Java

Remote Method Invocation(RMiI)

Presented by Bartosz Sakowicz

Overview

The Java Remote Method Invocation (RMI) system allows an
object running in one Java Virtual Machine (VM) to invoke
methods on an object running in another Java VM.

RMI provides for remote communication between programs
written in the Java programming language.

The RMI architecture is based on one important principle: the
definition of behavior and the implementation of that
behavior are separate concepts.

RMI allows the code that defines the behavior and the code
that implements the behavior to remain separate and to run on
separate JVMs.

Presented by Bartosz Sakowicz
DMCS TUL

RMI architecture

Interfaces define behavior and classes define

implementation:

Client Prograrm

Interface

F 1

-,

|
System

" =,
Server Progratm

lmplementation
&

. A

Presented by Bartosz Sakowicz
DMCS TUL

RMI architecture(2)

zlrterface:s
Sarvice

g Cliezrﬁ__,—/ A 4 \-__E‘{Ejver K
SEFVICE SEFVICE
Promy % Implementation
bl
Ilrllﬂagh:ll
. / . ,f

RMI supports two classes that implement the same interface. The
first class is the implementation of the behavior, and it runs on the
server. The second class acts as a proxy for the remote service
and it runs on the client.

Presented by Bartosz Sakowicz
DMCS TUL

Stub and Skeleton

ginterface:
=ubject
+r-3|::|l_.4-33t[j|
FealSubject Proxy
N real=ubject
+requestl] +request(]

RMI uses the Proxy design pattern. The stub class plays the
role of the proxy, and the remote service implementation class
plays the role of the RealSubject. Skeleton is analogous class on
the server side (obsolote until java 1.2).

Presented by Bartosz Sakowicz
DMCS TUL

Stub

When a stub’s method is invoked, it does the following:

e initiates a connection with the remote JVM containing the remote
object,

e marshals (writes and transmits) the parameters to the remote
JVM,

» waits for the result of the method invocation,

e unmarshals (reads) the return value or exception returned, and
returns the value to the caller.

Presented by Bartosz Sakowicz
DMCS TUL

Skeleton

When a skeleton receives an incoming method invocation it does
the following:

e unmarshals (reads) the parameters for the remote method,

* invokes the method on the actual remote object implementation,
and marshals (writes and transmits) the result (return value or
exception) to the caller.

In the Java 2 SDK, Standard Edition, v1.2 an additional stub
protocol was introduced that eliminates the need for skeletons in
Java 2 platform-only environments. Instead, generic code is used
to carry out the duties performed by skeletons in JDK1.1.

Presented by Bartosz Sakowicz
DMCS TUL

Distributed Applications

Distributed object applications need to:

Locate remote objects: Applications can use one of two
mechanisms to obtain references to remote objects. An
application can register its remote objects with RMI's simple
naming facility, the rmiregistry, or the application can pass and
return remote object references as part of its normal operation.

Communicate with remote objects: Details of
communication between remote objects are handled by RMI,
to the programmer, remote communication looks like a
standard Java method invocation.

Load class bytecodes for objects that are passed around.
Because RMI allows a caller to pass objects to remote objects,
RMI provides the necessary mechanisms for loading an
object's code, as well as for transmitting its data.

Presented by Bartosz Sakowicz
DMCS TUL

Distributed Applications(2)

RMI can use any URL protocol(supported by Java) to provide
communication:

registry)
. URL
- protocol
client :
— RMI O server |
URL “~. | .- !

- |

protocol -7 -

-
-

G-.reh seweaA ' L ‘@eh sewea

Presented by Bartosz Sakowicz
DMCS TUL

RMI classes and Interfaces

fnferfaces Classes

E Remote }----h@ﬂ"l"ﬂfﬂ[lbit—@ (_ O Excaption _jl

@Emctnﬂn'-xn:} Iiﬂr:'rn'.ﬂ: Exce :ti-:rBl

Iiﬂnti vatab r_?j} Iil._.n castRe mnmlil-tn_nf:EJ

—= axtension
- - -4 implementation

Presented by Bartosz Sakowicz
DMCS TUL

RemoteException

The java.rmi.RemoteException class is the superclass of
exceptionsthrown by the RMI runtime during a remote method
Invocation.

The exception java.rmi.RemoteException is thrown when a
remotemethod invocation fails for some reason. Some reasons for
remote method invocation failure include:

e Communication failure (the remote server is unreachable or is
refusing

connections; the connection is closed by the server, etc.)

 Failure during parameter or return value marshalling or
unmarshalling

* Protocol errors

The class RemoteException is a checked exception.

Presented by Bartosz Sakowicz
DMCS TUL

UnicastRemoteObject and
Activatable

The java.rmi.server.UnicastRemoteObject class defines a
singleton(unicast) remote object whose references are valid only
while the server process is alive.

The class java.rmi.activation.Activatable is an abstract class
that defines an activatable remote object that starts executing
when its remote methods are invoked and can shut itself down
when necessary.

Presented by Bartosz Sakowicz
DMCS TUL

Passing parameters

An argument to, or a return value from, a remote object can be
any object that is serializable. This includes primitive types,
remote objects, and non-remote objects that implement the
java.io.Serializable interface.

Passing Non-remote Objects

A non-remote object, that is passed as a parameter of a remote
method invocation or returned as a result of a remote method
Invocation, is passed by copy; that is, the object is serialized
using the object serialization mechanism of the Java platform.

Passing Remote Objects

When passing an exported remote object as a parameter or return
value in a remote method call, the stub for that remote object is
passed instead.

Presented by Bartosz Sakowicz
DMCS TUL

Threads in RMI

A method dispatched by the RMI runtime to a remote object
Implementation may or may not execute in a separate thread.

The RMI runtime makes noguarantees with respect to mapping
remote object invocations to threads.

Since remote method invocation on the same remote object may
execute concurrently, a remote object implementation needs to
make sure its implementation is thread-safe.

Presented by Bartosz Sakowicz
DMCS TUL

Designing distributed
application components

Defining the remote interfaces: A remote interface specifies
the methods that can be invoked remotely by a client.

Implementing the remote objects: Remote objects must
Implement one or more remote interfaces. The remote object
class may include implementations of other interfaces (either
local or remote) and other methods (which are available only
locally).

Implementing the clients: Clients that use remote objects
can be implemented at any time after the remote interfaces are
defined, including after the remote objects have been
deployed.

Presented by Bartosz Sakowicz
DMCS TUL

Remote interface

. The remote interface must be public (it cannot have “package
access,”). Otherwise, a client will get an error when attempting
to load a remote object that implements the remote interface.

. The remote interface must extend the interface

java.rmi.Remote.

. Each method in the remote interface must declare

java.rmi.RemoteException in its throws clause in addition to
any application-specific exceptions.

. A remote object passed as an argument or return value (either
directly or embedded within a local object) must be declared
as the remote interface, not the implementation class.

Presented by Bartosz Sakowicz
DMCS TUL

Remote interface(2)

Example:

import java.rmi.”;
public interface PerfectTimel extends Remote {

long getPerfectTime() throws RemoteException;

Presented by Bartosz Sakowicz
DMCS TUL

Implementing the remote
interface

The server must contain a class that extends
UnicastRemoteObject and implements the remote interface. This
class can also have additional methods, but only the methods in
the remote interface are available to the client.

You must explicitly define the constructor for the remote object
even if you're only defining a default constructor that calls the
base-class constructor. You must write it out since it must throw
RemoteException.

Presented by Bartosz Sakowicz
DMCS TUL

Implementing the remote
interface(2)

Main steps with server implementation:

1.

Create and install a security manager that supports RMI. The
only one available for RMI as part of the Java distribution is
RMISecurityManager.

Create one or more instances of a remote object.

Register at least one of the remote objects with the RMI
remote object registry.

Presented by Bartosz Sakowicz
DMCS TUL

Implementing the remote
interface(3)
Example:
import java.rmi.”;
Import java.rmi.server.”
Import java.rmi.registry.”;
import java.net.”;

public class PerfectTime extends UnicastRemoteObject
implements PerfectTimel {

public long getPerfectTime() throws RemoteException {
return System.currentTimeMillis(); }

public PerfectTime() throws RemoteExcer%z;lgtlgd éy é

artosz Sakowicz
DMCS TUL

Implementing the remote
interface(4)

public static void main(String[] args) throws Exception {
System.setSecurityManager(

new RMISecurityManager()); // source of problems
PerfectTime pt = new PerfectTime(),

Naming.bind("//localhost:2005/PerfectTime", pt);
// or rebind

System.out.printin("Ready to do time"),

Presented by Bartosz Sakowicz
DMCS TUL

Setting up the registry

The name of the registry server is rmiregistry.To start it in the
background process write:

start rmiregistry (Win 32)
rmiregistry & (Unix)

The default port is 1099. If you want it to be at some other port,
you add an argument on the command line to specify the port:

rmiregistry 2005 &

Presented by Bartosz Sakowicz
DMCS TUL

Setting up the registry(2)

The name for the service is arbitrary.The important thing is that
It's a unique name in the registry that the client knows to look for
to procure the remote object. If the name is already in the registry,
you'll get an AlreadyBoundException (use rebind method).

You aren’t forced to start up rmiregistry as an external process. If
you know that your application is the only one that's going to use
the registry, you can start it up inside your program with the line:

LocateRegistry.createRegistry(2005);

Presented by Bartosz Sakowicz
DMCS TUL

Creating stubs and skeletons

All of the Remote interfaces and classes should be compiled
using javac. Once this has been completed, the stubs and
skeletons for the Remote interfaces should be compiled by using
the rmic stub compiler:

rmic PerfectTime // without extension: ".java"” !

The only problem one might encounter with this command is that
rmic might not be able to find the files Hello.class and
Hellolnterface.class even though they are in the same directory
where rmic is being executed. If this happens try setting the
CLASSPATH environment variable to the current directory.

Presented by Bartosz Sakowicz
DMCS TUL

Using the remote objects

Example:

import java.rmi.”;

Import java.rmi.registry.”;

public class DisplayPerfectTime {

public static void main(String[] args) throws Exception {

System.setSecurityManager(new RMISecurityManager());

PerfectTimel t = (PerfectTimel)
Naming.lookup("//peppy:2005/PerfectTime”);
// cast to interface, not the class !

System.out.printin("Perfect time = " + t.getPerfectTime()),

} Presented by Bartosz Sakowicz
DMCS TUL

RMI client-side callbacks

In many architectures, a server may need to make a remote call to
a client. Examples include progress feedback, time tick
notifications, warnings of problems, etc.

To accomplish this, a client must also act as an RMI server. It
may be impractical for a client to extend UnicastRemoteQObiject. In
these cases, a remote object may prepare itself for remote use by
calling the static method:

UnicastRemoteObject.exportObject (<remote object>)

Presented by Bartosz Sakowicz
DMCS TUL

Security problems

One of the most common problems one encounters with RMI is a
failure due to security constraints. If the current security policy
does not allow to connect to some host and port, then the call
throws an exception. This usually causes your program to
terminate with a message such as:

Java.security.AccessControlException: access denied
(java.net.SocketPermission 127.0.0.1:1099 connect,resolve)

Presented by Bartosz Sakowicz
DMCS TUL

Security problems(2)

There are several ways to modify the security policy of a program.
The simplest technique is to define a subclass of SecurityManager
and to call System.setSecurityManager on an object of this
subclass. In the definition of this subclass, you should override
those check methods for which you want a different policy. For
example:

System.setSecurityManager (new RMISecurityManager() {
public void checkConnect (String host, int port) {}
public void checkConnect (String host, int port, Object context) {}

)

Presented by Bartosz Sakowicz
DMCS TUL

Security problems(3)

The second way to grant additional permissions is to specify them
In a policy file and then request that they be loaded using options
such as the following:

Jjava -Djava.security.manager -Djava.security.policy=policy-file
MyClass

Presented by Bartosz Sakowicz
DMCS TUL

Advanced topics

* Firewalls (HTTP) - usage of HTTP servers
http.//<host>:<port>/
http.//<host>:80/cgi-bin/java-rmi?forward=<port>

* Activation protocol - possible to make remote activation

* Distributed Garbage Collecting

Presented by Bartosz Sakowicz
DMCS TUL

