
JAVA JDBC

Introduction to Databases

● Assuming you drove the same number of miles per month, gas is

getting pricey - maybe it is time to get a Prius.

● You are eating out more month to month (or the price of eating

out is going up) - maybe it's time to start doing some meal

planning.

● And maybe you need to be a little less social - that phone bill is

high.

Talking to a Database

There are three important concepts when working with a

database:

● Creating a connection to the database

● Creating a statement to execute in the database

● Getting back a set of data that represents the results

SQL Queries

● INSERT Add a row to the table Expenses, and set each

of the columns in the table to the values expressed in

the parentheses.

● SELECT with WHERE this SQL statement returns a

single row identified by the primary key—the Month

column. Think of this statement as a refinement to

Read—more like a Find or Find by primary key.

SQL Queries

● SELECT When the SELECT clause does not have a

WHERE clause, we are asking the database to return

every row. Further, because we are using an asterisk (*)

following the SELECT, we are asking for every column.

Basically, it is a dump of the data. Think of this

statement as a Read All.

SQL Queries

● UPDATE Change the data in the Phone and EatingOut

cells to the new data provided for February.

● DELETE Remove a row altogether from the database

where the Month is April.

Example SQL CRUD Commands

Core Interfaces of the JDBC API
● Fully implement the interfaces: java.sql.Driver,

java.sql.DatabaseMetaData, java.sql.ResultSetMetaData.

● Implement the java.sql.Connection interface. (Note that

some methods are optional depending upon the SQL

version the database.)

● Implement the java.sql.Statement,

java.sql.PreparedStatement.

● Implement the java.sql.CallableStatement interfaces if the

database supports stored procedures.

● Implement the java.sql.ResultSet interface.

Connect to a DB using DriverManager

● Not all of the types defined in the JDBC API are

interfaces. One important class for JDBC is the

java.sql.DriverManager class. This concrete class is used

to interact with a JDBC driver and return instances of

Connection objects to you. Conceptually, the way this

works is by using a design pattern called Factory.

How JDBC Drivers Register with the DriverManager

First, one or more JDBC drivers, in a JAR or ZIP file, are

included in the classpath of your application.

The DriverManager class uses a service provider

mechanism to search the classpath for any JAR or ZIP files

that contain a file named java.sql.Driver in the META-

INF/services folder of the driver jar or zip.

How JDBC Drivers Register with the DriverManager

The DriverManager will then attempt to load the class it

found in the java.sql.Driver file using the class loader:

Class.forName("org.apache.derby.jdbc.ClientDriver");

How JDBC Drivers Register with the DriverManager

try {

Class.forName("connect.microsoft.MicrosoftDriver");

Class.forName("oracle.jdbc.driver.OracleDriver");

Class.forName("com.sybase.jdbc.SybDriver");

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

} catch(ClassNotFoundException cnfe) {

System.err.println("Error loading driver: " + cnfe);

}

How JDBC Drivers Register with the DriverManager

When the driver class is loaded, its static initialization block is executed. Per the

JDBC specification, one of the first activities of a driver instance is to "self-register„

with the DriverManager class by invoking a static method on DriverManager.

public class ClientDriver implements java.sql.Driver{

static {

ClientDriver driver = new ClientDriver();

DriverManager.registerDriver(driver);

}

//...

}

How JDBC Drivers Register with the DriverManager

Now, when your application invokes the DriverManager.getConnection()

method and passes a JDBC URL, username, and password to the method,

the DriverManager simply invokes the connect() method on the registered

Driver.

If the connection was successful, the method returns a Connection object

instance to DriverManager, which, in turn, passes that back to you.

To summarize:

● The JVM loads the DriverManager class, a concrete class in the JDBC API.

● The DriverManager class loads any instances of classes it finds in the

META-INF/services/java.sql.Driver file of JAR/ZIP files on the classpath.

● Driver classes call DriverManager.register(this) to self-register with the

DriverManager.

To summarize:

● When the DriverManager.getConnection(String url) method is invoked,

DriverManager invokes the connect() method of each of these registered

Driver instances with the URL string.

● The first Driver that successfully creates a connection with the URL

returns an instance of a Connection object to the

DriverManager.getConnection method invocation.

Submit Queries and Read Results from the Database

Get connection We are creating a Connection object instance using the

information we need to access Bob's Books Database (stored on a Java DB

Relational database, BookSellerDB, and accessed via the credentials).

Create statement We are using the Connection to create a Statement

object. The Statement object handles passing Strings to the database as

queries for the database to execute.

Execute query We are executing the query string on the database and

returning a ResultSet object.

Process results We are iterating through the result set rows - each call to

next() moves us to the next row of results.

Statements

public boolean execute(String sql)

ResultSet rs;
int numRows;
boolean status = stmt.execute(""); // True if there is a ResultSet
if (status) { // True

rs = stmt.getResultSet(); // Get the ResultSet
// Process the result set...

} else { // False
numRows = stmt.getUpdateCount(); // Get the update count
if (numRows == -1) { // If -1, there are no results

out.println("No results");
} else { // else, print the number of

// rows affected
out.println(numRows + " rows affected.");

}
}

SQL Injection

String s = System.console().readLine(

"Enter your e-mail address: ");

ResultSet rs = stmt.executeQuery(

"SELECT * FROM Customer WHERE EMail='" + s + "'");

SELECT * FROM Customer WHERE Email='tom@trouble.com' OR 'x'='x'

ResultSet

The ResultSet object represents the results of the query –

all of the data in each row on a per-column basis. Again,

as a reminder, how data in a ResultSet are stored is

entirely up to the JDBC driver vendor.

Moving Forward in a ResultSet

Reading Data from a ResultSet

while (rs.next()){

System.out.print(rs.getInt("CustomerID") + " ");

System.out.print(rs.getString("FirstName") + " ");

System.out.print(rs.getString("LastName") + " ");

System.out.print(rs.getString("EMail") + " ");

System.out.println(rs.getString("Phone"));

}

Reading Data from a ResultSet

while (rs.next()){

System.out.print(rs.getInt(1)+ " ");

System.out.print(rs.getString(2) + " ");

System.out.print(rs.getString(3) + " ");

System.out.print(rs.getString(4) + " ");

System.out.println(rs.getString(5));

}

Reading Data from a ResultSet

Column indexes start with 1. It is important to keep in

mind that when you are accessing columns using integer

index values, the column indexes always start with 1, not

0 as in traditional arrays. If you attempt to access a

column with an index of less than 1 or greater than the

number of columns returned, a SQLException will be

thrown.

SQL Types and JDBC Types

Getting Information about a ResultSet

TYPE_FORWARD_ONLY The default value for a ResultSet –

the cursor moves forward only through a set of results.

TYPE_SCROLL_INSENSITIVE A cursor position can be moved

in the result forward or backward, or positioned to a particular

cursor location. Any changes made to the underlying data –

the database itself - are not reflected in the result set. In other

words, the result set does not have to „keep state” with the

database. This type is generally supported by databases.

Getting Information about a ResultSet

TYPE_SCROLL_SENSITIVE A cursor can be changed in

the results forward or backward, or positioned to a

particular cursor location. Any changes made to the

underlying data are reflected in the open result set. As

you can imagine, this is difficult to implement, and is

therefore not implemented in a database or JDBC driver

very often.

ResultSet Cursor Positioning Methods

ResultSet Cursor Positioning Methods

Absolute cursor positioning

Properly Closing SQL Resources

Prepared Statements

● If you are going to execute similar SQL statements

multiple times, using “prepared” statements can be

more efficient than executing a raw query each time.

● The idea is to create a parameterized statement in a

standard form that is sent to the database for

compilation before actually being used.

Prepared Statements
● You use a question mark to indicate the places where a value

will be substituted into the statement.

● Each time you use the prepared statement, you replace

some of the marked parameters, using a setXxx call

corresponding to the entry you want to set (using 1-based

indexing) and the type of the parameter (e.g., setInt,

setString, and so forth).

● You then use executeQuery (if you want a ResultSet back) or

execute/executeUpdate as with normal statements.

Prepared Statement

String pQuery =

"SELECT UnitPrice from Book WHERE Title LIKE ?";

PreparedStatement pstmt = conn.prepareStatement(pQuery);

pstmt.setString(1, "%Heroes%"); // Substitute this String

// for the parameter

ResultSet rs = pstmt.executeQuery();

Prepared Statement

● The performance advantages of prepared statements can

vary , depending on how well the server supports

precompiled queries and how efficiently the driver handles

raw queries (up to 50%).

executeQuery

executeQuery returns a ResultSet object containing the results

of the query sent to the DBMS (database management

system), the return value for executeUpdate is an int that

indicates how many rows of a table were updated.

updateSales.setInt(1, 50);

updateSales.setString(2, "Espresso");

int n = updateSales.executeUpdate();

// n equals number of updated rows

Transactions
● A transaction is a set of one or more statements that are

executed together as a unit, so either all of the statements

are executed, or none of the statements is executed.

● When a connection is created, it is in auto-commit mode.

This means that each individual SQL statement is treated as

a transaction and will be automatically committed right after

it is executed. The way to allow two or more statements to

be grouped into a transaction is to disable auto-commit

mode.

Transactions

con.setAutoCommit(false);

PreparedStatement updateSales = con.prepareStatement("UPDATE COFFEES

SET SALES = ? WHERE COF_NAME LIKE ?");

updateSales.setInt(1, 50);

updateSales.setString(2, "Colombian"); updateSales.executeUpdate();

PreparedStatement updateTotal = con.prepareStatement("UPDATE COFFEES

SET TOTAL = TOTAL + ? WHERE COF_NAME LIKE ?");

updateTotal.setInt(1, 50);

updateTotal.setString(2, "Colombian"); updateTotal.executeUpdate();

con.commit();

con.setAutoCommit(true);

Rollbacking a Transaction

● Calling the method rollback aborts a transaction and returns any

values that were modified to their previous values.

● If you are trying to execute one or more statements in a transaction

and get an SQLException , you should call the method rollback to

abort the transaction and start the transaction all over again. That is

the only way to be sure of what has been committed and what has

not been committed. Catching an SQLException tells you that

something is wrong, but it does not tell you what was or was not

committed. Since you cannot count on the fact that nothing was

committed, calling the method rollback is the only way to be sure.

Rollbacking a Transaction

Connection conn = DriverManager.getConnection(url, login, pass);
conn.setAutoCommit(false); // Start a transaction
Statement stmt = conn.createStatement();
int result1, result2, result3;
try {

result1 = stmt.executeUpdate("INSERT INTO Author
VALUES(1031, 'Rachel', 'McGinn')");

result2 = stmt.executeUpdate("INSERT INTO Book
VALUES('0554466789', 'My American Dolls',

'2012-08-31','Paperback', 7.95)");
result3 = stmt.executeUpdate("INSERT INTO

Books_by_Author VALUES(1031,'0554466789')");

conn.commit(); //commit the entire transaction
} catch (SQLException ex) {

conn.rollback();
}

Stored Procedures

Stored procedures are supported by most DBMSs, but there is a fair

amount of variation in their syntax and capabilities.
String createProcedure =

"create procedure SHOW_SUPPLIERS " + "as " +

"select SUPPLIERS.SUP_NAME, COFFEES.COF_NAME " +

"from SUPPLIERS, COFFEES " +

"where SUPPLIERS.SUP_ID = COFFEES.SUP_ID " +

"order by SUP_NAME";

Statement stmt = con.createStatement();

stmt.executeUpdate(createProcedure);

The procedure SHOW_SUPPLIERS will be compiled and stored in the

database as a database object that can be called, similar to the way you

would call a method.

Stored Procedures

JDBC allows you to call a database stored procedure from an

application written in the Java programming language. The first

step is to create a CallableStatement object. Than you should

call proper execute method (depending on what is procedure

created: SELECT, UPDATE and so on).

CallableStatement cs =

con.prepareCall("{call SHOW_SUPPLIERS}");

ResultSet rs = cs.executeQuery();

// or executeUpdate() or execute()

SQLException
} catch(SQLException ex) {

System.out.println("\n--- SQLException caught ---\n");
while (ex != null) {

System.out.println("Message:" + ex.getMessage());
// a string that describes the error
System.out.println("SQLState: " + ex.getSQLState ());
// a string identifying the error according to the X/Open
// SQLState conventions
System.out.println("ErrorCode: " + ex.getErrorCode ());
// a number that is the driver vendor's error code number
ex = ex.getNextException(); // there can be more than 1
System.out.println(" ");

}
}

The ResultSet insert row

