Java

Collections

Presented by Bartosz Sakowicz

Overview

A collection (sometimes called a container) is simply an
object that groups multiple elements into a single unit.

Collections are used to store, retrieve and manipulate data,
and to transmit data from one method to another.

Collections typically represent data items that form a
natural group, like a poker hand (a collection of cards), a mail
folder (a collection of letters), or a telephone directory (a
collection of name-to-phone-number mappings).

Presented by Bartosz Sakowicz
DMCS TUL

Collections framework

A collections framework is a unified architecture for
representing and manipulating collections. All collections
frameworks contain three things:

Interfaces: abstract data types representing collections.
Interfaces allow collections to be manipulated independently of
the details of their representation.

Implementations: concrete implementations of the collection
Interfaces.

Algorithms: methods that perform useful computations, like
searching and sorting, on objects that implement collection
Interfaces.

Presented by Bartosz Sakowicz
DMCS TUL

Core collections interfaces

The core collection interfaces are the interfaces used to
manipulate collections, and to pass them from one method to
another. The basic purpose of these interfaces is to allow

collections to be manipulated independently of the details of
their representation:

edset

o M Presented by Bartosz Sakowicz
5 i DMCS TUL

The Collection interface

A Collection represents a group of objects, known as its
elements. The primary use of the Collection interface is to
pass around collections of objects where maximum generality
Is desired. The Collection interface is shown below:

public interface Collection {
int size(),
boolean isEmpty();
boolean contains(Object element),
boolean add(Object element);
boolean remove(Object element);

Iterator iterator();

Presented by Bartosz Sakowicz
DMCS TUL

The Collection interface(2)

boolean containsAll(Collection c);
boolean addAll(Collection c);
boolean removeAll(Collection c),
boolean retainAll(Collection c);

// Removes from the target Collection all of its elements that
are not also contained in the specified Collection.

void clear();
Object|] toArray();
Object|] toArray(Object a[]); }

Presented by Bartosz Sakowicz
DMCS TUL

Iterator

lterator is very similar to an Enumeration , but allows the caller
to remove elements from the underlying collection during the
iteration with well-defined semantics.

The lterator interface is shown below:
public interface Iterator {

boolean hasNext(),

Object next();

void remove();

Presented by Bartosz Sakowicz
DMCS TUL

Iterator - example

static void filter(Collection c) {
for (Iterator i = c.iterator(); i.hasNext();)
iIf ('lcond(i.next()))
l.remove();
} [IAnother example:
java.util.Map result; //Creation somwhere else...
If (result!=null) {
java.util.lterator i=result.entrySet().iterator();
while(i.hasNext()) {
java.util.Map.Entry entry=(java.util. Map.Entry)i.next();
debug(entry.getKey()+" => "+entry. GEHRFAIGE(Y3 pakowicz

DMCS TUL

The Set Interface

A Set is a Collection that cannot contain duplicate elements.
Set models the mathematical set abstraction. The Set interface
extends Collection and contains no methods other than those
Inherited from Collection. It adds the restriction that duplicate
elements are prohibited. Two Set objects are equal if they
contain the same elements.

Usage of Set example:

Suppose you have a Collection, ¢, and you want to create
another Collection containing the same elements, but with all
duplicates eliminated. The following one-liner does the trick:

Collection noDups = new HashSet(c),

Presented by Bartosz Sakowicz
DMCS TUL

The Set Interface usage
example

import java.util.”;
public class FindDups {
public static void main(String args[]) {
Set s = new HashSet(),
for (int i=0; i<args.length; i++)
if (!s.add(args[i]))
System.out.printin("Duplicate detected: "+args[i]);

System.out.printin(s.size()+" distinct words detected: "+s);

}

Presented by Bartosz Sakowicz
DMCS TUL

The List Interface

A List is an ordered Collection (sometimes called a sequence).
Lists may contain duplicate elements.

The JDK contains two general-purpose List implementations.
ArrayList , which is generally the best-performing
iImplementation, and LinkedList which offers better
performance under certain circumstances.

Two List objects are equal if they contain the same elements in
the same order.

Presented by Bartosz Sakowicz
DMCS TUL

The List Interface(2)

public interface List extends Collection {
Object get(int index);
Object set(int index, Object element);
void add(int index, Object element);
Object remove(int index);
abstract boolean addAll(int index, Collection c);
int indexOf(Object 0);
int lastindexOf(Object o);
Listlterator listlterator();
Listlterator listlterator(int index);

List SUbLiSt(int from, Int tO), } Presented by Bartosz Sakowicz
DMCS TUL

The Map Interface

A Map is an object that maps keys to values. A map cannot
contain duplicate keys: Each key can map to at most one
value. Two Map objects are equal if they represent the same
key-value mappings.

The most useful methods:

Object put(Object key, Object value);
Object get(Object key);

Object remove(Object key),

boolean containsKey(Object key);
boolean containsValue(Object value),
public Set keySet();

pUbliC CO”eCtiOn Values(); Presented by Bartosz Sakowicz
DMCS TUL

Object ordering

If the list consists of String elements, it will be sorted into
lexicographic (alphabetical) order. If it consists of Date
elements, it will be sorted into chronological order.

String and Date both implement the Comparable interface.
The Comparable interfaces provides a natural ordering for a
class, which allows objects of that class to be sorted
automatically.

If you try to sort a list whose elements do not implement
Comparable, Collections.sort(list) will throw a
ClassCastException .

If you try to sort a list whose elements cannot be compared to
one another, Collections.sort will throw a ClassCastException.

Presented by Bartosz Sakowicz
DMCS TUL

The Comparable Interface

The Comparable interface consists of a single method:

public interface Comparable {

public int compareTo(Object 0);
/

The compareTo method compares the receiving object with
the specified object, and returns a negative integer, zero, or a

positive integer as the receiving object is less than, equal to, or
greater than the specified Obiject.

If the specified object cannot be compared to the receiving
object, the method throws a ClassCastException.

Presented by Bartosz Sakowicz

DMCS TUL

The Comparator Interface

A Comparator is an object that encapsulates an ordering. Like
the Comparable interface, the Comparator interface consists of
a single method:

public interface Comparator {

iInt compare(Object 01, Object 02);
}

The compare method compares its two arguments, returning a
negative integer, zero, or a positive integer as the first
argument is less than, equal to, or greater than the second.

If either of the arguments has an inappropriate type for the
Comparator, the compare method throws a
ClassCastException.

Presented by Bartosz Sakowicz
DMCS TUL

SortedSet and SortedMap

A SortedSet is a Set that maintains its elements in ascending
order, sorted according to the elements natural order, or

according to a Comparator provided at SortedSet creation
time.

A SortedMap is a Map that maintains its entries in ascending
order, sorted according to the keys natural order, or according
to a Comparator provided at SortedMap creation time.

Presented by Bartosz Sakowicz
DMCS TUL

Implementations

JDK provides two implementations of each interface (with the
exception of Collection).

All implementations permit null elements, keys and values.
All are Serializable, and all support a public clone method.
Each one is unsynchronized.

If you need a synchronized collection, the synchronization
wrappers allow any collection to be transformed into a
synchronized collection.

Presented by Bartosz Sakowicz
DMCS TUL

HashSet and TreeSet

The two general purpose Set implementations are HashSet
and TreeSet .

HashSet is much faster but offers no ordering guarantees.
If in-order iteration is important use TreeSet.

lteration in HashSet is linear in the sum of the number of
entries and the capacity. It's important to choose an
appropriate initial capacity if iteration performance is important.
The default initial capacity is 101. The initial capacity may be
specified using the int constructor. To allocate a HashSet
whose initial capacity is 17:

Set s= new HashSet(17),

Presented by Bartosz Sakowicz
DMCS TUL

ArraylList and LinkedLlist

The two general purpose List implementations are ArrayList
and LinkedList . ArrayList offers constant time positional
access, and it's just plain fast, because it does not have to
allocate a node object for each element in the List, and it can
take advantage of the native method System.arraycopy when
It has to move multiple elements at once.

If you frequently add elements to the beginning of the List, or
iterate over the List deleting elements from its interior, you
might want to consider LinkedList. These operations are
constant time in a LinkedList but linear time in an ArrayList.
Positional access is linear time in a LinkedList and constant
time in an ArrayList.

Presented by Bartosz Sakowicz
DMCS TUL

HashMap and TreeMap

The two general purpose Map implementations are HashMap
and TreeMap .

The situation for Map is exactly analogous to Set.

If you need SortedMap operations you should use TreeMap;
otherwise, use HashMap.

Presented by Bartosz Sakowicz
DMCS TUL

Synchronization wrappers

The synchronization wrappers add automatic
synchronization (thread-safety) to an arbitrary collection. There
Is one static factory method for each of the six core collection
Interfaces:

public static Collection synchronizedCollection(Collection c),
public static Set synchronizedSet(Set s);

public static List synchronizedList(List list),

public static Map synchronizedMap(Map m);

public static SortedSet synchronizedSortedSet(SortedSet s);
public static SortedMap synchronizedSortedMap(SortedMap m);

Each of these methods returns a synchronized (thread-safe)
Collection backed by the specified collection.

Presented by Bartosz Sakowicz
DMCS TUL

Unmodifiable wrappers

Unmodifiable wrappers take away the ability to modify the
collection, by intercepting all of the operations that would
modify the collection, and throwing an
UnsupportedOperationException. The unmodifiable
wrappers have two main uses:

To make a collection immutable once it has been built.

To allow "second-class citizens" read-only access to your data
structures. You keep a reference to the backing collection, but
hand out a reference to the wrapper. In this way, the second-
class citizens can look but not touch, while you maintain full
access.

Presented by Bartosz Sakowicz
DMCS TUL

Unmodifiable wrappers(2)

There is one static factory method for each of the six core
collection interfaces:

public static Collection unmodifiableCollection(Collection c);
public static Set unmodifiableSet(Set s),

public static List unmodifiableList(List list);

public static Map unmodifiableMap(Map m),

public static SortedSet unmodifiableSortedSet(SortedSet s),
public static SortedMap unmodifiableSortedMap(SortedMap m);

Presented by Bartosz Sakowicz
DMCS TUL

Java 1.0/1.1 containers

A lot of code was written using the Java 1.0/1.1 containers,
and even new code 1s sometimes written using these classes.
So although you should never use the old containers when
writing new code, you’ll still need to be aware of them. Here
are older container classes:

Vector (~=ArraylList)
Enumeration (~= Iterator)
Hashtable (~=HashMap)
Stack (~=LinkedList)

All of them are synchronized (and slower).

Presented by Bartosz Sakowicz
DMCS TUL

