Java
Input/Output (I/O)

Presented by Bartosz Sakowicz

Overview of 1/0O streams

To bring in information, a program opens a stream on an
information source (a file, memory, a socket) and reads the
information sequentially:

A stream

Source Nt og e

=

Similarly, a program can send information to an external
destination by opening a stream to a destination and writing the
information out sequentially:

A stream

Writes :
[Tl dest

(Y]

Overview of 1/0 streams(2)

The algorithms for sequentially reading and writing data are
basically the same:

Reading Writing

open a stream open a stream

while more information while more information
read information write information

close the stream close the stream

The java.io_package contains a collection of stream classes that
support these algorithms for reading and writing. To use these
classes, a program needs to import the java.io package.

Presented by Bartosz Sakowicz
DMCS TUL

Character streams

The stream classes are divided into two class hierarchies, based
on the data type (either characters or bytes) on which they
operate.

Reader and Writer are the abstract superclasses for character
streams in java.io. Reader provides the API and partial
iImplementation for readers--streams that read 16-bit characters--
and Writer provides the API and partial implementation for writers-
-streams that write 16-bit characters.

Most programs should use readers and writers to read and write
textual information. The reason is that they can handle any
character in the Unicode character set, whereas the byte streams
are limited to ISO-Latin-1 8-bit bytes.

Presented by Bartosz Sakowicz
DMCS TUL

Character streams(2)

—{f BufferedReader j}———{_ LineNumberReader -}

- CharArrayReader ﬁi

Input5treamReader 30— FileReader i
f: Reader j—_(-
—(FilterRedder H PushibackReadder }

| PipedReader ﬁ'

StringReader

—(: Bufferedwriter :)

— CharArraviwriter i.
QOuputStreamBeader — FileWwriter i
.:': Writer :',—_(: b

—I’: Filterwritcer }

—. Pipedidriter i

— Stringwriter i
—(: FilterWriter :J

Byte streams

To read and write 8-bit bytes, programs should use the byte
streams, descendants of InputStream and OutputStream .

InputStream and OutputStream provide the API and partial
implementation for input streams (streams that read 8-bit bytes)
and output streams (streams that write 8-bit bytes). These
streams are typically used to read and write binary data such as
Images and sounds.

Two of the byte stream classes, ObjectinputStream and
ObjectOutputStream, are used for object serialization.

Presented by Bartosz Sakowicz
DMCS TUL

Byte streams(2)

— FileInputhtream '

{L1neHumberInpur5tream :}
- PipedInputhtrean i

_-;: DAartdInpuct3iTredn j-

—(- FilterInputStrean _:}

_-:C BufferedInputStrean }

—(ByteArraylnputstrean)_{PUEHI::acl-:IrmLJtStream)

—(-E:EQUEHEEIHFIUtStFEElm)

—{ StringBufferInputstrean i

—C ObjectInputhtrean :':-

—{ FileQutputStream ﬂ"'
— PipeddutputStrean ' —{: Datalutputstream J'

_IC FilterDutputStrean ::,__{ BufferedoutputStream j-

— BytedrrayOutputsStreanm ﬂ'—{- Frintstream -::'

—(ObjectOutputStrean -j-

@npuﬂtreamj—

@utputS‘t rean ;)—

The 1/0 superclasses

Reader and InputStream define similar APIs but for different data
types. For example, Reader contains these methods for reading
characters and arrays of characters:

int read()
int read(char cbuf[])
int read(char cbufl], int offset, int length)

InputStream defines the same methods but for reading bytes and
arrays of bytes:

int read()
int read(byte cbuf]])
int read(byte cbuf[], int offset, int length)

Both streams provide methods for marking a location in the
stream, skipping input, and resetting the current position.

The 1/O superclasses (2)

Writer and OutputStream are similarly parallel. Writer defines
these methods for writing characters and arrays of characters:

int write(int c)

int write(char cbuf]])

int write(char cbuf[], int offset, int length)

And OutputStream defines the same methods but for bytes:
int write(int c)

int write(byte cbuf]])

int write(byte cbuf{], int offset, int length)

All of the streams are automatically opened when created. You
can close any stream explicitly by calling its close method or the
garbage collector can implicitly close it, which occurs when the
object is no longer referenced.

/0 streams - memory
CharArrayReader CharArrayWriter

ByteArraylnputStream ByteArrayOutputStream

Use these streams to read from and write to memory. You create
these streams on an existing array and then use the read and
write methods to read from or write to the array.

StringReader StringWriter
StringBufferinputStream

Use StringReader to read characters from a String in memory.
Use StringWriter to write to a String. String\Writer collects the
characters written to it in a StringBuffer, which can then be
converted to a String.

StringBufferlnputStream is similar to StringReader, except that it
reads bytes from a StringBuffer.

Presented by Bartosz Sakowicz
DMCS TUL

1/0 streams - pipe and file

PipedReader PipedWriter
PipedinputStream PipedOutputStream

Implement the input and output components of a pipe. Pipes are
used to channel the output from one thread into the input of
another.

FileReader FileWriter
FilelInputStream FileOutputStream

Collectively called file streams, these streams are used to read
from or write to a file on the native file system.

Presented by Bartosz Sakowicz
DMCS TUL

1/0 streams - concatenation and
serialization

SequencelnputStream

Concatenates multiple input streams into one input stream.

ObjectinputStreamObjectOutputStream

Used to serialize objects.

Presented by Bartosz Sakowicz
DMCS TUL

1/0 streams - counting and
peeking ahead

LineNumberReader LineNumberinputStream

Keeps track of line numbers while reading.

PushbackReader PushbackinputStream

These input streams each have a pushback buffer. When reading
data from a stream, it is sometimes useful to peek at the next few
bytes or characters in the stream to decide what to do next.

Presented by Bartosz Sakowicz
DMCS TUL

/0 streams - printing and
buffering

PrintWriter PrintStream

Contain convenient printing methods. These are the easiest
streams to write to, so you will often see other writable streams
wrapped in one of these.

BufferedReader BufferedWriter
BufferedinputStream BufferedOutputStream

Buffer data while reading or writing, thereby reducing the number
of accesses required on the original data source. Buffered
streams are typically more efficient than similar nonbuffered
streams and are often used with other streams.

Presented by Bartosz Sakowicz
DMCS TUL

1/0 streams - filtering

FilterReader FilterWriter
FilterInputStream FilterOutputStream

These abstract classes define the interface for filter streams,
which filter data as it's being read or written.

Presented by Bartosz Sakowicz
DMCS TUL

/0 streams - converting

betweeng bytes and characters
InputStreamReader OutputStreamWriter

A reader and writer pair that forms the bridge between byte
streams and character streams.

An InputStreamReader reads bytes from an InputStream and
converts them to characters, using the default character encoding
or a character encoding specified by name.

An OutputStreamWriter converts characters to bytes, using the
default character encoding or a character encoding specified by
name and then writes those bytes to an OutputStream.

You can get the name of the default character encoding by calling
System.getProperty("file.encoding”).

Presented by Bartosz Sakowicz
DMCS TUL

Using file streams
import java.io.*;
public class Copy {
public static void main(String[] args) throws IOException {
File inputFile = new File("in.txt");
File outputFile = new File("out.txt");
FileReader in = new FileReader(inputFile),
FileWriter out = new FileWriter(outputFile),
int c;
while ((c = in.read()) = -1) out.write(c),
in.close(); out.close(),

} } // COpying byteS by analogy Presented by Bartosz Sakowicz

DMCS TUL

Concatenating files
import java.io.”;
public class Concatenate {
public static void main(String[] args) throws IOException {

ListOfFiles mylist = new ListOfFiles(args),
SequencelnputStream s = new
SequencelnputStream(mylist);

int c;
while ((c = s.read()) I=-1) System.out.write(c),
s.close();

) //ListOfFiles implements Enumeration.

// nextElement() returns FilelnputStream

Presented by Bartosz Sakowicz
DMCS TUL

Using filtering streams

* The java.io package provides a set of abstract classes that
define and partially implement filter streams.

* A filter stream filters data as it's being read from or written to the
stream.

* A filter stream is constructed on another stream (the underlying
stream).

* The read method in a readable filter stream reads input from the
underlying stream, filters it, and passes on the filtered data to the
caller. The write method in a writable filter stream filters the data
and then writes it to the underlying stream. The filtering done by
the streams depends on the stream. Some streams buffer the
data, some count data as it goes by, and others convert data to
another form.

Presented by Bartosz Sakowicz
DMCS TUL

DatalnputStream and

DataOutputStream example
public class DatalODemo {

public static void main(String[] args) throws IOException {
DataOutputStream out = new DataOutputStream(new
FileOutputStream("invoice1.txt"));
double[] prices = { 19.99, 9.99, 15.99 };
int[] units = {12, 8, 13},
String[] descs = { "Java T-shirt", "Java Mug”, "Java Pin" },

Presented by Bartosz Sakowicz
DMCS TUL

Data ... example(2)
for (int i = 0; i < prices.length; i ++) {
out.writeDouble(prices[i]); out.writeChar(\t'),
out.writelnt(unitsfi]), out.writeChar('\t');
out.writeChars(descs[i]); out.writeChar(\n'),

/

out.close();

/* In the invoice1.txt should be:
19.99 12 Java T-shirt
9.99 8 Java Mug

15 99 13 Ja va Pin */ Presented by Bartosz Sakowicz
DMCS TUL

Data ... example(3)

// read it in again
DatalnputStream in = new DatalnputStream(new

FilelnputStream("invoice1.txt"));

double price;

int unit;
StringBuffer desc;
double total = 0.0;

Presented by Bartosz Sakowicz
DMCS TUL

Data ... example(4)
iry {
while (true) {
price = in.readDouble();
in.readChar(); //throws out the tab
unit = in.readint();
in.readChar(); //throws out the tab

char chr;

desc = new StringBuffer(20),

char lineSep =
System.getProperty("line.separator").charAt(0);

Presented by Bartosz Sakowicz

DMCS TUL

Data ... example(5)
while ((chr = in.readChar()) I= lineSep)

desc.append(chr);
System.out.printin("You've ordered " +
unit + " units of " +
desc + "at $" + price);
total = total + unit * price;
}
} catch (EOFExceptione){ }
System.out.printin("For a TOTAL of: $" + total);

in.close();

} } Presented by Bartosz Sakowicz
DMCS TUL

Data ... example(6)
The output should be:

You've ordered 12 units of Java T-shirt at $19.99
You've ordered 8 units of Java Mug at $9.99
You've ordered 13 units of Duke Juggling Dolls at $15.99

For a TOTAL of: $500,97

Presented by Bartosz Sakowicz
DMCS TUL

Writing filtering streams

. Create a subclass of FilterInputStream and
FilterOutputStream. Input and output streams often come in
pairs, so it's likely that you will need to create both input and
output versions of your filter stream.

. Override the read and write methods, if you need to.
. Provide any new methods.

. Make sure that the input and output streams work together.

Presented by Bartosz Sakowicz
DMCS TUL

Object serialization

Reading and writing objects is a process called object
serialization.The key to writing an object is to represent its
state in a serialized form sufficient to reconstruct the object as
it is read. Object serialization is essential to building all but the
most transient applications. You can use object serialization in
the following ways:

Remote Method Invocation (RMI) - communication between
objects via sockets

Lightweight persistence - the archival of an object for use in a
later invocation of the same program.

Presented by Bartosz Sakowicz
DMCS TUL

Writing to an
ObjectOutputStream

Example:

FileOutputStream out = new FileOutputStream("the Time");
ObjectOutputStream s = new ObjectOutputStream(out);
s.writeObject("Today");

s.writeObject(new Date());

S.flush();

Presented by Bartosz Sakowicz
DMCS TUL

Writing to an
ObjectOutputStream(2)

ObjectOutputStream must be constructed on another
stream.

ObjectOutputStream implements the DataOutput interface
that defines many methods for writing primitive data types,
such as writelnt, writeFloat, or writeUTF.

The writeObject method throws a NotSerializableException
If it's given an object that is not serializable.

An object is serializable only if its class implements
the Serializable interface.

Presented by Bartosz Sakowicz
DMCS TUL

Reading from
ObjectinputStream

Once you've written objects and primitive data types to a

stream, you can read them out again and reconstruct the
objects:

FilelnputStream in = new FilelnputStream("the Time"),
ObjectinputStream s = new ObjectinputStream(in),
String today = (String)s.readObject();

Date date = (Date)s.readObject();

Presented by Bartosz Sakowicz
DMCS TUL

Reading from
ObjectinputStream(2)

ObjectinputStream must be constructed on another stream.

In previous example, the objects were archived in a file, so
the code constructs an ObjectlnputStream on a
FilelnputStream. Next, the code uses ObjectinputStream's
readObject method to read the String and the Date objects
from the file.

The objects must be read from the stream in the same
order in which they were written.

The return value from readObject is an object that is cast to
and assigned to a specific type.

ObjectinputStream stream implements the Datalnput
interface that defines methods for reading primitive data types

Presented by Bartosz™Sakowicz
(analogous to DataOutput Interface). AMCS TUL

Providing serialization for a
class

Complete definition of the Serializable interface:
package java.io,

public interface Serializable { },

Making instances of your classes serializable is:

public class MyClass implements Serializable { ... }

Presented by Bartosz Sakowicz
DMCS TUL

Providing serialization for a
class(2)

You don't have to write any methods. The serialization of
Instances of this class are handled by the defaultWriteObject
method of ObjectOutputStream. This method automatically
writes out everything required to reconstruct an instance of the
class, including the following:

Class of the object
Class signature

Values of all non-transient and non-static members, including
members that refer to other objects

You can deserialize any instance of the class with the
defaultReadObject method in ObjectinputStream. For many
classes, this default behavior is good enough.

Presented by Bartosz Sakowicz
DMCS TUL

Customing serialization

You can customize serialization for your classes by providing
two methods for it: writeObject and readObject.

The writeObject method controls what information is saved

and is typically used to append additional information to the
stream.

The readObject method either reads the information written by
the corresponding writeObject method or can be used to
update the state of the object after it has been restored.

Presented by Bartosz Sakowicz
DMCS TUL

Customing serialization(2)

The writeObject and readObject methods must be declared
exactly as shown:

private void write Object(ObjectOutputStream s) throws
IOException {

S.defaultWrite Object();
// customized serialization code }

The readObject method must read in everything written by
writeObject in the same order in which it was written:

private void readObject(ObjectinputStream s) throws
IOException {

s.defaultReadObject();

// customized deserialization code }

Presented by Bartosz Sakowicz
DMCS TUL

File and StreamTokenizer

File class

Represents a file on the native file system. You can create
a File object for a file on the native file system and then
qguery the object for information about that file, such as its
full path name.

StreamTokenizer class

Breaks the contents of a stream into tokens. Tokens are
the smallest unit recognized by a text-parsing algorithm
(such as words, symbols, and so on). A StreamTokenizer
object can be used to parse any text file. For example, you
could use it to parse a source file into variable names,
operators, and so on, or to parse an HTML file into HTML
tags. Similar class is StringTokenizer.

Presented by Bartosz Sakowicz
DMCS TUL

