a static nested class. A nonstatic nested
class is called an inner class:

class EnclosingClass{
static class AStaticNestedClass {. . . }
class InnerClass {. ..}

/

*A static nested class is associated with its enclosing class.

*A static nested class cannot refer directly to instance variables or
methods defined in its enclosing class-it can use them only
through an object reference.

*An inner class is associated with an instance of its enclosing
class and has direct access to that object's instance variables and
methods.

Inner class cannot define any static members itself.

A nested class(3)

* Nested classes can be declared abstract or final. The
meaning of these two modifiers for nested classes is the same as
for other classes.

* The access specifiers may be used to restrict access to
nested classes just as they do to other class members.

* Any nested class can be declared in any block of code. A
nested class declared within a method or other smaller block of
code has access to any final variables in scope.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Inner class - Example

Suppose you want to add a feature to the Stack class that lets
another class enumerate over the elements in the stack using the
interface defined in java.util.Enumeration. This interface
contains two method declarations:

public boolean hasMoreElements(),
public Object nextElement();

The Enumeration interface defines the interface for a single loop
over the elements:

while (hasMoreElements())
nextElement()

If Stack implemented the Enumeration interface itself, you could
not restart the loop and you could not enumerate the contents
more than once. Also, you couldn't allow two enumerations to
happen simultaneously. So Stack shouldn't implement
Enumeration. Rather, a helper class should do the work for Stack.

Inner class - Example(2)

public class Stack {
private Vector items;
public Enumeration enumerator() {
return new StackEnum();
}
class StackEnum implements Enumeration {
int currentltem = items.size() - 1;
public boolean hasMoreElements() {
return (currentltem >= 0);
/
public Object nextElement() {
if (lhasMoreElements())
throw new NoSuchElementException(),

else
return items.elementAt(currentltem--);

} } } Presented by Bartosz Sakowicz
DMCS TUL Lodz

Anonymous class

You can declare an inner class without naming it. Anonymous
classes can make code difficult to read. You should limit their use
to those classes that are very small. Example:

public class Stack {

private Vector items;
public Enumeration enumerator() {
return new Enumeration() {
int currentltem = items.size() - 1,
public boolean hasMoreElements() {
return (currentltem >= 0); }
public Object nextElement() {
if (lhasMoreElements())
throw new NoSuchElementException(),
else
return items.elementAt(currentltem--);
IRy

Nested classes - questions

a. The only users of this nested class will be
Instances of the enclosing class or instances of
the enclosing class's subclasses.

b. Anyone can use this nested class.

c. Only instances of the declaring class need to
use this nested class, and a particular instance
might use it several times.

d. This tiny nested class is used just once, to
create an object that implements an interface.

e. This nested class has information about its
enclosing class (not about instances of the
enclosing class) and is used only by its
enclosing class and perhaps their subclasses.

f. Similar situation as the preceding (choice e),
hiit nat infended tn he 11ced hv ci1helacees

1d

2a

3b

de

of

6¢C

1. anonymous
Inner class

2. protected
Inner class

3. public static
nested class

4. protected
static nested
class

5. private static
nested class

6. private innel
class

Nested classes - questions(2)

import java.util.”; // What is wrong ?
public class Problem {
public static void main(String[] args) {
final Timer timer = new Timer();
timer.schedule(new TimerTask() {

public void run() {
System.out.printin("Exiting.");

timer.cancel(),
/
}, 5000);

System.out.printin("In & sec exit. ”);

} } Presented by Bartosz Sakowicz
DMCS TUL Lodz

Interfaces

An interface defines a protocol of behavior that can be
Implemented by any class anywhere in the class hierarchy. An
interface defines a set of methods but does not implement them.
A class that implements the interface agrees to implement all the

methods defined in the interface, thereby agreeing to certain
behavior.

Definition:

An interface is a named collection of method definitions

(without implementations). An interface can also declare
constants.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Interfaces and abstract
classes

The differences between interfaces and abstract classes:

*An interface cannot implement any methods, whereas an
abstract class can.

*A class can implement many interfaces but can have only one
superclass.

*An interface is not part of the class hierarchy. Unrelated classes
can implement the same interface.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Using interfaces - example

Suppose that you have written a class that can watch stock prices
coming over a data feed. This class allows other classes to
register to be notified when the value of a particular stock
changes. First, your class, which we'll call StockMonitor, would
implement a method that lets other objects register for notification:
public class StockMonitor {

public void watchStock(StockWatcher watcher, String
tickerSymbol, double delta) { ... } }

Arguments explanation:

StockWatcher is the name of an interface which declares one
method: valueChanged.

String tickerSymbol - symbol of the stock to watch

double delta - amount of change that the watcher considers
interesting enough to be notified of.

Using interfaces - example(2)

» The watchStock method ensures, through the data type of its
first argument, that all registered objects implement the
valueChanged method.

* It makes sense to use an interface data type here because it
matters only that registrants implement a particular method.

* If StockMonitor had used a class name as the data type, that
would artificially force a class relationship on its users. Because a
class can have only one superclass, it would also limit what type
of objects can use this service.

* By using an interface, the registered objects class could be
anything -Applet or Thread- for instance, thus allowing any class
anywhere in the class hierarchy to use this service.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Using interfaces - example(3)

Declaration of interface StockWatcher:

Interface
Declaration

Interface
Body ‘<

—

— puUblic interface StockWwatcher {

final 5tring sunTicker = "5SUNW"
final 5tring oracleTicker = "ORCL";
final String ciscoTicker = "{C50";

void valueChanged (5tring tickerisvmbaol.
double newValue);

)

-

Zonstant
Declarations

hethod
Declaration

This interface defines three constants, which are the ticker
symbols of watchable stocks. This interface also declares, but
does not implement, the valueChanged method. Classes that
Implement this interface provide the implementation for that

method.

Presented by Bartosz Sakowicz

DMCS TUL Lodz

The interface declaration

public mMakes this interface public.
interface InterfaceName This is the name ofthe interface.
Extends SuperInterfaces This Interface's superinterfaces.
d

InterfaceBody
ks

Two elements are required in an interface declaration--the
interface keyword and the name of the interface.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The Iinterface declaration(2)

* The public access specifier indicates that the interface can
be used by any class in any package. If you do not specify that
your interface is public, your interface will be accessible only to
classes that are defined in the same package as the interface.

* An interface declaration can have one other component: a
list of superinterfaces. An interface can extend other interfaces,
Just as a class can extend or subclass another class. However,
whereas a class can extend only one other class, an interface can
extend any number of interfaces. The list of superinterfaces is a
comma-separated list of all the interfaces extended by the new
interface.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

The interface body

* The interface body contains method declarations for all the
methods included in the interface. A method declaration within an
interface is followed by a semicolon (;) because an interface does
not provide implementations for the methods declared within it. All
methods declared in an interface are implicitly public and
abstract.

* An interface can contain constant declarations in addition to
method declarations. All constant values defined in an
interface are implicitly public, static, and final.

 Member declarations in an interface disallow the use of some
declaration modifiers; you cannot use transient, volatile, or
synchronized in a member declaration in an interface. Also,
you may not use the private and protected specifiers when
declaring members of an interface.

Implementing an Interface

An interface defines a protocol of behavior. A class that

implements an interface adheres to the protocol defined by
that interface.

By convention: The implements clause follows the extends
clause, if it exists.

Classes that implement an interface inherit the constants
defined within that interface. So those classes can use simple
names to refer to the constants. Any other class can use an
interfaces constants with a qualified name, like this:

StockWatcher.sunTicker

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Using Interface as a Type

When you define a new interface, you are defining a new
reference data type. You can use interface names anywhere
you can use any other data type name.

Only an instance of a class that implements the interface can

be assigned to a reference variable whose type is an interface
name.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Interfaces cannot grow

Suppose that you want to add some functionality to
StockWatcher. For instance, suppose that you want to add a
method that reports the current stock price, regardless of whether

the value changed:

public interface StockWatcher {

void valueChanged(String tickerSymbol, double newValue),

void currentValue(String tickerSymbol, double newValue),

/

If you make this change, all classes that implement the old
StockWatcher interface will break because they dont
implement the interface anymore!

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Interfaces cannot grow(2)

To avoid mentioned problem you should implement interface
completely from the beginning. For example, you could create a

StockWatcher subinterface called StockTracker that declared the
new method:

public interface StockTracker extends StockWatcher {
void currentValue(String tickerSymbol, double newValue),

/

Now users of your code can choose to upgrade to the new
interface or to stick with the old interface.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Interfaces - questions

Question:

Is the following interface valid?

public interface Marker { }

Answer:

Yes. Methods are not required. Empty interfaces can be used as
types and to mark classes without requiring any particular method
Implementations. For an example a useful empty interface is
java.io.Serializable.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Interfaces - questions(2)

Excercise:

Suppose that you have written a time server, which periodically
notifies its clients of the current date and time. Write an interface

that the server could use to enforce a particular protocol on its
clients.

Answer:

public interface TimeClient {
public void setTime(int hour, int minute, int second);
public void setDate(int day, int month, int year);
public void setDateAndTime(int day, int month, int year,

int hour, int minute, int second); }

Packages

To make classes easier to find and to use, to avoid naming
conflicts, and to control access, programmers bundle groups of
related classes and interfaces into packages.

Definition: A package is a collection of related classes and

Interfaces providing access protection and namespace
management.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Packages(2)

Suppose that you write a group of classes that represent a
collection of graphic objects, such as circles, rectangles, lines,
and points. You also write an interface, Draggable, that classes
iImplement if they can be dragged with the mouse by the user:

//in the Graphic.java file

public abstract class Graphic {. ..}

//in the Circle.java file

public class Circle extends Graphic implements Draggable {. . . }
//in the Rectangle.java file

public class Rectangle extends Graphic implements Draggable { .}
//in the Draggable.java file public interface Draggable {. . .}

Why they should be bundled in a package?

Packages(3)

You should bundle these classes and the interface in a package
for several reasons:

* You and other programmers can easily determine that these
classes and interfaces are related.

* You and other programmers know where to find classes and
iInterfaces that provide graphics-related functions.

* The names of your classes wont conflict with class names in
other packages, because the package creates a new namespace.

* You can allow classes within the package to have unrestricted
access to one another yet still restrict access for classes outside
the package.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Creating Packages

To create a package, you put a class or an interface in it. To do
this, you put a package statement at the top of the source file in
which the class or the interface is defined. Example:

package graphics;

public class Circle extends Graphic implements Draggable {. . .}

*The Circle class is a public member of the graphics package.

*You must include a package statement at the top of every source
file that defines a class or an interface that is to be a member of
the graphics package.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Package Statement

* The scope of the package statement is the entire source file,

* If you put multiple classes in a single source file, only one may
be public, and it must share the name of the source files base
name.

* Only public package members are accessible from outside the
package.

* If you do not use a package statement, your class or interface
ends up in the default package, which is a package that has no
name.

* The default package is only for small or temporary applications
or when you are just beginning development. Otherwise, classes
and interfaces belong in named packages.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Naming a Package

It is possible to name identically two classes unless they are
in a different packages.

By convention:

Companies use their reversed Internet domain name in their
package names, like this: com.company.package. Name collisions
that occur within a single company need to be handled by
convention within that company, perhaps by including the region
or the project name after the company name, for example,
com.company.region.package.

For our purposes:
All classes should be in package:

pl.lodz.p.dmcs.particular name

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Using Package Members

Only public package members are accessible outside the package
In which they are defined. To use a public package member from
outside its package, you must do one or more of the following:

 Refer to the member by its long (qualified) name
* Import the package member

 Import the members entire package

Each is appropriate for different situations.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Referring to a Package Member
by Name

If you are trying to use a member from a different package and
that package has not been imported, you must use the members
qgualified name, which includes the package name. This is the
qualified name for the Rectangle class declared in the graphics
package :

graphics.Rectangle

You could use this long name to create an instance of
graphics.Rectangle:

graphics.Rectangle myRect = new graphics.Rectangle();

Presented by Bartosz Sakowicz

Using long names is good for one-shot uses. OGS TUL Lodtz

Importing a Package Member

To import a specific member into the current file, put an import
statement at the beginning of your file before any class or
Interface definitions but after the package statement, if there is
one. Example:

import graphics.Circle;
Now you can refer to the Circle class by its simple name:

Circle myCircle = new Circle();

This approach works well if you use just a few members from the
graphics package. But if you use many classes and interfaces
from a package, you can import the entire package.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Importing an Entire Package

To import all the classes and interfaces contained in a particular
package, use the import statement with the asterisk (*) wildcard
character:

import graphics.”;

The asterisk in the import statement can be used only to
specify all the classes within a package. It cannot be used to
match a subset of the classes in a package. For example, the
following does not match all the classes in the graphics package
that begin with A:

import graphics.A*; // does not work

Instead, it generates a compiler error. With the import
statement, you can import only a single package member or
an entire package.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Packages imported
automatically

The Java runtime system automatically imports three entire
packages:

* The default package (the package with no name)
* The java.lang package

* The current package

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Disambiguating a name

If by some chance a member in one package shares the same
name with a member in another package and both packages
are imported, you must refer to each member by its qualified
name. For example, the previous example defined a class named
Rectangle in the graphics package. The java.awt package also
contains a Rectangle class. If both graphics and java.awt have
been imported, the following is ambiguous:

Rectangle rect;

In such a situation, you have to be more specific and use the
members qualified name to indicate exactly which Rectangle class
you want:

graphics.Rectangle rect;

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Managing files

The qualified name of the package member and the path

name to the file are parallel:

class name graphics.Rectangle

pathname to file graphics/Rectangle.java

Each component of the package name corresponds to a

subdirectory.

- i:E:III

package cnm.taran15.graph1c5;

* raranis

public class Rectangle {

= [raphics

|
+

Rectangle.java

Managing files(2)

When you compile a source file, the compiler creates a
different output file for each class and interface defined in
it. The base name of the output file is the name of the
class or the interface, and its extension is .class:

package com.taranis.graphics;

public class Hectangle {

¥

class Helper {

¥

>

b

Helper.class

Rectangle.class

Presented by Bartosz Sakowicz
DMCS TUL Lodz

