Java

Exceptions

Presented by Bartosz Sakowicz

Handling errors with
exceptions

Golden rule of programming:

Errors occur in software programs.
What really matters is what happens after the error occurs:

 How is the error handled?
 Who handles it?

« Can the program recover, or should it just die?

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Exceptions - fundamentals

* An exception is an event that occurs during the execution of a
program that disrupts the normal flow of instructions.

 Many kinds of errors can cause exceptions--problems
ranging from serious hardware errors, such as a hard disk crash,
to simple programming errors, such as trying to access an out-
of-bounds array element.

 When such an error occurs within a Java method, the method
creates an exception object and hands it off to the runtime
system.

* The exception object contains information about the exception,
Including its type and the state of the program when the error
occurred. The runtime system is responsible for finding some
code to handle the error. In Java terminology, creating an
exception object and handing it to the runtime system is called
throwing an exception.

Exceptions - fund...(2)

 After a method throws an exception, the runtime system leaps
Into action to find someone to handle the exception. The set of
possible "someones" to handle the exception is the set of
methods in the call stack of the method where the error
occurred. The runtime system searches backwards through the
call stack, beginning with the method in which the error
occurred, until it finds a method that contains an appropriate
exception handler.

* An exception handler is considered appropriate if the type of
the exception thrown is the same as the type of exception
handled by the handler. The exception handler chosen is said to
catch the exception.

* If the runtime system exhaustively searches all of the methods
on the call stack without finding an appropriate exception
handler, the runtime system (and consequently the Java
program) terminates.

Exceptions advantages

1. Separating error handling code from ,,regular” code.

Suppose that you have a function that reads an entire file into
memory. In pseudo-code, your function might look something like
this:

readFile { open the file; determine its size; allocate that much
memory; read the file into memory; close the file; }

At first glance this function seems simple enough, but it ignores
all of these potential errors:

« What happens if the file can't be opened?

« What happens if the length of the file can't be determined?
« What happens if enough memory can't be allocated?

« What happens if the read fails?

* What happens if the file can't be closed?

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Exceptions advantages(2)

Your function would looking something like this:
errorCodeType readFile {

initialize errorCode = 0;

open the file; if (theFilelsOpen) {

determine the length of the file; if (gotTheFileLength) {
allocate that much memory; if (gotEnoughMemory) {
read the file into memory;

if (readFailed) { errorCode =-1;} } else { errorCode = -2; } } else {
errorCode = -3; }

close the file;
if (theFileDidntClose && errorCode == 0) { errorCode = -4; }
else { errorCode = errorCode and -4; } }

else { errorCode =-5;} return errorCode,; } Presented by Bartosz Sakowicz

DMCS TUL Lodz

Excefptions advanta ess3)

If your read_file function used exceptions instead of traditional
error management techniques, it would look something like this:

readFile {

try {

open the file; determine its size; allocate that much memory;
read the file into memory; close the file;

} catch (fileOpenFailed) { doSomething;

} catch (sizeDeterminationFailed) { doSomething;
} catch (memoryAllocationFailed) { doSomething;
} catch (readFailed) { doSomething;

} catch (fileCloseFailed) { doSomething; }

}

The bloat factor for error management code is about 250 percent--
compared to 400 percent in the previous example.

Exceptions advantages(4)

2. Propagating errors up the call stack

Lets suppose than only method1 is interested in errors occured
during reading the file:

method1 { call method2; }
method2 { call method3; }
method3 { call readFile; }

Traditional error notification techniques force method2 and
method3 to propagate the error codes returned by readFile up the
call stack until the error codes finally reach method1- the only
method that is interested in them.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Exceptions advantages(5)

method1 {
errorCodeType error; error = call method2;
if (error) doErrorProcessing; else proceed; }

errorCodeType method2 {
errorCodeType error; error = call method3;
if (error) return error; else proceed; }

errorCodeType method3 {
errorCodeType error; error = call readFile;
if (error) return error; else proceed; }

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Exceptions advantages(6)

The Java runtime system searches backwards through the call
stack to find any methods that are interested in handling a
particular exception. Thus only the methods that care about errors
have to worry about detecting errors.

method1 {
try {
call method?2;
} catch (exception) { doErrorProcessing; }
}
method2 throws exception {
call method3; }
method3 throws exception {
call readFile; } Presented by Bartosz Sakowicz

DMCS TUL Lodz

Exceptions advantages(7)

3. Grouping Error Types and Error Differentiation.

Lets imagine a group of exceptions, each of which represents a
specific type of error that can occur when manipulating an array:
the index is out of range for the size of the array, the element
being inserted into the array is of the wrong type, or the element
being searched for is not in the array.

For example ArrayException is a subclass of Exception (a
subclass of Throwable) and has three subclasses:

{ Excaption i

! ArrayvException i

InvalidIndexException HoSuchElementException ElementTypeException

Exceptions advantages(8)

An exception handler that handles only invalid index exceptions
has a catch statement like this:

catch (InvalidindexExceptione) {. ..}

To catch all array exceptions regardless of their specific type, an
exception handler would specify an ArrayException argument:

catch (ArrayExceptione) {. ..}

It is possiblel to set up an exception handler that handles any
Exception with this handler:

catch (Exceptione) {. ..}

It is not recommended writing general exception handlers as
a rule.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Understanding exceptions

Let's look at following code:
public class InputFile {

private FileReader in,

public InputFile(String filename) {
in = new FileReader(filename); }

What should the FileReader do if the named file does not exist on
the file system?

« Should the FileReader kill the program?
« Should it try an alternate filename?
« Should it just create a file of the indicated nhame?

There's no possible way the FileReader implementers could
choose a solution that would suit every user of FileReader.

By throwing an exception, FileReader allows the calling
method to handle the error in wav is most annronriate for it.

Catch or specify requirement

Java requires that a method either catch or specify all
checked exceptions that can be thrown within the scope of
the method.

Catch - a method can catch an exception by providing an
exception handler for that type of exception.

Specify - if a method chooses not to catch an exception, the
method must specify that it can throw that exception.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Runtime and checked
exceptions

Runtime exceptions are those exceptions that occur within
the Java runtime system. This includes exceptions like:

«arithmetic exceptions (such as when dividing by zero)

*pointer exceptions (such as trying to access an object through a
null reference)

* indexing exceptions (such as attempting to access an array
element through an index that is too large or too small)

Runtime exceptions can occur anywhere in a program and in a
typical program can be very numerous. Thus the compiler does
not require that you catch or specify runtime exceptions, although
you can.

Checked exceptions are exceptions that are not runtime
exceptions and are checked by the compiler; the compiler checks
that these exceptions are caught or specified.

The finally block

public void writeList() {

PrintWriter out = null;

try {
out = new PrintWriter(new FileWriter("OutFile.txt")),
for (inti= 0;i<size; i++)
out.printin("Value at: "+ i+ " ="+ vector.elementAt(i)),

} catch (ArraylndexOutOfBoundsException e) {
System.err.printin("Caught ArraylndexOutOfBoundsException: " +
e.getMessage());

} catch (IOException e) {

System.err.printin("Caught IOException: " + e.getMessage()),
}finally { // (3 possible versions of runtime — only one close)
if (out = null) out.close(); } } }

Specifying the Exceptions
Thrown by a Method

Sometimes, it's appropriate for your code to catch exceptions that
can occur within it. In other cases, however, it's better to let a
method further up the call stack handle the exception.

To specify that method throws exceptions, you add a throws
clause to the method signature. The throws clause is composed of
the throws keyword followed by a comma-separated list of all the
exceptions thrown by that method. The throws clause goes after
the method name and argument list and before the curly bracket
that defines the scope of the method. Example:

public void writeList() throws IOException,
ArraylndexOutOfBoundsException {

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Choosing the exception type to
throw

You should write your own exception classes if you answer
"yes" to any of the following questions. Otherwise, you can use
java predefined exceptions:

* Do you need an exception type that isn't represented by those in
the Java development environment?

« Would it help your users if they could differentiate your
exceptions from those thrown by classes written by other
vendors?

* Does your code throw more than one related exception?

* If you use someone else's exceptions, will your users have
access to those exceptions? A similar question is: Should your
package be independent and self-contained?

Choosing the exception type to
throw(2)

Suppose you are writing a linked list class that you're planning to
distribute as freeware. Among other methods, your linked list
class supports these methods:

objectAt(int n) -Returns the object in the nth position in the list.
firstObject - Returns the first object in the list.

indexOf(Object n) - Searches the list for the specified Object and
returns its position in the list.

Your structure of exceptions should be like this:

{ LinkedlistException i

[ImvalidIndexException i { ObjectMotFoundException i

¢ EmptyListException i

Choosing the superclass

Java exceptions must be Throwable objects (they must be
instances of Throwable or a subclass of Throwable).

| Qb jact)
{ Throwable '

{ ExXception i
Erraor
;r) hﬁ [HuntmeE:::-:eptmn i

Choosing the superclass(2)

*Errors are reserved for serious hard errors that occur deep in the
system.

*You shouldn't subclass RuntimeException unless your class
really is a runtime exception.

*Generally you should subclass Exception.
Naming Conventions

It's good practice to append the word "Exception" to the end of all
classes that inherit (directly or indirectly) from the Exception class.
Similarly, classes that inherit from the Error class should end with
the string "Error".

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Choosing the superclass(3)

A method can detect and throw a RuntimeException when
it's encountered an error in the virtual machine runtime.
However, it's typically easier to just let the virtual machine
detect and throw it. Normally, the methods you write should
throw Exceptions, not RuntimeException.

« Similarly, you create a subclass of RuntimeException when
you are creating an error in the virtual machine runtime
(which you probably aren’t). Otherwise you should subclass
Exception.

* Do not throw a runtime exception or create a subclass of
RuntimeException simply because you don't want to be
bothered with specifying the exceptions your methods can
throw.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Implementing Exceptions

The simplest exception is:

class SimpleException extends Exception {}

But exceptions can be more complicated (and useful):

class MyException extends Exception {

private int i;

public MyException() {}

public MyException(String msg) {
super(msg); }

public MyException(String msg, int x) {
super(msg); i = x; }

public int val() { return i; } }

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Implementing Exceptions(2)
Usage of MyException:
public class ExtraFeatures {
public static void f() throws MyException {
System.out.printin("Throwing MyException from f()"),
throw new MyException(); }
public static void h() throws MyException {
System.out.printin("Throwing MyException from h()");
throw new MyException("Originated in h()", 47); }
public static void main(String[] args) {

try { f(); } catch(MyException e) { e.printStack Trace(System.err); }

try { h(); } catch(MyException e) { e.printStackTrace(System.err);
System.err.printin("e.val() = " + e.val()),

} } } Presented by Bartosz Sakowicz
DMCS TUL Lodz

Implementing Exceptions(3)
The output is:

Throwing MyException from f()
MyEXxception

at ExtraFeatures.f(ExtraFeatures.java:22)

at ExtraFeatures.main(ExtraFeatures.java:34)
Throwing MyException from h()
MyException: Originated in h()

at ExtraFeatures.h(ExtraFeatures.java:30)

at ExtraFeatures.main(ExtraFeatures.java:44)
e.val() = 47

Presented by Bartosz Sakowicz
DMCS TUL Lodz

System.out and System.err

System.err is better place to send error information than
System.out, which may be redirected.

If you send output to System.err it will not be redirected
along with System.out so the user is more likely to notice it.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Methods inherited from

Throwable

String getMessage()
String getLocalizedMessage()

Gets the detail message, or a message adjusted for this
particular locale.

String toString()

Returns a short description of the Throwable, including the
detail message if there is one.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Methods inherited from
Throwable(2)

void printStackTrace()
void printStack Trace(PrintStream)

void printStack Trace(PrintWriter)

Prints the Throwable and the Throwable’s call stack trace.
The call stack shows the sequence of method calls that
brought you to the point at which the exception was thrown.
The first version prints to standard error, the second and
third prints to a stream of your choice

Throwable filllnStackTrace()
Records information within this Throwable object about the
current state of the stack frames. Useful when an application

Is rethrowing an error or exception.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Exceptions - questions

Is there anything wrong with this exception handler as
written? Will this code compile?

} catch (Exception e) { ...
} catch (ArithmeticException a) { ... }

Answer

This first handler catches exceptions of type Exception;
therefore, it catches any exception, including
ArithmeticException. The second handler could never be
reached. This code will not compile.

Presented by Bartosz Sakowicz
DMCS TUL Lodz

Exceptions - questions(2)

second column.

. int[] A;
A[0] = 0;

. The Java VM starts running your program,
but the VM can’t find the Java platform
classes. (The Java platform classes
reside in classes.zip or rt.jar.)

. A program is reading a stream and
reaches the end of stream marker.

. Before closing the stream and after
reaching the end of stream marker, a
program tries to read the stream again.

ANSWers: a-3 b-1c-4 d-2

. Match each situation in the first column with an item in the

1. error

2. checked
exception

3. runtime
exception

4. no
exception

Presented by Bartosz Sakowicz
DMCS TUL Lodz

