
API

JAVA NETWORKING

Networking Basics
When you write Java programs that

communicate over the network,

you are programming at the

application layer. Typically, you

don't need to concern yourself with

the TCP and UDP layers. Instead,

you can use the classes in the

java.net package. These classes

provide system-independent

network communication.

TCP

Definition: TCP (Transmission Control Protocol) is a

connection-based protocol that provides a reliable flow of

data between two computers.

TCP

TCP provides a point-to-point channel for applications

that require reliable communications. The Hypertext

Transfer Protocol (HTTP), File Transfer Protocol (FTP), and

Telnet are all examples of applications that require a

reliable communication channel.

TCP

The order in which the data is sent and received over the

network is critical to the success of these applications.

When HTTP is used to read from a URL, the data must be

received in the order in which it was sent. Otherwise, you

end up with a jumbled HTML file, a corrupt zip file, or

some other invalid information.

UDP

Definition: UDP (User Datagram Protocol) is a protocol

that sends independent packets of data, called

datagrams, from one computer to another with no

guarantees about arrival. UDP is not connection-based

like TCP.

Understanding Ports

Data transmitted over the Internet is accompanied by

addressing information that identifies the computer and

the port for which it is destined. The computer is

identified by its 32-bit IP address, which IP uses to deliver

data to the right computer on the network. Ports are

identified by a 16-bit number, which TCP and UDP use to

deliver the data to the right application.

Understanding Ports

In connection-based communication such as TCP, a

server application binds a socket to a specific port

number. This has the effect of registering the server with

the system to receive all data destined for that port. A

client can then rendezvous with the server at the server's

port, as illustrated here:

Understanding Ports

Definition: The TCP and UDP protocols use ports to map

incoming data to a particular process running on a

computer.

The InetAddress Class

The java.net.InetAddress class is Java’s high-level

representation of an IP address, both IPv4 and IPv6. It is used

by most of the other networking classes, including Socket,

ServerSocket, URL, DatagramSocket, DatagramPacket, and

more. Usually, it includes both a hostname and an IP address.

The InetAddress Class

If you know a numeric address, you can create an

InetAddress object from that address without talking to

DNS using InetAddress.getByAddress(). This method can

create addresses for hosts that do not exist or cannot be

resolved:

The InetAddress Class

public static InetAddress
getByAddress(byte[] addr) throws
UnknownHostException

public static InetAddress
getByAddress(String hostname, byte[]
addr) throws UnknownHostException

What Is a Network Interface?

A network interface is the point of interconnection

between a computer and a private or public network. A

network interface is generally a network interface card

(NIC), but does not have to have a physical form. Instead,

the network interface can be implemented in software.

What Is a Network Interface?

For example, the loopback interface (127.0.0.1 for IPv4

and ::1for IPv6) is not a physical device but a piece of

software simulating a network interface. The loopback

interface is commonly used in test environments.

The NetworkInterface Class

The NetworkInterface class represents a local IP address.

This can either be a physical interface such as an

additional Ethernet card (common on firewalls and

routers) or it can be a virtual interface bound to the same

physical hardware as the machine’s other IP addresses.

The NetworkInterface Class

The NetworkInterface class provides methods to

enumerate all the local addresses, regardless of interface,

and to create InetAddress objects from them. These

InetAddress objects can then be used to create sockets,

server sockets, and so forth.

URL

URL is an acronym for Uniform Resource Locator and is a

reference (an address) to a resource on the Internet.

A URL has two main components:

● Protocol identifier: For the URL http://example.com,

the protocol identifier is http.

● Resource name: For the URL http://example.com, the

resource name is example.com.

Creating URL

URL DMCS = new

URL("http://www.dmcs.p.lodz.pl/");

Relative URL:

● URL indexDMCS = new URL(DMCS,"/index.html");

Other constructors:

● URL("http", "www.dmcs.pl","/index.html");

● URL("http", 80, "www.dmcs.pl","/index.html");

MalformedURLException

Each of the four URL constructors throws a

MalformedURLException if the arguments to the constructor refer

to a null or unknown protocol.

try {

URL myURL = new URL(. . .)

} catch (MalformedURLException e) {

// exception handler code

}

Reading from URL vs. URLConnection

● You can use either way to read from a URL.

● Reading from a URLConnection instead of reading

directly from a URL might be more useful. This is

because you can use the URLConnection object for

other tasks (like writing to the URL) at the same time.

Writing to URLConnection

To write to an URL you have to do following steps:

1. Create a URL.

2. Open a connection to the URL.

3. Set output capability on the URLConnection.

4. Get an output stream from the connection.

5. Write to the output stream.

6. Close the output stream.

Reading from URL

import java.net.*;

import java.io.*;

public class URLReader { public static void main(String[] args) throws

Exception {

URL yahoo = new URL("http://www.yahoo.com/");

BufferedReader in = new BufferedReader(new InputStreamReader(

yahoo.openStream()));

String inputLine;

while ((inputLine = in.readLine()) != null)

System.out.println(inputLine); //HTML from yahoo

in.close();

} }

Connecting to a URL

When you connect to a URL, you are initializing a communication link between

your Java program and the URL over the network.

try {

URL yahoo = new URL("http://www.yahoo.com/");

URLConnection yahooConnection = yahoo.openConnection();

} catch (MalformedURLException e) {

// new URL() failed . . .

} catch (IOException e) {

// openConnection() failed . . .

}

Reading from URLConnection

import java.net.*; import java.io.*;

public class URLConnectionReader {

public static void main(String[] args) throws Exception {

URL yahoo = new URL("http://www.yahoo.com/");

URLConnection yc = yahoo.openConnection();

BufferedReader in = new BufferedReader(new InputStreamReader(

yc.getInputStream()));

String inputLine;

while ((inputLine = in.readLine()) != null) System.out.println(inputLine);

in.close();

} }

Writing to a URLConnection

...

String stringToReverse = URLEncoder.encode(args[0]);

URL url = new URL("http://java.sun.com/cgi-bin/backwards");

URLConnection connection = url.openConnection();

connection.setDoOutput(true);

PrintWriter out = new PrintWriter(connection.getOutputStream());

out.println("string=" + stringToReverse);

//backward script waits for data in the above form

out.close();

...

Sockets
A socket is one endpoint of a two-way communication link

between two programs running on the network.

Normally, a server runs on a specific computer and has a

socket that is bound to a specific port number. The server just

waits, listening to the socket for a client to make a connection

request.

On the client-side: The client knows the hostname of the

machine on which the server is running and the port number to

which the server is connected. To make a connection request,

the client tries to rendezvous with the server on the server's

machine and port.

Sockets(2)
If everything goes well, the server accepts the connection.

Upon acceptance, the server gets a new socket bound to a

different port. It needs a new socket (and consequently a

different port number) so that it can continue to listen to the

original socket for connection requests while tending to the

needs of the connected client.

On the client side, if the connection is accepted, a socket is

successfully created and the client can use the socket to

communicate with the server.

Reading from and writing to a
Socket
To do is you should perform five basic steps:

1. Open a socket.

2. Open an input stream and output stream to the socket.

3. Read from and write to the stream according to the server's

protocol.

4. Close the streams.

5. Close the socket.

Reading from and writing to a
Socket - example

import java.io.*;

import java.net.*; //Socket

public class EchoClient {

public static void main(String[] args) throws IOException {

Socket echoSocket = null;

PrintWriter out = null;

BufferedReader in = null;

Verte

Reading ... (2)
try {

echoSocket = new Socket(„comp", 7); //Echo Server port

out = new PrintWriter(echoSocket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(

echoSocket.getInputStream()));

} catch (UnknownHostException e) {

System.err.println("Don't know about host: comp."); System.exit(1);

} catch (IOException e) {

System.err.println("Couldn't get I/O for " + "the connection to: comp.");

System.exit(1); } Verte

Reading ... (3)
BufferedReader stdIn = new BufferedReader(new

InputStreamReader(System.in));

String userInput;

while ((userInput = stdIn.readLine()) != null) { out.println(userInput);

System.out.println("echo: " + in.readLine());

}

out.close(); in.close();

stdIn.close(); echoSocket.close();

//The precedence is important. You should first close all streams

// connected to the socket and than socket itself.

} }

Reading from URL - socket version

import java.net.*; import java.io.

String hostname = "http://www.yahoo.com";

int port = 80;

String filename = "/index.html";

Socket s = new Socket(hostname, port);

InputStream sin = s.getInputStream();

BufferedReader fromServer = new BufferedReader(new

InputStreamReader(sin));

OutputStream sout = s.getOutputStream();

PrintWriter toServer = new PrintWriter(new OutputStreamWriter(sout));

verte-->

Reading from URL - socket
version(2)

toServer.print("GET " + filename + " HTTP/1.0\n\n");

toServer.flush();

for(String l = null; (l = fromServer.readLine()) != null;)

System.out.println(l);

toServer.close();

fromServer.close();

s.close();

Creating a server socket

try {

serverSocket = new ServerSocket(4444);

} catch (IOException e) {

System.out.println("Could not listen on port: 4444");

System.exit(-1);

}

Sever side of sockets

If the server successfully connects to its port, then the ServerSocket object

is successfully created and the server continues to the next step -

accepting a connection from a client:

Socket clientSocket = null;

try {

clientSocket = serverSocket.accept();

} catch (IOException e) {

// accept failed

}

Sever side of sockets

● The accept method waits until a client starts up and

requests a connection on the host and port of this

server. When a connection is requested and

successfully established, the accept method returns a

new Socket object which is bound to a new port.

Sever side of sockets

After the server successfully establishes a connection

with a client, it communicates with the client:

PrintWriter out = new PrintWriter(

clientSocket.getOutputStream(), true);

BufferedReader in = new BufferedReader(new

InputStreamReader(clientSocket.getInputStream()));

Supporting multiple clients

Server can service clients simultaneously through the use

of threads - one thread per each client connection. The

basic flow of logic in such a server is this:

while (true) {

accept a connection ;

create a thread to deal with the client ;

}

Datagrams

A datagram is an independent, self-contained message

sent over the network whose arrival, arrival time, and

content are not guaranteed.

The java.net package contains classes to help you write

Java programs that use datagrams to send and receive

packets over the network:

● DatagramSocket

● DatagramPacket

Sending Datagrams

...

byte[] buf = new byte[256];

InetAddress address = InetAddress.getByName(„http://...”);

DatagramPacket packet = new DatagramPacket(buf, buf.length,

address, 4445);

socket.send(packet);

...

Receiving and sending Datagrams

...

Datagram Socket socket = new DatagramSocket(4445);

byte[] buf = new byte[256];

DatagramPacket packet = new DatagramPacket(buf, buf.length);

socket.receive(packet);

InetAddress address = packet.getAddress();

int port = packet.getPort();

packet = new DatagramPacket(buf, buf.length, address, port);

socket.send(packet);

...

