
„Generics and collections”

Generics and collections

Generics

• From JDK 1.5.0

• They are similar to C++ templates

• They allow to eliminate runtime exceptions related to improper

casting (ClassCastException)

Generics and collections

Traditional approach

public class Box {

private Object object;

public void add(Object object) {

this.object = object;

}

public Object get() {

return object; }

}

public class BoxDemo1 {

public static void main(String[] args) {

// Box for integers (?)

Box integerBox = new Box();

integerBox.add(new Integer(10));

// we are casting to Integer. Why?

Integer someInteger =

(Integer)integerBox.get();

System.out.println(someInteger);

} }

Generics and collections

Traditional approach (2)

public class BoxDemo2 {

public static void main(String[] args) {

// Box for integers (?)

Box integerBox = new Box();

// In large application modified by one programmer:

integerBox.add("10"); // note how the type is now String

// And in the second written by a different programmer

// Checked exception or runtime exception ?

Integer someInteger = (Integer)integerBox.get();

System.out.println(someInteger);

}

}

Generics and collections

public class Box<T> {

private T t;

// T stands for "Type"

public void add(T t) {

this.t = t;

}

public T get() {

return t;

}

}

public class BoxDemo3 {

public static void main(String[] args) {

Box<Integer> integerBox = new

Box<Integer>();

integerBox.add(new Integer(10));

Integer someInteger = integerBox.get();

// no cast!

System.out.println(someInteger);

} }

Generics approach

Generics and collections

Generics approach (2)

In case of adding an incompatible type to the box:

BoxDemo3.java:5: add(java.lang.Integer) in Box<java.lang.Integer>

cannot be applied to (java.lang.String)

integerBox.add("10");

^

1 error

Generics and collections

The Diamond

From Java SE 7:

Box<Integer> integerBox = new Box<>();

Generics and collections

Naming conventions

Presented by Bartosz Sakowicz

DMCS TUL

The most commonly used type parameter names are:

E - Element (used extensively by the Java Collections

Framework)

K - Key

N - Number

T - Type

V - Value

S,U – other types

Generics and collections

Bounded type parameters

Presented by Bartosz Sakowicz

DMCS TUL

public class Box<T> {

…

public <U extends Number> void inspect(U u){

System.out.println("T: " + t.getClass().getName());

System.out.println("U: " + u.getClass().getName());

}

public static void main(String[] args) {

Box<Integer> integerBox = new Box<Integer>();

integerBox.add(new Integer(10));

integerBox.inspect("some text"); // error: this is still String! } }

// extends is used in a general sense to mean either "extends" (as in

classes) or "implements" (as in interfaces)

Generics and collections

Bounded type parameters (2)

Presented by Bartosz Sakowicz

DMCS TUL

public class NaturalNumber<T extends Integer> {

private T n;

public NaturalNumber(T n) {

this.n = n;

}

public boolean isEven() {

return n.intValue() % 2 == 0;

} // ... }

The isEven method invokes the intValue method defined in the Integer class

through n.

In this simple case declaration could be also just NaturalNumber<Integer>,

but extends can be applied also to interfaces as well it can have many

arguments, e.g. extends A & B & C. Question: What are A, B, C?

Answer: Only one of them can be class and in this case

it must be first argument of extends.

Generics and collections

Inheritance and subtypes

Presented by Bartosz Sakowicz

DMCS TUL

1)

Object someObject = new Object();

Integer someInteger = new Integer(10);

someObject = someInteger; // OK ???

Answer:

Everything is ok!

2)

public void someMethod(Number n) { /* ... */ }

someMethod(new Integer(10)); // OK ???

someMethod(new Double(10.1)); // OK ???

3)

Box<Number> box = new Box<Number>();

box.add(new Integer(10)); // OK ???

box.add(new Double(10.1)); // OK ???

Generics and collections

Inheritance and subtypes (2)

Presented by Bartosz Sakowicz

DMCS TUL

Consider this:

public void boxTest(Box<Number> n) { /* ... */ }

Can you pass argument Box<Integer>? Answer: No.

Everything is an object!

Overriding equals() method

If you want objects of your class to be used as keys for

a hashtable (or as elements in any data structure that

uses equivalency for searching for—and/or

retrieving—an object), then you must override

equals() so that two different instances can be

considered the same.

The equals() Contract

Pulled straight from the Java docs, the equals() contract says:

● It is reflexive. For any reference value x, x.equals(x) should

return true.

● It is symmetric. For any reference values x and y, x.equals(y)

should return true if and only if y.equals(x) returns true.

● It is transitive. For any reference values x, y, and z, if

x.equals(y) returns true and y.equals(z) returns true, then

x.equals(z) must return true.

The equals() Contract

● It is consistent. For any reference values x and y,

multiple invocations of x.equals(y) consistently return

true or consistently return false

● For any non-null reference value x, x.equals(null)

should return false.

Understanding Hashcodes

Now that we know that two equal objects must

have identical hashcodes, is the reverse true? Do

two objects with identical hashcodes have to be

considered equal?

The hashCode() Contract

hashCode() contract:

● Whenever it is invoked on the same object more than

once during an execution of a Java application, the

hashCode() method must consistently return the same

integer, provided that no information used in equals()

comparisons on the object is modified.

The hashCode() Contract

● If two objects are equal according to the

equals(Object) method, then calling the

hashCode() method on each of the two objects

must produce the same integer result.

● It is NOT required that if two objects are unequal

according to the equals(java.lang.Object)

method, then calling the hashCode() method on

each of the two objects must produce distinct

integer results.

Problem

1. Is the following implementation of hashCode valid:

int hashCode() { return 1; }

Yes, it is. But it is sloooooooow.

Problem

1. Give an object some state (assign values to its instance

variables).

2. Put the object in a HashMap, using the object as a key.

3. Save the object to a file using serialization without

altering any of its state.

4. Retrieve the object from the file through deserialization.

5. Use the deserialized (brought back to life on the heap)

object to get the object out of the HashMap.

Generics and collections

Collections overview

• A collection (sometimes called a container) is simply an

object that groups multiple elements into a single unit.

• Collections are used to store, retrieve and manipulate data,

and to transmit data from one method to another.

• Collections typically represent data items that form a

natural group, like a poker hand (a collection of cards), a mail

folder (a collection of letters), or a telephone directory (a

collection of name-to-phone-number mappings).

Generics and collections

Collections framework

A collections framework is a unified architecture for

representing and manipulating collections. All collections

frameworks contain three things:

• Interfaces: abstract data types representing collections.

Interfaces allow collections to be manipulated independently of

the details of their representation.

• Implementations: concrete implementations of the collection

interfaces.

• Algorithms: methods that perform useful computations, like

searching and sorting, on objects that implement collection

interfaces.

Generics and collections

Core collections interfaces

The core collection interfaces are the interfaces used to

manipulate collections, and to pass them from one method to

another. The basic purpose of these interfaces is to allow

collections to be manipulated independently of the details of

their representation:

The interface and class hierarchy for collections

Generics and collections

Optional operations

• To keep the number of core collection interfaces

manageable, the Java platform doesn't provide separate

interfaces for each variant of each collection type.

• Instead, the modification operations in each interface are

designated optional — a given implementation may elect not to

support all operations.

• If an unsupported operation is invoked, a collection throws

an UnsupportedOperationException.

• Implementations are responsible for documenting which of

the optional operations they support.

• All of the Java platform's general-purpose implementations

support all of the optional operations.

Generics and collections

The Collection interface

A Collection represents a group of objects, known as its elements. The

primary use of the Collection interface is to pass around collections of

objects where maximum generality is desired. The Collection interface is

shown below:

public interface Collection<E> extends Iterable<E> {

int size();

boolean isEmpty();

boolean contains(Object element);

boolean add(<E> element); //optional

boolean remove(Object element); //optional

Iterator<E> iterator();

http://java.sun.com/products/jdk/1.2/docs/api/java.util.Collection.html

Generics and collections

The Collection interface(2)

boolean containsAll(Collection<?> c);

boolean addAll(Collection<? extends E> c); //optional

boolean removeAll(Collection<?> c); //optional

boolean retainAll(Collection<?> c); //optional

// Removes from the target Collection all of its elements that are not also

contained in the specified Collection.

void clear(); //optional

Object[] toArray();

<T> T[] toArray(T[] a);

}

Generics and collections

Iterator

Iterator is very similar to an Enumeration , but allows the caller to remove

elements from the underlying collection during the iteration with well-

defined semantics. The Iterator interface:

public interface Iterator<E> {

boolean hasNext();

E next();

void remove(); //optional

}

Traversing collections:

for (Object o : collection)

System.out.println(o);

http://java.sun.com/products/jdk/1.2/docs/api/java.util.Iterator.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.Enumeration.html

Generics and collections

Iterator - example

static void filter(Collection c) {

for (Iterator i = c.iterator(); i.hasNext();)

if (!cond(i.next()))

i.remove();

} //Another example:

java.util.Map result; //Creation somewhere else...

if (result!=null) {

java.util.Iterator i=result.entrySet().iterator();

while(i.hasNext()) {

java.util.Map.Entry entry=(java.util.Map.Entry)i.next();

debug(entry.getKey()+" => "+entry.getValue()); }}

Generics and collections

The Set Interface

A Set is a Collection that cannot contain duplicate elements.

Set models the mathematical set abstraction. The Set interface

extends Collection and contains no methods other than those

inherited from Collection. It adds the restriction that duplicate

elements are prohibited.Two Set objects are equal if they

contain the same elements.

Usage of Set example:

Suppose you have a Collection, c, and you want to create

another Collection containing the same elements, but with all

duplicates eliminated. The following one-liner does the trick:

Collection<T> noDups = new HashSet<T>(c);

http://java.sun.com/products/jdk/1.2/docs/api/java.util.Set.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.Collection.html

Generics and collections

The Set Interface usage example

public class FindDuplicates {

public static void main(String[] args) {

Set<String> s = new HashSet<String>();

for (String a : args)

if (!s.add(a))

System.out.println("Duplicate detected: " + a);

System.out.println(s.size() + " distinct words: " + s);

}

}

Generics and collections

The List Interface

A List is an ordered Collection (sometimes called a sequence).

Lists may contain duplicate elements.

The JDK contains two general-purpose List implementations.

ArrayList , which is generally the best-performing

implementation, and LinkedList which offers better

performance under certain circumstances.

Two List objects are equal if they contain the same elements in

the same order.

http://java.sun.com/products/jdk/1.2/docs/api/java.util.List.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.Collection.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.ArrayList.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.LinkedList.html

Generics and collections

The List Interface(2)

public interface List<E> extends Collection<E> {

E get(int index);

E set(int index, E element); //optional

boolean add(E element); //optional

void add(int index, E element); //optional

E remove(int index); //optional

boolean addAll(int index,

Collection<? extends E> c); //optional

int indexOf(Object o);

int lastIndexOf(Object o);

ListIterator<E> listIterator();

ListIterator<E> listIterator(int index);

List<E> subList(int from, int to);

}

Generics and collections

The queue interface

public interface Queue<E> extends Collection<E> {

E element();

boolean offer(E e);

E peek();

E poll();

E remove();

}

Generics and collections

The Deque interface

Type of Operation
First Element (Beginning

of the Deque instance)

Last Element (End of

the Deque instance)

Insert
addFirst(e)

offerFirst(e)

addLast(e)

offerLast(e)

Remove
removeFirst()

pollFirst()

removeLast()

pollLast()

Examine
getFirst()

peekFirst()

getLast()

peekLast()

Deque is a double-ended-queue:

Generics and collections

The queue interface (2)

Each Queue method exists in two forms:

(1) one throws an exception if the operation fails

(2) the other returns a special value if the operation fails (either

null or false, depending on the operation).

Throws exception Returns special value

Insert add(e) offer(e)

Remove remove() poll()

Examine element() peek()

Generics and collections

The Map Interface

A Map is an object that maps keys to values. A map cannot contain

duplicate keys: Each key can map to at most one value. Two Map objects

are equal if they represent the same key-value mappings.

The most useful methods:

public interface Map<K,V> {

V put(K key, V value);

V get(Object key);

V remove(Object key);

boolean containsKey(Object key);

boolean containsValue(Object value);

…}

http://java.sun.com/products/jdk/1.2/docs/api/java.util.Map.html

Generics and collections

The Comparable Interface

The Comparable interface consists of a single method:

public interface Comparable<T> {

public int compareTo(T o);

}

The compareTo method compares the receiving object with

the specified object, and returns a negative integer, zero, or a

positive integer as the receiving object is less than, equal to, or

greater than the specified Object.

Generics and collections

The Comparator Interface

A Comparator is an object that encapsulates an ordering. Like

the Comparable interface, the Comparator interface consists of

a single method:

public interface Comparator<T> {

int compare(T o1, T o2);

}

The compare method compares its two arguments, returning a

negative integer, zero, or a positive integer as the first

argument is less than, equal to, or greater than the second.

Generics and collections

SortedSet and SortedMap

A SortedSet is a Set that maintains its elements in ascending

order, sorted according to the elements natural order, or

according to a Comparator provided at SortedSet creation

time.

A SortedMap is a Map that maintains its entries in ascending

order, sorted according to the keys natural order, or according

to a Comparator provided at SortedMap creation time.

http://java.sun.com/products/jdk/1.2/docs/api/java.util.SortedSet.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.Set.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.SortedMap.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.Map.html

Generics and collections

Implementations

JDK provides two implementations of each interface (with the

exception of Collection).

All implementations permit null elements, keys and values.

All are Serializable, and all support a public clone method.

Each one is unsynchronized.

If you need a synchronized collection, the synchronization

wrappers allow any collection to be transformed into a

synchronized collection.

http://java.sun.com/products/jdk/1.2/docs/api/java.util.Collection.html

Generics and collections

HashSet and TreeSet

• The two general purpose Set implementations are HashSet

and TreeSet (and LinkedHashSet which is between them)

• HashSet is much faster but offers no ordering guarantees.

• If in-order iteration is important use TreeSet.

• Iteration in HashSet is linear in the sum of the number of

entries and the capacity. It's important to choose an

appropriate initial capacity if iteration performance is important.

The default initial capacity is 101. The initial capacity may be

specified using the int constructor. To allocate a HashSet

whose initial capacity is 17:

Set s= new HashSet(17);

http://java.sun.com/products/jdk/1.2/docs/api/java.util.Set.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.HashSet.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.TreeSet.html

Generics and collections

ArrayList and LinkedList

The two general purpose List implementations are ArrayList

and LinkedList . ArrayList offers constant time positional

access, and it's just plain fast, because it does not have to

allocate a node object for each element in the List, and it can

take advantage of the native method System.arraycopy when

it has to move multiple elements at once.

If you frequently add elements to the beginning of the List, or

iterate over the List deleting elements from its interior, you

might want to consider LinkedList. These operations are

constant time in a LinkedList but linear time in an ArrayList.

Positional access is linear time in a LinkedList and constant

time in an ArrayList.

http://java.sun.com/products/jdk/1.2/docs/api/java.util.List.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.ArrayList.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.LinkedList.html

Generics and collections

HashMap and TreeMap

The two general purpose Map implementations are HashMap

and TreeMap . And LinkedHashMap (similar to

LinkedHashSet)

The situation for Map is exactly analogous to Set.

If you need SortedMap operations you should use TreeMap;

otherwise, use HashMap.

http://java.sun.com/products/jdk/1.2/docs/api/java.util.Map.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.HashMap.html
http://java.sun.com/products/jdk/1.2/docs/api/java.util.TreeMap.html

Generics and collections

Synchronization wrappers

The synchronization wrappers add automatic synchronization (thread-

safety) to an arbitrary collection. There is one static factory method for each

of the six core collection interfaces:

public static Collection synchronizedCollection(Collection c);

public static Set synchronizedSet(Set s);

public static List synchronizedList(List list);

public static Map synchronizedMap(Map m);

public static SortedSet synchronizedSortedSet(SortedSet s);

public static SortedMap synchronizedSortedMap(SortedMap m);

Each of these methods returns a synchronized (thread-safe) Collection

backed by the specified collection.

Generics and collections

Unmodifiable wrappers

Unmodifiable wrappers take away the ability to modify the

collection, by intercepting all of the operations that would

modify the collection, and throwing an

UnsupportedOperationException. The unmodifiable

wrappers have two main uses:

• To make a collection immutable once it has been built.

• To allow "second-class citizens" read-only access to your data

structures. You keep a reference to the backing collection, but

hand out a reference to the wrapper. In this way, the second-

class citizens can look but not touch, while you maintain full

access.

Generics and collections

Unmodifiable wrappers(2)

There is one static factory method for each of the six core

collection interfaces:

public static Collection unmodifiableCollection(Collection c);

public static Set unmodifiableSet(Set s);

public static List unmodifiableList(List list);

public static Map unmodifiableMap(Map m);

public static SortedSet unmodifiableSortedSet(SortedSet s);

public static SortedMap unmodifiableSortedMap(SortedMap m);

Generics and collections

Java 1.0/1.1 containers

A lot of code was written using the Java 1.0/1.1 containers, and even new

code is sometimes written using these classes. So although you should

never use the old containers when writing new code, you’ll still need to be

aware of them. Here are older container classes:

Vector (~=ArrayList)

Enumeration (~= Iterator)

Hashtable (~=HashMap)

Stack (~=LinkedList)

All of them are synchronized (and slower).

Generics and collections

Questions

Presented by Bartosz Sakowicz

DMCS TUL

public static <T> int countGreaterThan(T[] anArray, T elem) {

int count = 0;

for (T e : anArray)

if (e > elem)

++count;

return count;

}

Will it compile? No. So how to repair it?

public interface Comparable<T> {

public int compareTo(T o); }

public static <T extends Comparable<T>> int countGreaterThan(T[]

anArray, T elem) {

... if (e.compareTo(elem) > 0) ...

Generics and collections

Questions

Presented by Bartosz Sakowicz

DMCS TUL

Given the following classes:

class Shape { /* ... */ }

class Circle extends Shape { /* ... */ }

class Rectangle extends Shape { /* ... */ }

class Node<T> { /* ... */ }

Will the following code compile?

Node<Circle> nc = new Node<>();

Node<Shape> ns = nc;

Answer: No. Because Node<Circle> is not a subtype of Node<Shape>.

