
XML (Extensible Markup Language)

JAXP (Java API for XML Processing)

Presented by Bartosz Sakowicz

Overview of XML

XML is a text-based markup language that is fast becoming the

standard for data interchange on the Web. As with HTML, you

identify data using tags (identifiers enclosed in angle brackets, like

this: <...>). Collectively, the tags are known as "markup".

But unlike HTML, XML tags identify the data, rather than

specifying how to display it. Where an HTML tag says

something like "display this data in bold font" (...), an XML

tag acts like a field name in your program. It puts a label on a

piece of data that identifies it (for example:

<message>...</message>).

Overview of XML(2)

In the same way that you define the field names for a data

structure, you are free to use any XML tags that make sense for

a given application.

Naturally, though, for multiple applications to use the same

XML data, they have to agree on the tag names they intend to

use.

Overview of XML(3)

XML does not do anything. XML is created to structure, store,

and to send information.

XML tags are not predefined. You must "invent" your own tags.

XML example:

<message>
<to>you@yourAddress.com</to>
<from>me@myAddress.com</from>
<subject>XML Is Really Cool</subject>
<text> How many ways is XML cool? Let me count the

ways... </text>
</message>

Tags and attributes
Tags can also contain attributes. Example shows an email

message structure that uses attributes for the "to", "from", and

"subject" fields:

<message to="you@yourAddress.com"

from="me@myAddress.com" subject="XML Is Really Cool">

<text> How many ways is XML cool? Let me count the

ways... </text>

</message>

As in HTML, the attribute name is followed by an equal sign and

the attribute value, and multiple attributes are separated by

spaces.

Forming XML document

• Every tag has closing tag: <to> ...</to> OR <to/>(empty tag)

• XML is case-sensitive.

XML elements must follow these naming rules:

• Names can contain letters, numbers, and other

characters

• Names must not start with a number or punctuation

character

• Names must not start with the letters xml (or XML or

Xml ..)

• Names cannot contain spaces

Forming XML document(2)

• All tags are completely nested. So you can have

<message>..<to>..</to>..</message>, but never

<message>..<to>..</message>..</to>.

• Every XML document starts with prolog (<?xml ...)

• All XML documents must contain a single tag pair to define the

root element. All other elements must be nested within the root

element:

<root> <child> <subchild>.....</subchild> </child> </root>

• XML comment is identical to HTML comment:

<!-- This is a comment -->

The XML prolog
The minimal prolog contains a declaration that identifies the

document as an XML document:

<?xml version="1.0"?>

The XML declaration may contain the following attributes:

version

Identifies the version of the XML markup language used in the

data. This attribute is not optional.

encoding

Identifies the character set used to encode the data. "ISO-

8859-1" is "Latin-1" the Western European and English

language character set. (The default is compressed Unicode:

UTF-8.)

standalone

Tells whether or not this document references an external

entity or an external data type specification. If there are no

external references, then "yes" is appropriate

Processing instructions

An XML file can also contain processing instructions that give

commands or information to an application that is processing the

XML data. Processing instructions have the following format:

<?target instructions?>

where the target is the name of the application that is expected to

do the processing, and instructions is a string of characters that

embodies the information or commands for the application to

process.

DTD
• The DTD specification is actually part of the XML specification,

rather than a separate entity. On the other hand, it is optional --

you can write an XML document without it.

• A DTD specifies the kinds of tags that can be included in your

XML document, and the valid arrangements of those tags.

• Unfortunately, it is difficult to specify a DTD for a complex

document in such a way that it prevents all invalid combinations

and allows all the valid ones.

• The DTD can exist at the front of the document, as part of the

prolog. It can also exist as a separate entity.

Schema standards
A DTD makes it possible to validate the structure of relatively

simple XML documents.

A DTD can't restrict the content of elements, and it can't specify

complex relationships. For example, it is impossible to specify with

a DTD that a <heading> for a <book> must have both a <title>

and an <author>, while a <heading> for a <chapter> only needs a

<title>. In a DTD, once you only get to specify the structure of the

<heading> element one time. There is no context-sensitivity.

This issue stems from the fact that a DTD specification is not

hierarchical. For a mailing address that contained several "parsed

character data" (PCDATA) elements, for example, the DTD could

be as introduced on following transparency.

Presented by Bartosz Sakowicz

../xml/java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/glossary.html#DTD

Schema standards(2)
<!ELEMENT mailAddress (name, address, zipcode)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT zipcode (#PCDATA)>

The specifications are linear. That fact forces you to come up with

new names for similar elements in different settings. So if you

wanted to add another "name" element to the DTD that contained

the <firstName>, <middleInitial>, and <lastName>, then you would

have to come up with another identifier. You could not simply call it

"name" without conflicting with the <name> element defined for

use in a <mailAddress>.

Presented by Bartosz Sakowicz

XML schema

A large, complex standard that has two parts:

One part specifies structure relationships. (This is the largest and

most complex part.)

The other part specifies mechanisms for validating the content of

XML elements by specifying a (potentially very sophisticated)

datatype for each element.

Attributes and elements
It is possible to model the title of a slide either as:

<slide> <title>This is the title</title> </slide>

or as:

<slide title="This is the title">...</slide>

In some cases, the different characteristics of attributes and

elements make it easy to choose.

Attributes and elements(2)
Sometimes, the choice between an attribute and an element is

forced on you by the nature of attributes and elements:

The data contains substructures

In this case, the data item must be modeled as an element. It

can't be modeled as an attribute, because attributes take only

simple strings. So if the title can contain emphasized text like

this:

The Best Choice

, then the title must be an element.

The data contains multiple lines

Here, it also makes sense to use an element. Attributes need

to be simple, short strings or else they become unreadable, if

not unusable.

Attributes and elements(3)
The data changes frequently

When the data will be frequently modified, especially by the

end user, then it makes sense to model it as an element. XML-

aware editors tend to make it very easy to find and modify

element data. Attributes can be somewhat harder to get to,

and therefore somewhat more difficult to modify.

The data is a small, simple string that rarely if ever changes

This is data that can be modeled as an attribute.

The data is confined to a small number of fixed choices

Here is one time when it really makes sense to use an

attribute. Using the DTD, the attribute can be prevented from

taking on any value that is not in the preapproved list. An XML-

aware editor can even provide those choices in a drop-down

list.

Attributes and elements(4)
<?xml version='1.0' encoding='utf-8'?>
<!-- A SAMPLE set of slides -->
<slideshow title="Sample Slide Show"

date="Date of publication"
author="Yours Truly" >

<!-- TITLE SLIDE -->
<slide type="all"> <title>Wake up to Wonder!</title></slide>
<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why Wonder are great</item>
<item/>
<item>Who buys Wonder</item> </slide>

</slideshow>

Handling special characters
In XML, an entity is an XML structure (or plain text) that has a

name. Referencing the entity by name causes it to be inserted into

the document in place of the entity reference. To create an entity

reference, the entity name is surrounded by an ampersand and a

semicolon:

&entityName;

Predefined entities for special characters:

Character Reference
& &

< <

> >

" "

' '

../../../../../../java/books/xmlAndJavaMail/xmltutorial/glossary.html#entityReference

Character references

•A character reference like “ contains a hash mark (#)

followed by a number.

• The number is the Unicode value for a single character, such as

65 for the letter “A”.

• In this case, the "name" of the entity is the hash mark followed

by the digits that identify the character.

Handling text with XML-style

syntax
When you are handling large blocks of XML or HTML that include

many of the special characters, it would be inconvenient to

replace each of them with the appropriate entity reference. For

those situations, you can use a CDATA section.

A CDATA section works like <pre>...</pre> in HTML, only more

so -- all whitespace in a CDATA section is significant, and

characters in it are not interpreted as XML. A CDATA section

starts with <![CDATA[and ends with]]>.

CDATA example

<item><![CDATA[Diagram:

frobmorten <------------ fuznaten |

<3> ^ | <1> | <1> = fozzle V |
<2> = framboze Staten+
<3> = frenzle <2>

]]></item>

Creating DTD
<?xml version='1.0' encoding='utf-8'?>
<!-- DTD for a simple "slide show". -->
<!ELEMENT slideshow (slide+)>

The DTD tag starts with <! followed by the tag name (ELEMENT).

After the tag name comes the name of the element that is being

defined (slideshow) and, in parentheses, one or more items that

indicate the valid contents for that element. In this case, the

notation says that a slideshow consists of one or more slide

elements.

Here are the qualifiers you can add to an element definition:

Qualifier Name Meaning
? Question Mark Optional (zero or one)

* Asterisk Zero or more

+ Plus Sign One or more

Creating DTD(2)

• You can include multiple elements inside the parentheses in a

comma separated list, and use a qualifier on each element to

indicate how many instances of that element may occur. The

comma-separated list tells which elements are valid and the order

they can occur in.

• You can also nest parentheses to group multiple items. For an

example, after defining an image element, you could declare that

every image element must be paired with a title element in a slide

by specifying:

((image, title)+).

The plus sign applies to the image/title pair to indicate that one or

more pairs of the specified items can occur.

Creating DTD(3)
Defining text and nested elements:

<!ELEMENT slide (title, item*)> <!-- (1) -->
<!ELEMENT title (#PCDATA)> <!-- (2) -->
<!ELEMENT item (#PCDATA | item)* > <!-- (3) -->

(1) - A slide consists of a title followed by zero or more item

elements.

(2) - A title consists entirely of parsed character data (PCDATA).

It is just text(Name distinguishes it from CDATA sections, which

contain character data that is not parsed.) The "#" that precedes

PCDATA indicates that what follows is a special word, rather than

an element name.

(3) - The vertical bar (|) indicates an or condition

Creating DTD(4)

Special elements values in DTD:

• Rather than specifying a parenthesized list of elements, the

element definition could use one of two special values: ANY or

EMPTY.

• The ANY specification says that the element may contain any

other defined element, or PCDATA.

• The EMPTY specification says that the element contains no

contents.

Presented by Bartosz Sakowicz

Referencing the DTD
<!DOCTYPE slideshow SYSTEM "slideshow.dtd">

The DTD tag starts with "<!". The tag name, DOCTYPE, says that

the document is a slideshow, which means that the document

consists of the slideshow element and everything within it:

<slideshow> ... </slideshow>

The DOCTYPE tag occurs after the XML declaration and before

the root element. The SYSTEM identifier specifies the location of

the DTD file. Since it does not start with a prefix like http:/ or file:/,

the path is relative to the location of the XML document.

Referencing the DTD(2)

The DOCTYPE specification could also contain DTD definitions

within the XML document, rather than referring to an external DTD

file. Such definitions would be contained in square brackets:

<!DOCTYPE slideshow SYSTEM "slideshow1.dtd" [

...local subset definitions here...

]>

Defining attributes in DTD

<!ATTLIST slideshow

title CDATA #REQUIRED

date CDATA #IMPLIED

author CDATA "unknown" >

The DTD tag ATTLIST begins the series of attribute definitions.

The name that follows ATTLIST specifies the element for which

the attributes are being defined. In this case, the element is the

slideshow element.

• Each attribute is defined by a series of three space-separated

values. Commas and other separators are not allowed.

• The first element in each line is the name of the attribute: title,

date, or author, in this case.

• The second element indicates the type of the data: CDATA is

character data

Defining attributes in DTD(2)

The last entry in the attribute specification determines the

attributes default value, if any, and tells whether or not the

attribute is required. The possible choices:

#REQUIRED - The attribute value must be specified in the

document.

#IMPLIED - The value need not be specified in the document.

"defaultValue" - The default value to use, if a value is not

specified in the document.

#FIXED "fixedValue" - The value to use. If the document

specifies any value at all, it must be the same.

Defining entities in DTD
<!DOCTYPE slideshow SYSTEM "slideshow1.dtd" [

<!ENTITY product "Wonder">

<!ENTITY products "Wonder">]>

The ENTITY tag name says that you are defining an entity. Next

comes the name of the entity and its definition. In this case, you

are defining an entity named "product" that will take the place of

the product name. Later when the product name changes you will

only have to change the name one place, and all your slides will

reflect the new value.

The last part is the substitution string that replaces the entity

name whenever it is referenced in the XML document. The

substitution string is defined in quotes, which are not included

when the text is inserted into the document.

These kind of definitions should be in external DTD.

Using entities in XML

<slideshow title="&product; Slide Show" ...

<!-- TITLE SLIDE -->

<slide type="all">

<title>Wake up to &products;!</title>

</slide>

Useful entities

Several other examples for entity definitions that you might find

useful when you write an XML document:

<!ENTITY ldquo "“"> <!-- Left Double Quote -->

<!ENTITY rdquo "”"> <!-- Right Double Quote -->

<!ENTITY trade "™"> <!-- Trademark Symbol (TM) -->

<!ENTITY rtrade "®"> <!-- Registered Trademark (R) -->

<!ENTITY copyr "©"> <!-- Copyright Symbol -->

Referencing external entities

Example:

<!DOCTYPE slideshow SYSTEM "slideshow.dtd" [

<!ENTITY product "Wonder">

<!ENTITY products "Wonder">

<!ENTITY copyright SYSTEM "copyright.xml">

]>

Copyright.xml:

<!-- A SAMPLE copyright -->

This is the standard copyright message that our lawyers make us

put everywhere

Parameter entities

Just as a general entity lets you reuse XML data in multiple

places, a parameter entity lets you reuse parts of a DTD in

multiple places.

<!ENTITY % inline "#PCDATA|em|b|a|img|br">

<!ELEMENT title (%inline;)*>

<!ELEMENT item (%inline; | item)* >

../../../../../../java/books/xmlAndJavaMail/xmltutorial/glossary.html#generalEntity
../../../../../../java/books/xmlAndJavaMail/xmltutorial/glossary.html#parameterEntity

Using namespaces
The primary goal of the namespace specification is to let the

document author tell the parser which DTD to use when parsing a

given element. The parser can then consult the appropriate DTD

for an element definition.

Conflict Example:

You can use <title> element in your book.xml. But for other

purposes you can reference xhtml.dtd (because you will use

XHTML) which already defines this element. How to avoid

disambiguity?

When a document uses an element name that exists in only one

of the .dtd files it references, the name does not need to be

qualified. But when an element name that has multiple definitions

is used, some sort of qualification is a necessity.

Using namespaces(2)
You qualify a reference to an element name by specifying the

xmlns attribute:

<title xmlns="http://www.example.com/slideshow">

Overview

</title>

The alternative is to define a namespace prefix:

<SL:slideshow xmlns:SL='http:/www.example.com/slideshow' ...>

...

<slide>

<SL:title>Overview<SL:title>

</slide>

...

</SL:slideshow>

SAX & DOM & StAX
SAX - Simple API for XML

The "serial access" protocol for XML. This is the fast-to-execute mechanism

you would use to read and write XML data. This is also called an event-driven

protocol, because the technique is to register your handler with a SAX parser,

after which the parser invokes your callback methods whenever it sees a new

XML tag (or encounters an error, or wants to tell you anything else).

DOM - Document Object Model

The Document Object Model protocol converts an XML document into a

collection of objects in your program. You can then manipulate the object model

in any way that makes sense. This mechanism is also known as the "random

access" protocol, because you can visit any part of the data at any time. You

can then modify the data, remove it, or insert new data

StAX – Streaming API for XML

StAX API provide a streaming Java technology-based, event-driven, pull-

parsing API for reading and writing XML documents. StAX offers a simpler

programming model than SAX and more efficient memory management than

DOM.

StAX APIs defined in javax.xml.stream provide a streaming Java technology-based, event-driven, pull-parsing API for reading and writing XML documents. StAX offers a simpler programming model than SAX and more efficient memory management than DOM.

Java API for XML processing

The main JAXP APIs are defined in the javax.xml.parsers

package.

That package contains two vendor-neutral factory classes:

SAXParserFactory and DocumentBuilderFactory that give you a

SAXParser and a DocumentBuilder, respectively.

The DocumentBuilder creates DOM-compliant Document object.

Presented by Bartosz Sakowicz

DMCS TUL

http://java.sun.com/xml/jaxp/dist/1.1/docs/api/javax/xml/parsers/SAXParserFactory.html
http://java.sun.com/xml/jaxp/dist/1.1/docs/api/javax/xml/parsers/DocumentBuilderFactory.html
http://java.sun.com/xml/jaxp/dist/1.1/docs/api/javax/xml/parsers/DocumentBuilder.html
http://java.sun.com/xml/jaxp/dist/1.1/docs/api/org/w3c/dom/Document.html

Overview of packages
javax.xml.parsers - The JAXP APIs, which provide a common

interface for different vendors' SAX and DOM parsers.

org.w3c.dom - Defines the Document class (a DOM), as well as

classes for all of the components of a DOM.

org.xml.sax - Defines the basic SAX APIs.

javax.xml.transform - Defines the XSLT APIs that let you

transform XML into other forms.

javax.xml.stream - Provides StAX-specific transformation APIs.

URI, URL, URN
URI - A "Universal Resource Identifier". A URI is either a URL or a

URN. (URLs and URNs are concrete entities that actually exist. A

"URI" is an abstract superclass -- it's a name we can use when we

know we are dealing with either an URL or an URN, and we don't

care which).

URL - Universal Resource Locator. A pointer to a specific location

(address) on the Web that is unique in all the world. The first part

of the URL defines the type of address. For example, http://

identifies a Web location.

URN - Universal Resource Name. A unique identifier that identifies

an entity, but doesn't tell where it is located. That lets the system

look it up to see if a local copy exists before going out to find it on

the Web. It also allows the web location to change, while still

allowing the object to be found.

../../../../../../java/books/xmlAndJavaMail/xmltutorial/alphaIndex.html#URI
../../../../../../java/books/xmlAndJavaMail/xmltutorial/alphaIndex.html#URL
../../../../../../java/books/xmlAndJavaMail/xmltutorial/alphaIndex.html#URN
../../../../../../java/books/xmlAndJavaMail/xmltutorial/glossary.html#entity

SAX architecture

Presented by Bartosz Sakowicz

DMCS TUL

SAX architecture(2)
SAXParserFactory

A SAXParserFactory object creates an instance of the parser

determined by the system property,

javax.xml.parsers.SAXParserFactory.

SAXParser

The SAXParser interface defines several kinds of parse()

methods. In general, you pass an XML data source and a

DefaultHandler object to the parser, which processes the XML

and invokes the appropriate methods in the handler object.

http://java.sun.com/xml/jaxp/dist/1.1/docs/api/javax/xml/parsers/SAXParserFactory.html
http://java.sun.com/xml/jaxp/dist/1.1/docs/api/javax/xml/parsers/SAXParser.html
http://java.sun.com/xml/jaxp/dist/1.1/docs/api/org/xml/sax/helpers/DefaultHandler.html

SAX architecture(3)

Presented by Bartosz Sakowicz

SAXReader

The SAXParser wraps a SAXReader.

DefaultHandler

DefaultHandler implements the ContentHandler, ErrorHandler,

DTDHandler, and EntityResolver interfaces (with null

methods), so you can override only the ones you're interested

in.

ContentHandler

Methods like startDocument, endDocument, startElement, and

endElement are invoked when an XML tag is recognized.

SAX architecture(4)
ErrorHandler

Methods error, fatalError, and warning are invoked in response

to various parsing errors. The default error handler throws an

exception for fatal errors and ignores other errors (including

validation errors).

DTDHandler

Defines methods you will generally never be called upon to

use. Used when processing a DTD .

EntityResolver

The resolveEntity method is invoked when the parser must

identify data identified by a URI.

../../../../../../java/books/xmlAndJavaMail/xmltutorial/glossary.html#DTD
../../../../../../java/books/xmlAndJavaMail/xmltutorial/glossary.html#URI

Echoing XML with the SAX
import java.io.*;

import org.xml.sax.*;

import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.*;

public class Echo01 extends DefaultHandler {

public static void main(String argv[]) {

if (argv.length != 1) {

System.err.println("Usage: cmd filename");

System.exit(1);

}

Echoing XML with the SAX(2)
// Use an instance of ourselves as the SAX event handler

DefaultHandler handler = new Echo01();

// Use the default (non-validating) parser

SAXParserFactory factory =

SAXParserFactory.newInstance();

try {

// Set up output stream

out = new OutputStreamWriter(System.out, "UTF8");

// Parse the input

SAXParser saxParser = factory.newSAXParser();

saxParser.parse(new File(argv[0]), handler);

Echoing XML with the SAX(3)
} catch (Throwable t) {

t.printStackTrace();

}

System.exit(0);

}

static private Writer out;

Echoing XML with the SAX(4)

Presented by Bartosz Sakowicz

public void startDocument() throws SAXException {

emit("<?xml version='1.0' encoding='UTF-8'?>"); // to output

nl(); // inserts new line

}

public void endDocument() throws SAXException {

try {

nl();

out.flush();

} catch (IOException e) {

throw new SAXException("I/O error", e);

} }

Echoing XML with the SAX(5)
public void startElement(String namespaceURI,

String lName, // local name

String qName, // qualified name

Attributes attrs) throws SAXException {

String eName = lName; // element name

if ("".equals(eName)) eName = qName;

// namespaceAware = false

emit("<"+eName);

// qName = namespace prefix + local name

Echoing XML with the SAX(6)

Presented by Bartosz Sakowicz

if (attrs != null) {

for (int i = 0; i < attrs.getLength(); i++) {

String aName = attrs.getLocalName(i); // Attr name

if ("".equals(aName)) aName = attrs.getQName(i);

emit(" ");

emit(aName+"=\""+attrs.getValue(i)+"\"");

}

}

emit(">");

}

Echoing XML with the SAX(7)
public void endElement(String namespaceURI,

String sName, // simple name

String qName // qualified name

) throws SAXException {

emit("</"+sName+">"); // or possibly qName

}

public void characters(char buf[], int offset, int len)

throws SAXException { // processes the tags body

String s = new String(buf, offset, len);

emit(s);

}

Echoing XML with the SAX(8)
// Wrap I/O exceptions in SAX exceptions, to

// suit handler signature requirements

private void emit(String s)

throws SAXException

{

try {

out.write(s);

out.flush();

} catch (IOException e) {

throw new SAXException("I/O error", e);

} }

Echoing XML with the SAX(9)
// Start a new line

private void nl()

throws SAXException

{

String lineEnd = System.getProperty("line.separator");

try {

out.write(lineEnd);

} catch (IOException e) {

throw new SAXException("I/O error", e);

} } }

Processing instructions
It sometimes makes sense to code application-specific

processing instructions in the XML data.

<slideshow ... >

<!-- PROCESSING INSTRUCTION -->
<?my.presentation.Program QUERY="exec, tech, all"?>

•The "data" portion of the processing instruction can contain

spaces, or may even be null. But there cannot be any space

between the initial <? and the target identifier.

•The data begins after the first space.

Processing instructions(2)

public void processingInstruction(String target, String data)

throws SAXException {

nl();

emit("PROCESS: ");

emit("<?"+target+" "+data+"?>");

}

Using validating parser
...

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);

...

To use validating parser a DTD is required. The Validating parser

will inform about all incompabilities between DTD and XML

document.

Document Object Model

Use when:

- We know xml file structure

- It is necessary to modify xml file structure (e.g. sorting

elements)

- We process the same element more than once

DOM architecture

DOM Interfaces

• Node - generic DOM datatype;

• Element - tag, markup;

• Attr - attribute;

• Text - content of the Element or Attr;

• Document – all XML document (DOM tree).

Example methods

• Document.getDocumentElement() - returns root element;

• Node.getFirstChild() - returns first element of particular node;

• Node.getLastChild() - returns last element of particular node;

• Node.getNextSibling() - returns next element of particular

node;

• Node.getPreviousSibling() - returns previous element of

particular node;

• Node.getAttribute(attrName) - returns Attr of given name;

Parsing DOM (1)

Parsing DOM (2)

Parsing DOM (3)

Parsing DOM (4)

Parsing DOM (5) - result

DOM Parser – Queries (1)

DOM Parser – Queries (2)

DOM Parser – Queries (3)

DOM Parser – Queries (4)

DOM Parser – creation

of XML file (1)

DOM Parser – creation

of XML file (2)

DOM Parser – creation

of XML file (3)

DOM Parser – modification

of XML file (1)

DOM Parser – modification

of XML file (2)

DOM Parser – modification

of XML file (3)

DOM Parser – modification

of XML file (4)

DOM Parser – modification

of XML file (5)

XSLT + XPATH
The XSLT (Extensible Stylesheet Language for Transformations)

transformation standard is essentially a translation mechanism

that lets you specify what to convert an XML tag into so that it can

be displayed -- for example, in HTML.

Different XSL formats can then be used to display the same data

in different ways, for different uses.

The XPATH standard is an addressing mechanism that you use

when constructing transformation instructions, in order to specify

the parts of the XML structure you want to transform.

Presented by Bartosz Sakowicz

XPath (XML Path Language)
XPath uses path expressions to select nodes or node-sets

in an XML document.

These path expressions look very much like the path

expressions you use with traditional computer file systems

XPath includes over 200 built-in functions. There are

functions for string values, numeric values, booleans, date

and time comparison, node manipulation, sequence

manipulation, and much more.

XPath expressions can also be used in JavaScript, Java,

XML Schema, PHP, Python, C and C++, and lots of other

languages.

XPath is a major element in the XSLT standard.

XPath 3.0 became a W3C Recommendation on April 8,

2014.

XPath Nodes

There are seven kinds of nodes:

element, attribute, text, namespace,

processing-instruction, comment, and

document nodes.

XML documents are treated as trees of

nodes. The topmost element of the tree

is the root element.

Xpath Syntax (2)

bookstore Selects all nodes with the name "bookstore"

/bookstore Selects the root element bookstoreNote: If the

path starts with a slash (/) it always

represents an absolute path to an element!

bookstore/book Selects all book elements that are children of

bookstore

//book Selects all book elements no matter where

they are in the document

bookstore//book Selects all book elements that are descendant

of the bookstore element, no matter where

they are under the bookstore element

//@lang Selects all attributes that are named lang

Xpath Predicates
/bookstore/book[1] Selects the first book element that is the child of

the bookstore element.Note: In IE 5,6,7,8,9 first

node is[0], but according to W3C, it is [1]. To

solve this problem in IE, set the

SelectionLanguage to XPath:

In JavaScript:

xml.setProperty("SelectionLanguage","XPath");

/bookstore/book[last()] Selects the last book element that is the child of

the bookstore element

/bookstore/book[last()-1] Selects the last but one book element that is the

child of the bookstore element

/bookstore/book[position()<3] Selects the first two book elements that are

children of the bookstore element

//title[@lang] Selects all the title elements that have an

attribute named lang

//title[@lang='en'] Selects all the title elements that have a "lang"

attribute with a value of "en"

/bookstore/book[price>35.00] Selects all the book elements of the bookstore

element that have a price element with a value

greater than 35.00

/bookstore/book[price>35.00]/title Selects all the title elements of the book

elements of the bookstore element that have a

price element with a value greater than 35.00

Xpath Operators

| Computes two node-sets //book | //cd

+ Addition 6 + 4

- Subtraction 6 - 4

* Multiplication 6 * 4

div Division 8 div 4

= Equal price=9.80

!= Not equal price!=9.80

< Less than price<9.80

<= Less than or equal to price<=9.80

> Greater than price>9.80

>= Greater than or equal to price>=9.80

or or price=9.80 or price=9.70

and and price>9.00 and price<9.90

mod Modulus (division

remainder)

5 mod 2

XSLT

XSLT - eXtensible Stylesheet Language

Transformations

It is a part of XSL (stylesheets for XML)

It can be used to transform XML to

HTML

Uses XPath

Supported by most browsers

XSLT (2)

XSLT header

XSLT namespace reference

85

<xsl:template>
The <xsl:template> element is used to

build templates.

The match attribute is used to

associate a template with an XML

element. The match attribute can also

be used to define a template for the

entire XML document. The value of the

match attribute is an XPath expression

(i.e. match="/" defines the whole

document).

<xsl:value-of> (1)

The <xsl:value-of> element can be used to

extract the value of an XML element and

add it to the output stream of the

transformation:

<xsl:value-of> (2)

XSLT

<xsl:for-each>

XSLT

<xsl:sort>

XSLT

<xsl:if>

<xsl:if test=„expression">

output

</xsl:if>

91

<xsl:choose> - many conditions

XSLT

92

<xsl:apply-templates>
The <xsl:apply-templates> element applies a

template to the current element or to the current

element's child nodes.

XSLT

XSLT transformation schema

XSLT usage example
Sample input XML:

<?xml version="1.0"?>

<ARTICLE>

<TITLE>A Sample Article</TITLE>

<SECT>The First Major Section

<PARA>This section will introduce a subsection.

</PARA>

<SECT>The Subsection Heading

<PARA>This is the text of the subsection.

</PARA>

</SECT>

</SECT>

</ARTICLE>

XSLT usage example(2)
Prefered output:

<html>

<body>

<h1 align="center">A Sample Article</h1>

<h1>The First Major Section</h1>

<p>This section will introduce a subsection.</p>

<h2>The Subsection Heading</h2>

<p>This is the text of the subsection.</p>

</body>

</html>

XSLT usage example(3)
XSLT Stylesheet:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"

>

<xsl:template match="/">

<html><body> <xsl:apply-templates/> </body></html>

</xsl:template>

<xsl:template match="/ARTICLE/TITLE">

<h1 align="center">

<xsl:apply-templates/>

</h1>

</xsl:template>

XSLT usage example(4)
<!-- Top Level Heading -->

<xsl:template match="/ARTICLE/SECT">

<h1> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/>

</h1>

<xsl:apply-templates select="SECT|PARA/>

</xsl:template>

<!-- Second-Level Heading -->

<xsl:template match="/ARTICLE/SECT/SECT">

<h2> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/>

</h2>

<xsl:apply-templates select="SECT|PARA"/>

</xsl:template>

XSLT usage example(5)
<!-- Third-Level Heading -->

<xsl:template match="/ARTICLE/SECT/SECT/SECT">

<xsl:message terminate="yes">Error: Sections can only be

nested 2 deep.

</xsl:message>

</xsl:template>

<!-- Paragraph -->

<xsl:template match="PARA">

<p><xsl:apply-templates/></p>

</xsl:template>

<!-- Text -->

<xsl:template match="text()">

<xsl:value-of select="normalize-space()"/>

</xsl:template>

</xsl:stylesheet>

