
System resources.

Security Manager.

System resources.

Accessing system resources

• Sometimes, a program requires access to system

resources such as system properties, standard input and

output, or the current time.

• Your program could make system calls directly to the

window or operating system, but then your program would be

able to run only in that particular environment. Each time you

want to run the program in a new environment, you'd have to

port your program by rewriting the system-dependent sections

of code.

• The Java platform lets your program access system

resources through a (relatively) system-independent API

implemented by the System class and through a system-

dependent API implemented by the Runtime class.

http://java.sun.com/j2se/1.4/docs/api/java/lang/System.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/Runtime.html

System resources.

Accessing system resources(2)

The following diagram shows that the System class allows

your Java programs to use system resources but insulates

them from system-specific details:

System resources.

System class

Unlike most other classes, you don't instantiate the System

class to use it.

You cannot instantiate the System class - it's a final class and

all of its constructors are private.

All of System's variables and methods are class variables

and class methods - they are declared static.

To use a class variable, you use it directly from the name of

the class:

System.out

You call class methods in a similar fashion:

System.getProperty(argument);

System resources.

Standard I/O streams

The concept of standard input and output streams is a C library concept

that has been assimilated into the Java environment. There are three

standard streams, all of which are managed by the java.lang.System class:

Standard input--referenced by System.in

Used for program input, typically reads input entered by the user.

Standard output--referenced by System.out

Used for program output, typically displays information to the user.

Standard error--referenced by System.err

Used to display error messages to the user.

System resources.

System properties

• The System class maintains a set of properties, key/value

pairs, that define traits or attributes of the current working

environment.

• When the runtime system first starts up, the system

properties are initialized to contain information about the

runtime environment, including information about the current

user, the current version of the Java runtime, and even the

character used to separate components of a filename.

System resources.

System properties(2)

Key Meaning

"file.separator" File separator (for example, "/")

"java.class.path" Java classpath

"java.class.version" Java class version number

"java.home" Java installation directory

"java.vendor" Java vendor-specific string

"java.vendor.url" Java vendor URL

"java.version" Java version number

"line.separator" Line separator

System resources.

System properties(3)

Key Meaning

"os.arch" Operating system architecture

"os.name" Operating system name

"os.version" Operating system version

"path.separator" Path separator (for example, ":")

"user.dir" User's current working directory

"user.home" User home directory

"user.name" User account name

System resources.

Reading system properties

The System class has two methods that you can use to read

the system properties: getProperty and getProperties. There

are different versions of getProperty:

System.getProperty("path.separator");

System.getProperty("subliminal.message", "Buy Java Now!");

You should use this version of getProperty if you don't want to

risk a NullPointerException, or if you want to provide a default

value for a property that doesn't have value or that cannot be

found.

The getProperties method returns a Properties object that

contains the complete set of system property key/value pairs.

http://java.sun.com/j2se/1.4/docs/api/java/util/Properties.html

System resources.

Writing system properties

import java.io.FileInputStream; import java.util.Properties;

public class PropertiesTest {

public static void main(String[] args) throws Exception {

FileInputStream propFile =

new FileInputStream("myProperties.txt");

Properties p = new Properties(System.getProperties());

p.load(propFile);

System.setProperties(p); // set the system properties

System.getProperties().list(System.out);

}

}

System resources.

Security Manager

Each Java application can have its own security manager

object that acts as a full-time security guard. The

SecurityManager class in the java.lang package is an

abstract class that provides the programming interface and

partial implementation for all Java security managers.

By default an application does not have a security manager.

That is, the Java runtime system does not automatically create

a security manager for every Java application. So by default

an application allows all operations that are subject to

security restrictions.

To change this default behavior, an application must

create and install its own security manager.

System resources.

Security Manager(2)

You can get the current security manager for an application

using the System class's getSecurityManager() method:

SecurityManager appsm = System.getSecurityManager();

getSecurityManager() returns null if there is no current

security manager for the application so you should check

to make sure that you have a valid object before calling

any of its methods.

System resources.

Writing a Security Manager

To write your own security manager, you must create a

subclass of the SecurityManager class.

Your SecurityManager subclass overrides various methods

from SecurityManager to customize the verifications and

approvals needed in your Java application.

If the security manager approves the operation then the

checkXXX() method returns, otherwise checkXXX() throws a

SecurityException.

System resources.

Security Manager example

• The policy implemented by example prompts the user for a

password when the application attempts to open a file for

reading or for writing. If the password is correct then the

access is allowed.

• To impose a stricter policy on file system accesses, our

example SecurityManager subclass must override

SecurityManager's checkRead() and checkWrite() methods.

• SecurityManager provides three versions of checkRead()

and two versions of checkWrite().

System resources.

Security Manager example(2)

Presented by Bartosz Sakowicz

DMCS TUL

import java.io.*;

public class PasswordSecurityManager extends SecurityManager{

private String password;

public PasswordSecurityManager(String p) {

super();

this.password = p;

}

System resources.

Security Manager example(3)

private boolean accessOK() {

int c;

DataInputStream dis = new DataInputStream(System.in);

String response;

System.out.println("What's the secret password?");

try {

response = dis.readLine();

if (response.equals(password)) return true;

else return false;

} catch (IOException e){ return false; } }

System resources.

Security Manager example(4)

public void checkRead(FileDescriptor filedescriptor) {

if (!accessOK()) throw new SecurityException("Not a Chance!"); }

public void checkRead(String filename) {

if (!accessOK()) throw new SecurityException("No Way!"); }

public void checkRead(String filename, Object executionContext){

if (!accessOK()) throw new SecurityException("Forget It!"); }

public void checkWrite(FileDescriptor filedescriptor) {

if (!accessOK()) throw new SecurityException("Not!"); }

public void checkWrite(String filename) {

if (!accessOK()) throw new SecurityException("Not Even!"); }

System resources.

Installing Security Manager

The main() method should begin by installing a new security manager:

try {

System.setSecurityManager(new PasswordSecurityManager("MY

PASSWORD"));

} catch (SecurityException se) { System.out.println("SecurityManager already

set!");

}

You can set the security manager for your application only once. Any

subsequent attempt to install a security manager within a Java application

will result in a SecurityException.

System resources.

Testing Security Manager

This is a simple test to verify that the PasswordSecurityManager has

been properly installed:

try {

DataInputStream fis =

new DataInputStream(new FileInputStream("inputtext.txt"));

DataOutputStream fos =

new DataOutputStream(new FileOutputStream("outputtext.txt"));

String inputString;

while ((inputString = fis.readLine()) != null) { fos.writeBytes(inputString);

fos.writeByte('\n'); } fis.close(); fos.close();

} catch (IOException ioe) { System.err.println("I/O failed"); }

System resources.

Testing Security Manager(2)

Example of the output when you type in the password correctly the

first time and incorrectly the second:

What's the secret password?

MY PASSWORD

What's the secret password?

Wrong password

java.lang.SecurityException: Not Even!

at PasswordSecurityManager.checkWrite(PasswordSecurityManager.java:46)

at java.io.FileOutputStream.(FileOutputStream.java)

at SecurityManagerTest.main(SecurityManagerTest.java:15)

System resources.

Security Manager methods

In Security Manager class exists many methods possible to override. They are

concerned with:

• sockets

• threads

• class loader

• file system

• system commands

• interpreter

• package

• properties

• networking

• windows

