
Fundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Descriptors

Part One

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Introduction

A Symbian OS string is known as a descriptor

• As it is self-describing

• A descriptor holds the length of the string of data it represents as well as its type (which identifies the
underlying memory layout of the descriptor data)

Descriptors have something of a reputation among Symbian OS programmers

• The key point to remember is that they were designed to be very efficient on low-memory devices,

• Use the minimum amount of memory necessary to store a string while describing it in terms of its
length and layout

2

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Introduction

Descriptors are not like standard C++ strings, Java strings or the MFC CString

• Their underlying memory allocation and cleanup must be managed by the programmer

Descriptors are also are also not like C strings

• They protect against buffer overrun and do not rely on NULL terminators to determine the length
of the string

3

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Descriptors

Features of Symbian OS Descriptors

‣ Understand that Symbian OS descriptors may contain text or binary data

‣ Know that descriptors may be narrow (8-bit), wide (16-bit) or neutral (which is 16-bit
since Symbian OS is built for Unicode)

‣ Understand that descriptors do not dynamically extend the data area they reference, so
will panic if too small to store data resulting from a method call

4

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Character Size

Symbian OS

• Has been built to support Unicode character sets with wide (16-bit) characters by default

• The descriptors in early releases of Symbian OS (EPOC) up to Symbian OS v5 had 8-bit native
characters

The character width of descriptor classes can be identified from their names.

• Class names ending in 8 (e.g. TPtr8) it have narrow (8-bit) characters

• Class name ending with 16 (e.g. TPtr16) manipulates 16-bit character strings

5

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Character Size

There is also a set of neutral classes

• Which have no number in their name (e.g. TPtr)

• The neutral classes are typedef ’d to the character width set by the platform

• The neutral classes were defined for source compatibility purposes to ease the switch between narrow
and wide builds

Today Symbian OS is always built with wide characters

• It is recommended practice to use the neutral descriptor classes where the character width does not

need to be stated explicitly.

6

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Memory Management

Descriptor classes do not dynamically manage the memory used to store their
data

• The modification methods check that the maximum length of the descriptor is sufficient for
the operation to succeed

• If it is not, they do not re-allocate memory for the operation

• But instead panic to indicate that an overflow would have occurred

7

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Memory Management

The contents of the descriptor can shrink and expand

• up to the maximum length allocated to the descriptor

Before calling a descriptor method which expands the data

• The developer should implement the necessary checks to ensure that there is sufficient space
available in the descriptor

• The contents of the descriptor can shrink and expand up to the maximum length allocated to
the descriptor

8

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Descriptors

The Symbian OS Descriptor Classes

‣ Know the characteristics of the TDesC, TDes, TBufC, TBuf, TPtrC, TPtr,
RBuf and HBufC descriptor classes

‣ Understand that the descriptor base classes TDesC and TDes implement all generic
descriptor manipulation code, while the derived descriptor classes merely add
construction and assignment code specific to their type

‣ Identify the correct and incorrect use of modifier methods in the TDesC and TDes
classes

‣ Recognize that there is no HBuf class, but that RBuf can be used instead as a modifiable
dynamically allocated descriptor

9

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Key Descriptor Class Concepts

These will be covered later, but to proceed it is helpful to be aware of the
following points

• TDesC is the base class for all descriptors

• There are currently six derived descriptor classes (TPtrC, TPtr, TBufC, TBuf, HBufC and RBuf)

Each subclass

• Does not implement its own data access method using virtual function overriding

• This would add an extra 4 bytes to each derived descriptor object for a virtual pointer (vptr)

to access the virtual function table

• 4 bits of the 4 bytes that store the length of the descriptor object are used to indicate the
class type of the descriptor

10

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Key Descriptor Class Concepts

Descriptors come in two basic layouts:

• Pointer descriptors - in which the descriptor holds a pointer to the location of a character
string stored elsewhere

• Buffer descriptors - where a string of characters forms part of the descriptor

11

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Descriptor Class Inheritance Hierarchy

12

A first glance at the inheritance tree

TDesC

HBufC

TDes

TBufBase

TBufCBaseTPtrC

TPtrTBufC<n>

TBuf<n>

RBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Symbian OS Descriptor Class: TDesC

13

TDesC

HBufC

TDes

TBufBase

TBufCBaseTPtrC

TPtrTBufC<n>

TBuf<n>

RBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Symbian OS Descriptor Class: TDesC

All the descriptor classes derive from the base class TDesC

• Apart from the literal descriptors (discussed later)

• The T prefix indicates a simple type class

• The C suffix reflects that the class defines a non-modifiable type of descriptor i.e. constant

14

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

TDesC defines the fundamental layout of every descriptor type:

To identify each of the derived classes

• The top 4 bits are used to indicate the type of memory layout of descriptor

• Remaining 28 bits are used to hold the length of the descriptor data

• Thus the maximum length of a descriptor is limited to 2^28 bytes (256 MB) Plenty!

Symbian OS Descriptor Class: TDesC

15

0..3 4..31
type iLength
TDesC

4 bytes

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Symbian OS Descriptor Class: TDesC

TDesC provides methods

• For determining the length of the descriptor - Length()

• Accessing the data - Ptr()

Using Length() and Ptr() methods

• The TDesC base class can implement all the operations typically possible on a constant string object, such

as data access, comparison and search

The derived classes

• All inherit these methods but they are never overridden since they are equally valid for all types of

descriptor.

• In consequence all constant descriptor manipulation is implemented by TDesC regardless of the type of

the descriptor

A good example of code reuse

16

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Symbian OS Descriptor Class: TDesC

Access to the descriptor data

• Is different depending on the implementation of the derived descriptor classes (buffer or pointer)

• When a descriptor operation needs the correct address in memory for the beginning of the descriptor
data

• It uses the Ptr() method of TDesC which looks up the type (the top 4 bits) of descriptor

• And returns the correct address for the beginning of the data

17

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Symbian OS Descriptor Class: TDes

18

TDesC

HBufC

TDes

TBufBase

TBufCBaseTPtrC

TPtrTBufC<n>

TBuf<n>

RBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The modifiable descriptor types all derive from the base class TDes

• A subclass of TDesC

• TDes has an additional member variable to store the maximum length of data allowed for the

current memory allocated to the descriptor

• The MaxLength() method of TDes returns this value - it is not overridden by derived

classes

TDes defines a range of methods to manipulate modifiable string data

• Including appending, filling and formatting the descriptor data

• All the manipulation code is implemented by TDes and inherited by the derived classes.

Symbian OS Descriptor Class: TDes

19

TDesC
type

4 bytes

iLength iMaxLength

TDes

4 bytes

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Derived Descriptor Classes

Descriptors come in two basic layouts:

• Pointer descriptors in which the descriptor holds a pointer to the location of a character
string stored elsewhere

• Buffer descriptors where a string of characters forms part of the descriptor.

20

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Pointer Descriptors: TPtrC and TPtr

21

TDesC

HBufC

TDes

TBufBase

TBufCBaseTPtrC

TPtrTBufC<n>

TBuf<n>

RBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Pointer Descriptors: TPtrC and TPtr

The string data of a pointer descriptor

• Is separate from the descriptor object itself

• Can be stored in ROM, on the heap or on the stack

• The memory that holds the data is not “owned” by the descriptor

Pointer descriptors

• Are agnostic about where the memory they point to is actually stored

• The pointer descriptors themselves are usually stack-based

• But they can be used on the heap for example as a member variable of a CBase-derived class

22

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Pointer Descriptors: TPtrC and TPtr

• The pointer to the data follows the length word thus the total size of the descriptor object is two words (8
bytes)

• TPtrC is the equivalent of using const char* when handling strings in C

• The data can be accessed but not modified i.e. the data in the descriptor is constant

• All the non-modifying operations defined in the TDesC base class are accessible to objects of type TPtrC

23

iLength
TDesC

4 bytes

iPtr

4 bytes

TPtrC

“hello world”

The non-modifiable pointer descriptor TPtrC

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Pointer Descriptors: TPtrC and TPtr

The class also defines a range of constructors to allow TPtrC to be constructed

from another:

• Descriptor

• A pointer into memory

• A zero-terminated C string

24

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Pointer Descriptors: TPtrC and TPtr

25

_LIT(KDes, "abc");

TPtrC ptr(KDes);

TPtrC copyPtr(ptr);

TBufC<100> constBuffer(KDes);

TPtrC myPtr(constBuffer);

const TText8* cString = (TText8*)"abc ...";

TPtrC8 anotherPtr(cString);

TUint8* memoryLocation;

TInt length;

...

TPtrC8 memPtr(memoryLocation,length);

Constructed from a literal descriptor

Copy constructed from another TPtrC

Constant buffer descriptor

Constructed from a TBufC

TText8 is a single (8-bit) character,

equivalent to unsigned char

Constructed from a zero-terminated C

string

Pointer into memory initialized elsewhere

Length of memory to be represented

Examples of TPtrC constructors

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Pointer Descriptors: TPtrC and TPtr

• The data location pointer (4 bytes) follows the maximum length of TDes (4 bytes), which itself

follows the length word of TDesC (4 bytes)

• The descriptor object is three words in total (12 bytes)

• The TPtr class can be used for access to, and modification of, a character string or binary

data

• All the modifiable and non-modifiable base-class operations of TDes and TDesC may be

performed on a TPtr

26

A modifiable pointer descriptor TPtr

4 bytes 4 bytes4 bytes

iLength
TDesC

iPtr

TPtr

“hello world”iMaxLength

TDes

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Pointer Descriptors: TPtrC and TPtr

The class defines constructors

• To allow objects of type TPtr to be constructed from pointer into an address in memory

• Setting the length and maximum length as appropriate

The compiler

• Also generates implicit default and copy constructors

• Since they are not explicitly declared protected or private in the class

A TPtr object

• May be copy-constructed from another modifiable pointer descriptor

• For example by calling the Des() method on a non-modifiable buffer

27

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Pointer Descriptors: TPtrC and TPtr

28

_LIT(KLiteralDes1, "abc ..");

TBufC<60> buf(KLiteralDes1);

TPtr ptr(buf.Des());

TInt length = ptr.Length();

TInt maxLength = ptr.MaxLength();

TUint8* memoryLocation;

...

TInt len = 12;

TInt maxLen = 32;

TPtr8 memPtr(memoryLocation, maxLen);

TPtr8 memPtr2(memoryLocation, len, maxLen);

TBufC is described later

 Copy construction - can modify the data in buf

 Length=37 characters

Maximum length=60 chars, as for buf

 Valid pointer into memory

...

 Length of data to be represented

 Maximum length to be represented

Construct a pointer descriptor from a pointer
into memory

 length=0, max=32
 length=12, max=32

Examples of TPtr constructors

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Stack-Based Buffer Descriptors TBufC and TBuf

29

TDesC

HBufC

TDes

TBufBase

TBufCBaseTPtrC

TPtrTBufC<n>

TBuf<n>

RBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The stack-based buffer descriptors may be modifiable or non-modifiable

• The string data forms part of the descriptor object

Located after the length word in a non-modifiable descriptor

Located after the maximum-length word in a modifiable buffer descriptor

These descriptors are useful for fixed-size relatively small strings (i.e. stack-based)

• They may be considered equivalent to char[] in C

• But with the benefit of overflow checking

30

Stack-Based Buffer Descriptors TBufC and TBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

• Used to hold constant string or binary data.

• The class derives from TBufCBase (which derives from TDesC and exists as an inheritance

convenience rather than to be used directly)

• TBufC<n> is a thin template class which uses an integer value to determine the size of the

data area allocated for the buffer descriptor object

31

TBufC is the non-modifiable buffer class

iLength
TDesC

4 bytes

iBuf

n*sizeof(char)

TBufC<n>

“hello world”

Stack-Based Buffer Descriptors TBufC and TBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

TBufC has several constructors

• One to allow non-modifiable buffers to be constructed from a copy of any other descriptor or
from a zero-terminated string

• TBufC can also be created empty and filled later

As the data is non-modifiable

• The entire contents of the buffer is replaced by calling the assignment operator defined by the
class

• The replacement data may be another non-modifiable descriptor or a zero-terminated string

In each case

• The new data length must not exceed the length specified in the template parameter when the
buffer was created.

32

Stack-Based Buffer Descriptors TBufC and TBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.33

_LIT(KPalindrome, "aabbaa");

TBufC<50> buf1(KPalindrome);

TBufC<50> buf2(buf1);

...

TBufC<30> buf3((TText16*)"Never odd or even");

TBufC<50> buf4;

...

buf4 = buf1;

buf1 = buf3;

buf3 = buf2;

 Constructed from literal descriptor
Constructed from buf1

Constructed from a NULL-terminated C string

 Constructed empty length = 0

Copy and replace
 buf4 contains data copied from buf1, length modified

 buf1 contains data copied from buf3, length modified

 Panic! Max length of buf3 is insufficient for buf2 data

Examples of TBufC constructors

Stack-Based Buffer Descriptors TBufC and TBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

• The integer value determining the maximum allowed length of the buffer

• It derives from TBufBase which itself derives from TDes

• Inherits the full range of non-modifiable and modifiable descriptor operations in TDes and
TDesC

34

The TBuf<n> class for modifiable buffer data is a thin template class

iLength
TDesC

4 bytes n*sizeof(char)

TBuf<n>

iBuf “hello world”iMaxLength

TDes

4 bytes

Stack-Based Buffer Descriptors TBufC and TBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.35

_LIT(KPalindrome, "aabbaa");

TBuf<40> buf1(KPalindrome);

TBuf<40> buf2(buf1); //

TBuf8<40> buf3((TText8*)"Do Geese see God?");

TBuf<40> buf4;

...

buf4 = buf2;

buf3 = (TText8*)"Murder for a jar of red rum";

 Constructed from literal descriptor

Constructed from constant buffer descriptor

 Constructed from a NULL-terminated C string

 Constructed empty
length = 0 maximum length = 40

Copy and replace

buf2 copied into buf4, updating length and

max length

 updated from C string

TBuf<n> defines a number of constructors and assignment operators

• Similar to those offered by its non-modifiable counterpart TBufC<n>

Stack-Based Buffer Descriptors TBufC and TBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Dynamic Descriptors: HBufC

36

TDesC

HBufC

TDes

TBufBase

TBufCBaseTPtrC

TPtrTBufC<n>

TBuf<n>

RBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Heap-based descriptors can be used

• for string data that cannot be placed on the stack because it is too big or its size is not known at
compile time

• where malloc ’d data would be used in C

37

iLength
TDesC

4 bytes

iBuf

n*sizeof(char)

HBuf

“hello world”

The class layout is similar to TBufC

Dynamic Descriptors: HBufC

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.38

The HBufC8 and HBufC16 classes

• Export a number of static NewL() factory functions to create the descriptor on the heap

• These methods follow the two-phase construction model and may leave if there is insufficient
memory available

There are no public constructors

• All heap buffers must be constructed using one of these methods

TDesC::Alloc() or TDesC::AllocL()

• May be used - these spawn an HBufC copy of any existing descriptor

Dynamic Descriptors: HBufC

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

These descriptors are not modifiable

• In common with the stack-based non-modifiable buffer descriptors the class provides a set of
assignment operators

• These replace the entire contents of the buffer

• Objects of the class can also be modified at run-time by creating a modifiable pointer
descriptor TPtr using the Des() method

Heap descriptors

• Can be created dynamically to the size required

• But they are not automatically resized

• The buffer must have sufficient memory available for the modification operation to succeed or
a panic will occur

39

Dynamic Descriptors: HBufC

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.40

_LIT(KPalindrome, "Do Geese see God?");

TBufC<20> stackBuf(KPalindrome);

...

HBufC* heapBuf = HBufC::NewLC(20);

TInt length = heapBuf->Length();

TPtr ptr(heapBuf->Des());

ptr = stackBuf;

length = heapBuf->Length();

HBufC* heapBuf2 = stackBuf.AllocLC();

length = heapBuf2->Length();

_LIT(KPalindrome2, "Palindrome");

*heapBuf2 = KPalindrome2;

length = heapBuf2->Length();

CleanupStack::PopAndDestroy(2, heapBuf);

 Allocates an empty heap descriptor of max length

20

 Current length = 0

 Modification of the heap descriptor

Copies stackBuf contents into heapBuf

 length = 17

From stack buffer

 length = 17

Copy and replace data in heapBuf2

 length = 10

HBufC Constructor example

• Pay close attention to the modifiable ptr from
heapBuf->Des()

Dynamic Descriptors: HBufC

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Dynamic Descriptors: RBuf

41

TDesC

HBufC

TDes

TBufBase

TBufCBaseTPtrC

TPtrTBufC<n>

TBuf<n>

RBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Class RBuf behaves like HBufC

• The maximum length required can be specified dynamically

• On instantiation, an RBuf object can allocate its own buffer, take ownership of pre-allocated memory or a

pre-existing heap descriptor

• RBuf descriptors are typically created on the stack

• But maintain a pointer to memory on the heap

RBuf is derived from TDes

• An RBuf object can easily be modified and can be passed to any function where a TDesC or TDes

parameter is specified

• There is no need to create a TPtr around the data in order to modify it

• This makes it preferable to HBufC when dynamically allocating a descriptor which is later modified.

42

Dynamic Descriptors: RBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

• As a TPtr descriptor type which points to a buffer containing only descriptor data

The RBuf object allocates or takes ownership of memory existing elsewhere

• As a pointer to a heap descriptor HBufC*

The RBuf object takes ownership of an existing heap descriptor thus the object pointed to contains a complete descriptor

object

43

iLength
TDesC

4 bytes

TUint16* iEPtrType

RBuf

iMaxLength

TDes

4 bytes

HBufC16* iEBufCPtrType

Union of ...

‘H’‘E’ ‘O’‘L’‘L’

‘H’‘E’ ‘O’‘L’‘L’
HBufC

4 bytes

Heap
Internally RBuf behaves in one of two ways:

Dynamic Descriptors: RBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The handling of the internal union representation is transparent

• There is no need to know how a specific RBuf object is represented internally

• The descriptor operations correspond to the usual base-class methods of TDes and TDesC

The class is not named HBuf

• As the objects are not directly created on the heap

It is an R class

• As it manages a heap-based resource and is responsible for freeing the memory at cleanup time

44

Dynamic Descriptors: RBuf

Copyright © 2001-2007 Symbian Software Ltd.

Curriculum Check ListFundamentals of Symbian OS

Descriptors: Part One

✓ Features of Symbian OS Descriptors

✓ The Symbian OS Descriptor Classes

45

Fundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Descriptors

Part Two

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Descriptors

 The Inheritance Hierarchy of the Descriptor Classes

‣ Know the inheritance hierarchy of the descriptor classes

‣ Understand the memory efficiency of the descriptor class inheritance model and its
implications

47

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The Inheritance Hierarchy of the Descriptor
Classes

48

TDesC

HBufC

TDes

TBufBase

TBufCBaseTPtrC

TPtrTBufC<n>

TBuf<n>

RBuf

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The Inheritance Hierarchy of the Descriptor Classes

The TDesC and TDes base classes

• Provide the descriptor manipulation methods

• Must know the type of derived class they are operating on in order to correctly locate the data area

Each subclass

• Does not implement its own data access method using virtual function overriding

This would add an extra 4 bytes to each derived descriptor object for a virtual pointer (vptr) to access the virtual

function table

49

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The Inheritance Hierarchy of the Descriptor Classes

Descriptors were designed to be as efficient as possible

• The size overhead to accommodate a C++ vptr was considered undesirable

To allow for the specialization of derived classes

• The top 4 bits of the 4 bytes that store the length of the descriptor object are used to indicate
the class type of the descriptor

50

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The Inheritance Hierarchy of the Descriptor Classes

There are currently six derived descriptor classes: TPtrC, TPtr, TBufC,
TBuf, HBufC and RBuf

• Each sets the identifying iType bits as appropriate upon construction

• The use of 4 bits to identify the type limits the number of different types of descriptor to 2^4

(= 16)

• It seems unlikely that the range will need to be extended significantly in the future

51

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The Inheritance Hierarchy of the Descriptor Classes

For all descriptors, access to the descriptor data goes through the non-virtual
Ptr() method of the base class TDesC

• It uses a switch statement to check the 4 bits, identify the type of descriptor and return the

correct address for the beginning of its data.

• This requires that the TDesC base class has knowledge of the memory layout of its subclasses

hard-coded into Ptr()

52

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Descriptors

Using the Descriptor APIs

‣ Understand that the descriptor base classes TDesC and TDes cannot be instantiated

‣ Understand the difference between Size(), Length() and MaxLength() descriptor
methods

‣ Understand the difference between Copy() and Set() descriptor methods and how to
use assignment correctly

53

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Using the Descriptor APIs

The TDesC and TDes descriptor base classes

• Provide and implement the APIs for all descriptor operations

• Typically the derived descriptors only implement specific methods for construction and copy
assignment.

Objects of type TDesC and TDes

• Cannot be instantiated directly because their default constructors are protected.

• It is the derived descriptor types that are actually instantiated and used

The descriptor API methods

• Are fully documented in the Symbian OS Library of each SDK and the course examples

• This lecture focuses on some of the trickier areas of descriptor manipulation

54

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Using the Descriptor APIs

The difference between Length()and Size()

• The Size() method returns the size of the descriptor in bytes

• The Length() method returns the number of characters it contains

• For 8-bit descriptors this is the same as the size i.e. the size of a character is a byte

From Symbian OS v5u (version 5 unicode)

• The native character is 16 bits wide i.e. each character occupies two bytes

• Size() always returns a value double that of Length() for neutral and explicitly wide

descriptors

55

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

MaxLength() and Length Modification Methods

The MaxLength() method
• Of TDes returns the maximum length of a modifiable descriptor value

• Like the Length() method of TDesC it is not overridden by the derived classes

The SetMax() method
• Sets the current length of the descriptor to the maximum length allowed

• It does not change the maximum length of the descriptor thereby expanding or contracting the
data area

56

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

MaxLength() and Length Modification Methods

The SetLength() method
• Can be used to adjust the descriptor length to any value between zero and its

maximum length

The Zero() method
• Sets the length to zero

57

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Set() and the Assignment Operator

The pointer descriptor types

• Provide Set() methods which update them to point at different string data

58

_LIT(KDes1, "Sixty zippers were quickly picked from the woven jute bag");

_LIT(KDes2, "Waltz, bad nymph, for quick jigs vex");

TPtrC alpha(KDes1);

TPtrC beta(KDes2);

alpha.Set(KDes2); // alpha points to the data in KDes2

beta.Set(KDes1); // beta points to the data in KDes1

 Literal descriptors are described later

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Set() and the Assignment Operator

TDes provides an assignment operator TDes::operator =()

• Used copy data into the memory referenced by any modifiable descriptor

• Provided the length of the data to be copied does not exceed the maximum length of the
descriptor which would cause a panic

It is easy to confuse Set() with TDes::operator =()

• Set() resets a pointer descriptor to point at a new data area

Changes the length and maximum length members

• TDes::operator =() merely copies data into an existing descriptor

Modifies the descriptor length but not its maximum length

59

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Set() and operator =()

60

_LIT(KLiteralDes1, "Jackdaws love ...");
TBufC<60> buf(KLiteralDes1);
TPtr ptr(buf.Des());
TUint16* memoryLocation;
...

TInt maxLen = 40;
TPtr memPtr(memoryLocation, maxLen);

memPtr = ptr; // Assignment
_LIT(KLiteralDes2, "The quick brown fox ...");
TBufC<100> buf2(KLiteralDes2);
TPtr ptr2(buf2.Des());

ptr.Set(ptr2);
memPtr = ptr2;

Points to the contents of buf
Valid pointer into memory

...
 Maximum length to be represented

 max length=40
 Copy and replace

 memPtr data is KLiteralDes1 (37 bytes), max
length=40

Points to the data in buf2
 Replace what ptr points to

ptr points to contents of buf2, max length = 100
Attempt to update memPtr, which panics because the

contents of ptr2 (43 bytes) exceeds max length of
memPtr (40 bytes)

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Modifying Data with Des()

The content of a non-modifiable buffer descriptor cannot be altered directly
other than by complete replacement of the data

• The stack- and heap-based TBufC and HBufC descriptors provide a method which returns a

modifiable pointer descriptor to the data represented by the buffer

But it is possible to change the data indirectly

• by calling Des() and then operating on the data via the pointer

When the data is modified via the return value of Des()

• The length members of both the pointer descriptor and the constant buffer descriptor are
updated

61

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Modifying Data with Des()

62

_LIT8(KPalindrome, "Satan, oscillate...");

TBufC8<40> buf(KPalindrome);

TPtr8 ptr(buf.Des());

...

ptr = (TText8*)"Do Geese see God?";

ASSERT(ptr.Length()==buf.Length());

_LIT8(KPal2, "Are we not drawn onward...");

ptr = KPal2; // Assignment

Constructed from literal descriptor

Data is the string in buf, max length = 40

Use ptr to replace contents of buf

Panic!

KPal2 exceeds max length of buf (=40)

Note: All descriptors are 8 bit

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Descriptors

Descriptors as Function Parameters

‣ Understand that the correct way to specify a descriptor as a function parameter is to use
a reference, for both constant data and data that may be modified by the function in
question.

63

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Descriptors as Function Parameters

The TDesC and TDes descriptor base classes

• Provide and implement the APIs for all descriptor operations

• They can be used as function arguments and return types, allowing descriptors to be passed around in
code without forcing a dependency on a particular type

An API client

• Should not be constrained to using a TBuf because a particular function requires it

Function providers

• Should remain agnostic to the type of descriptor passed to them

Unless a function takes or returns ownership

• It should not need to specify whether a descriptor is stack- or heap-based

64

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Descriptors as Function Parameters

When defining functions

• The TDesC and TDes base classes should always be used as parameters or return values

• For efficiency, descriptor parameters should be passed by reference

• Either as const TDesC& for constant descriptors or TDes& when modifiable

Except: When returning ownership of a heap-based descriptor as a return
value

• It should be specified explicitly so that the caller can clean it up appropriately and avoid a

memory leak

65

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Descriptors

Correct Use of the Dynamic Descriptor Classes

‣ Identify the correct techniques and methods to instantiate an HBufC heap buffer object

‣ Recognize and demonstrate knowledge of how to use the new descriptor class RBuf

66

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Correct Use of the Dynamic Descriptor Classes
HBufC construction and usage

• HBufC can be spawned from existing descriptors using the Alloc() or AllocL()

overloads implemented by TDesC

• This example which shows how to replace inefficient code with use of TDesC::AllocL()

67

void CSampleClass::UnnecessaryCodeL(const TDesC& aDes)

 {

 iHeapBuffer = HBufC::NewL(aDes.Length());

 TPtr ptr(iHeapBuffer->Des());

 ptr.Copy(aDes);

 ...

 }

 {

 iHeapBuffer = aDes.AllocL();

 }

 Could be replaced by a single line

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

HBufC Construction and Usage

An HBufC object

• Can also be instantiated using the static NewL() factory methods specified for the class

• For HBufC16 the methods available are as follows:

68

static IMPORT_C HBufC16* NewL(TInt aMaxLength);

static IMPORT_C HBufC16* NewLC(TInt aMaxLength);

• These methods create a new heap-based buffer descriptor with maximum length as specified

• Leave if there is insufficient memory available for the allocation

• The NewLC method leaves the successfully created descriptor object on the cleanup stack

• The heap descriptor is empty and its length is set to zero

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

An HBufC16 object

• Can also be instantiated using the non leaving method static New() factory:

69

static IMPORT_C HBufC16* New(TInt aMaxLength);

• This method creates a new heap-based buffer descriptor with maximum length as specified

• It does not leave if there is no heap memory available to allocate the descriptor

• The caller must compare the returned pointer against NULL to confirm that it has succeeded

before dereferencing it

• The heap descriptor is empty and its length is set to zero

HBufC Construction and Usage

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

NewMax methods also set HBufC16’s length to the maximum value

70

static IMPORT_C HBufC16* NewMax(TInt aMaxLength);

static IMPORT_C HBufC16* NewMaxL(TInt aMaxLength);

static IMPORT_C HBufC16* NewMaxLC(TInt aMaxLength);

• These methods create a new heap-based buffer descriptor with maximum length as specified
and set its length to the maximum value

• No data is assigned to the descriptor

If insufficient memory is available for the allocation:

• NewMax() return a NULL pointer ()

• NewMaxL() and NewMaxLC() will leave

• NewMaxLC() leaves the successfully allocated descriptor on the cleanup stack

HBufC Construction and Usage

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Initializing an HBufC16 from the contains of a RReadStream

71

static IMPORT_C HBufC16* NewL(RReadStream& aStream, TInt aMaxLength);

static IMPORT_C HBufC16* NewLC(RReadStream& aStream, TInt aMaxLength);

• These methods allocate a heap-based buffer descriptor and initialize it from the contents of a read
stream

• Reads from the stream up to the maximum length specified (or the maximum length of the stream

data - whichever is shortest) and allocates a buffer to hold the contents

• Typically used to reconstruct a descriptor that has previously been externalized to a write stream
using the stream operators

HBufC Construction and Usage

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Descriptor Externalization and Internalization
An example of descriptor externalization and internalization using streams

72

 void CSampleClass::ExternalizeL(RWriteStream& aStream) const
 {

 aStream.WriteUint32L(iHeapBuffer->Length());
 aStream.WriteL(*iHeapBuffer, iHeapBuffer->Length());
 }

/** */

 void CSomeClass::InternalizeL(RReadStream& aStream)
 {

 TInt size = aStream.ReadUint32L();
 iHeapBuffer = HBufC::NewL(size);

 TPtr ptr(iHeapBuffer->Des());

 aStream.ReadL(ptr,size);

 }

 Writes the contents of
iHeapBuffer to a writable stream

Write the descriptor’s length
 Write the descriptor’s data

 Instantiates iHeapBuffer by

reading the contents of the stream

 Read the descriptor’s length
 Allocate iHeapBuffer

Create a modifiable descriptor
over iHeapBuffer

Read the descriptor data into
iHeapBuffer via ptr

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Descriptor Externalization and Internalization

The following code

• Shows the use of the stream operators as a more efficient alternative

• The stream operators have been optimized to compress the descriptor’s meta-data as much as
possible for efficiency and space conservation

73

void CSampleClass::ExternalizeL(RWriteStream& aStream) const

 {// Much more efficient, no wasted storage space

 aStream << iHeapBuffer;
 }

void CSampleClass::InternalizeL(RReadStream& aStream)

 {// KMaxLength indicates the maximum length of

 // data to be read from the stream

 iHeapBuffer = HBufC::NewL(aStream, KMaxLength);
 }

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

RBuf

While there is a non-modifiable heap descriptor class HBufC

• There is no corresponding modifiable HBuf class

Which might have been expected in order to make heap buffers symmetrical with TBuf stack buffers.

The RBuf class was first introduced in Symbian OS v8.0

• But first documented in Symbian OS v8.1 and used most extensively in software designed for
phones based on Symbian OS v9 and later

74

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

• Create() allocates a buffer for the RBuf to reference

• If the RBuf previously owned a buffer, Create() will not clean it up before assigning the

new buffer reference

Cleanup must be done explicitly by calling Close() first

An RBuf can alternatively take ownership of a pre-existing section of memory

using the Assign()method

• Assign() will also orphan any data already owned

(Close() should be called first to avoid memory leaks)

75

RBuf myRBuf;

_LIT(KHelloRBuf, "Hello RBuf!");

myRBuf.Create(KHelloRBuf());

RBuf objects can be instantiated using

• Create(), CreateMax() or CreateL() to specify the maximum length of descriptor

data that can be stored

• It is also possible to instantiate an RBuf to store a copy of the contents of another

descriptor:

RBuf Construction and Usage

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Using Assign() to take ownership

76

HBufC* myHBufC = HBufC::NewL(20);
RBuf myRBuf.Assign(myHBufC);
...

myRBuf.Close();

TInt maxSizeOfData = 20;
RBuf myRBuf;
TUint16* pointer =
 static_cast<TUint16*>(User::AllocL(maxSizeOfData*2));

myRBuf.Assign(pointer, maxSizeOfData);
...

myRBuf.Close();

 Taking ownership of HBufC

Use and clean up

Taking ownership of pre-allocated heap
memory

Use and clean up

RBuf Construction and Usage

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The RBuf class

• Does not manage the size of the buffer and reallocate it if more memory is required

• If Append() is called on an RBuf object for which there is insufficient memory available - a panic

will occur

• This should be clear from the fact that the base-class methods are non-leaving

• i.e. there is no scope for the reallocation to fail in the event of low memory

77

RBuf Construction and Usage

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The memory for RBuf operations must be managed by the programmer

• The ReAllocL() method can be used as follows:

78

myRBuf.CleanupClosePushL();

myRBuf.ReAllocL(newLength);

CleanupStack::Pop ();

myRBuf is the buffer to be resized e.g. for an Append()

operation

 Push onto cleanup stack for leave-safety
 Extend to newLength

Remove from cleanup stack

RBuf Construction and Usage

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

RBuf Construction and Usage

Using an RBuf is preferable to using an HBufC in that:

• If the ReAllocL()method is used on the HBufC and causes the heap cell to move any

associated HBufC* and TPtr variables need to be updated

• This update is not required for RBuf objects as the pointer is maintained internally

79

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

RBuf Construction and Usage

The class is not named HBuf

• Unlike HBufC objects of this type are not themselves directly created on the heap

It is instead an R class

• As it manages a heap-based resource and is responsible for freeing the memory at cleanup time

As is usual for other R classes cleanup is performed by calling Close()

If the RBuf

• Was pushed onto the cleanup stack by a call to CleanupClosePushL() use
CleanupStack::PopAndDestroy()

80

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

It is possible to create an RBuf from an existing HBufC

• The RBuf class is both modifiable and dynamically allocated and thus is an advantage over HBufC

• Being able to create an RBuf from an HBufC object is a good migration route from pre-Symbian OS v8.1

Previously

• It would have been necessary to instantiate an HBufC and then use a companion TPtr object -

constructed by calling Des() on the heap descriptor

When to use RBuf or HBufC?

• RBuf is recommended for use when a dynamically allocated buffer is required to hold data that changes

frequently

• HBufC should be preferred when a dynamically allocated descriptor is needed to hold data that rarely

changes

81

RBuf Construction and Usage

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

HBufC vs RBuf

82

HBufC* socketName = NULL;

// KMaxNameLength is defined elsewhere

if(!socketName)

 {

 socketName = HBufC::NewL(KMaxNameLength);

 }

// Create writable ’companion’ TPtr

TPtr socketNamePtr(socketName->Des());

message.ReadL(message.Ptr0(), socketNamePtr);

RBuf socketName;

...

if(socketName.Compare(KNullDesC)==0)

 {

 socketName.CreateL(KMaxNameLength);

 }

message.ReadL(message.Ptr0(), socketName);

Using HBufC for modifiable data Using RBuf for modifiable data

The code is simpler

• It is easier to understand and maintain

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Descriptors

Common Inefficiencies in Descriptor Usage

‣ Know that TFileName objects should not be used indiscriminately, because of the stack
space each consumes

‣ Understand when to dereference an HBufC object directly, and when to call Des() to
obtain a modifiable descriptor (TDes&)

83

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Common Inefficiencies in Descriptor Usage

TFileName objects waste stack space

• The TFileName type is typedef’d as a modifiable stack buffer with maximum length 256 characters

• It can be useful when calling various file system functions to parse filenames into complete paths - since the
exact length of a filename is not always known at compile time

• For example to print out a directory’s contents

However, since each character is of 16-bit width

• Every time a TFileName object is declared on the stack it consumes 2 × 256 = 512 bytes

• Plus the 12 bytes required for the descriptor object itself

• That’s just over 0.5 KB!

The default stack size for an application is only 8 KB

84

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

TFileName Objects Waste Stack Space

On Symbian OS the stack space for each process is limited

• By default it is just 8 KB

• On the Windows emulator if more stack space is needed the stack will just expand

• This is not the case on a phone - a panic will be raised when the stack overflow occurs

• This can be hard to track down since it will not be seen when testing on the emulator so cannot be easily
debugged

85

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

TFileName Objects Waste Stack Space

At 0.5 KB a single TFileName object

• Can consume and potentially waste a significant proportion of the stack space

It is good practice to use one of the dynamic heap descriptor types

• Or limit the use of TFileName objects to members of C classes as these types are always created on

the heap

86

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Referencing HBufC through TDesC
The HBufC class derives from TDesC

• The HBufC* pointer can simply be dereferenced when a reference to a non-modifiable descriptor TDesC& is

required

A common mistake is to call the Des() method on the heap descriptor

• This creates a separate TPtr referencing the descriptor data

• This is not incorrect it returns a TDes&

• But it is clearer and more efficient simply to return the HBufC object directly

87

const TDesC& CSampleClass::AccidentalComplexity()
 {

 return (iHeapBuffer->Des());

 // could be replaced more efficiently with

 return (*iHeapBuffer);
 }

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Descriptors

Literal Descriptors

‣ Know how to manipulate literal descriptors and know that those specified using _L are
deprecated

‣ Specify the difference between literal descriptors using _L and those using _LIT and the
disadvantages of using the former

88

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Literal Descriptors

Literal descriptors are different from the other descriptor types

• They are equivalent to static char[] in C and can be built into program binaries in ROM

(if the code is part of the system) because they are constant

• There is a set of macros defined in e32def.h which can be used to define Symbian OS

literals of two different types, _LIT and _L

89

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Literal Descriptors

_LIT macro

• The _LIT macro is preferred for Symbian OS literals since it is the more efficient type

• It has been used in the sample code throughout these lectures - typically as follows:

90

_LIT(KFieldMarshalTait, "Field Marshal Tait");

• KFieldMarshalTait can then be used as a constant descriptor - for example to write to a

file or display to a user

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The _LIT Macro

The _LIT macro

• Builds a named object (KFieldMarshalTait) of type TLitC16 into the program binary

• Storing the appropriate string in this case "Field Marshal Tait"

• The explicit macros _LIT8 and _LIT16 behave similarly except that _LIT8 builds a narrow string of

type TLitC8

91

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The _LIT Macro

TLitC8 and TLitC16 do not derive from TDesC8 or TDesC16

• But they have the same binary layouts as TBufC8 or TBufC16

• This allows objects of these types to be used wherever TDesC is used

• The string stored in the program binary has a NULL terminator because the native

compiler string is used to build it

• The _LIT macro adjusts the length to the correct value for a non-terminated

descriptor

92

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Symbian OS also defines literals yo represent a blank string

• There are three variants of the null descriptor, defined as follows:

• Build independent:

• 8-bit for non-Unicode strings:

• 16-bit for Unicode strings:

The _LIT Macro

93

_LIT(KNULLDesC,"");

_LIT8(KNULLDesC8,"");

_LIT16(KNULLDesC16,"");

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

_L Macro

Use of the _L macro

• Is now deprecated in production code

• It may still be used in test code (where memory use is less critical)

• The advantage of using _L is that it can be used in place of a TPtrC without having to declare it

separately from where it is used:

94

User::Panic(_L("telephony.dll"), KErrNotSupported);

• For the example above, the string ("telephony.dll") is built into the program binary as a

basic, NULL-terminated string

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

_L Macro

Unlike the TLitC built for the _LIT macro

• It has no initial length member

• This means the layout of the stored literal is not like that of a descriptor i.e. no length word

Thus when the code executes

• Each instance of _L will result in construction of a temporary TPtrC

• With the pointer being set to the address of the first byte of the literal as it is stored in ROM

95

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

_LIT and _L Memory Layouts

 The difference memory layouts

• In ROM for literals created using _LIT and _L macros

96

_LIT(KHello,”Hello World!”) TPtrC KHello(_L(”Hello World!”))

iPtr12Hello World!\0 iLength 12 Hello World!\0

ROM ROMStack Temporary

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Descriptors

Descriptor Conversion

‣ Know how to convert 8-bit descriptors into 16-bit descriptors and vice versa using the
descriptor Copy() method or the CnvUtfConverter class

‣ Recognize how to read data from file into an 8-bit descriptor and then ‘translate’ the data
to 16-bit without padding, and vice versa

‣ Know how to use the TLex class to convert a descriptor to a number, and TDes::Num
() to convert a number to a descriptor

97

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Descriptor Conversion

Conversion between narrow and wide descriptors

• TDes implements an overloaded set of Copy() methods which allow copying directly into descriptor

data from:

• Another descriptor

• A NULL-terminated string

• A pointer

The Copy()methods

• Copy the data into the descriptor setting its length accordingly

• The methods will panic if the maximum length of the receiving descriptor is shorter than the incoming
data

98

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Descriptor Conversion

The Copy() method

• Is overloaded to take either an 8- or 16-bit descriptor

It is possible

• To copy a narrow-width descriptor onto a narrow-width descriptor

• To copy a wide descriptor onto a wide descriptor

It is also possible

• To copy between descriptor widths

• i.e. carrying out an implicit conversion in the process

99

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Wide to Narrow

The Copy() method implemented by TDes8

• Is to copy an incoming wide descriptor into a narrow descriptor

• It strips out alternate characters assuming them to be zeroes - the data values do not exceed
255 (decimal).

• The Copy() method which copies a narrow descriptor into the data area is a straight data

copy

100

C T TBuf8<3> cat(_L8("CAT"));

TBuf16<3> dog(_L16("DOG"));

cat.Copy(dog); DOG

A

\0\0\0D O G
NULL characters stripped out in wide-to-

narrow descriptor copy

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Narrow to Wide

For class TDes16

• An incoming 16-bit descriptor can be copied directly onto the data area

• The Copy() method that takes an 8-bit descriptor pads each character with a trailing zero

as part of the copy operation

101

S M A L L\0 \0\0\0\0

TBuf8<5> small(_L8("SMALL"));

TBuf16<5> large(_L16("LARGE"));

large.Copy(small);

SMALL

\0L A R G E\0 \0\0\0
 NULL characters used to pad narrow-

to-wide descriptor copy

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Copy() methods

The Copy() methods

• Form a rudimentary means of copying and converting between 8- and 16-bit descriptors

• When the character set is encoded by one byte per character

• And the last byte of each wide character is simply a NULL character padding

102

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

 The CnvUtfConverter Class

Is used to perform a proper conversion

• In both directions between 16-bit Unicode (UCS-2) and 8-bit non-Unicode character sets

• Or between Unicode and the UTF-7 and UTF-8 transformation sets

The CnvUtfConverter class

• Supplied by charconv.lib (see header file utf.h) is available

• The class supplies a set of static methods such as ConvertFromUnicodeToUtf8() and
ConvertToUnicodeFromUtf8()

103

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Converting Descriptors to Numbers

A descriptor can be converted to a number using the TLex class

• This class provides general-purpose lexical analysis and performs syntactical element parsing and
string-to-number conversion

• Using the locale-dependent functions of TChar to determine whether each character is a digit, a

letter or a symbol

104

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Converting Descriptors to Numbers

 TLex is the build-width neutral class

• Implicitly TLex16

• TLex8 and TLex16 can also be used explicitly

• The neutral form should be preferred unless a particular variant is required

• TLex can be constructed with the data for constructed empty and later assigned the data

• Both construction and assignment can take:

• Another TLex object

• A non-modifiable descriptor

• A TUint16* or TUint8* (for TLex16 or TLex8 respectively) pointer to string data

105

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Converting Descriptors to Numbers

At the very simplest level

• When the string contains just numerical data, the descriptor contents can be converted to an
integer using the Val() function of TLex

106

_LIT(KTestLex, "54321");
TLex lex(KTestLex());

TInt value = 0;

TInt err = lex.Val(value); // value == 54321 if no error occurred

• The Val() function is overloaded for different signed integer types (TInt, TInt8, TInt16,
TInt32, TInt64) with or without limit checking

• There are also Val() overloads for the unsigned integer types, passing in a radix value (decimal,

hexadecimal, binary or octal), and for TReal

• TLex provides a number of other API methods for manipulation and parsing

• These are documented in the Symbian OS Library in each SDK

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Converting Numbers to Descriptors

The descriptor classes

• Provide several ways to convert a number to a descriptor

• The various overloads of AppendNum(), AppendNumFixedWidth(),Num() and

NumFixedWidth() convert the specified numerical parameter to a character representation

• Either completely replacing the contents of or appending the data to the descriptor

107

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Converting Numbers to Descriptors

Formatting with conversion directives

• The Format(), AppendFormat(), FormatList() and AppendFormatList()

methods of TDes each take a format string

• Containing literal text embedded with conversion directives

• And a trailing list of arguments

Each formatting directive

• Consumes one or more arguments from the trailing list

• And can be used to convert numbers into descriptor data

108

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Packaging Objects in Descriptors

Flat data objects

• Can be stored within descriptors using the package buffer TPckgBuf and package pointer TPckg and

TPckgC classes

• This is useful for inter-thread or inter-process data transfer when making a client–server request

A T-class object

• May be packaged whole into a descriptor (“descriptorized”) so it may be passed in a type-safe manner
between threads or processes

109

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Packaging Objects in Descriptors

The TPckgBuf, TPckg and TPckgC classes

• Are thin template classes

• Derived from TBuf<n>, TPtr and TPtrC respectively (see e32std.h)

• The classes are type-safe and are templated on the type to be packaged

110

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Packaging Objects in Descriptors

There are two package pointer classes

• Modifiable TPckg or non-modifiable TPckgC pointer descriptors which refer to the existing instance of the

template-packaged class

• Functions may be called on the enclosed object (TSample theSample next slides)

• If it is enclosed in a TPckgC a constant reference to the packaged object is returned from operator()

111

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Packaging Objects in Descriptors

There is one package buffer class

• The package buffer TPckgBuf creates and stores a new instance of the type to be encapsulated in a

descriptor

• The copied object is owned by the package buffer (next slide)

It is modifiable

• Functions may be called on it after calling operator() on the TPckgBuf object to retrieve it

• The package buffer contains a copy of the original object thus only the copy is modified, the original is
unchanged

112

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Memory Layout of the TPckg, TPckgC and
TPckgBuf Classes

113

TSample theSample

iLength
TDesC

iPtr

TPtr

iMaxLength

TDes

iLength
TDesC

iPtr

TPtrC

copy of theSampleiLength
TDesC

TBuf<n>

iMaxLength

TDes

TPckg<TSample>

TPckgC<TSample>

TPckBuf<TSample>

DescriptorsFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Packaging Objects in Descriptors
A simple T class encapsulated in each of the package types

114

class TSample

 {

public:

 void SampleFunction();

 void ConstantSampleFunction() const;

private:

 TInt iSampleData;

 };

TSample theSample;

TPckg<TSample> packagePtr(theSample);

TPckgC<TSample> packagePtrC(theSample);

TPckgBuf<TSample> packageBuf(theSample);

packagePtr().SampleFunction();

packagePtrC().SampleFunction();

packagePtrC().ConstantSampleFunction();

packageBuf().SampleFunction();

TSample is the class to be packaged up inside the
descriptor packages

Methods that maybe called on the (enclosed) object

Modifiable package containing theSample
Non-modifiable package containing theSample

Modifiable package containing a copy of theSample
Calling methods directly on the enclosed theSample object

Compile error! Non-const method
Fine a const method called

Modifying a copy of theSample

Copyright © 2001-2007 Symbian Software Ltd.

Curriculum Check ListFundamentals of Symbian OS

Descriptors: Part Two

✓ The Inheritance Hierarchy of the Descriptor Classes

✓ Using the Descriptor APIs

✓ Descriptors as Function Parameters

✓ Correct Use of the Dynamic Descriptor Classes

✓ Common Inefficiencies in Descriptor Usage

✓ Literal Descriptors

✓ Descriptor Conversion

115

