

PRZEKSZTAŁTNIKI ELEKTRONICZNE

Ćwiczenie C41

Impulsowy falownik napięcia

Filtracja w układach impulsowych

Ramowy plan pracy

15′	30′	45′	1 ^h	1 ^h 15′	1 ^h 30′	po zajęciach

Opracowanie ćwiczenia i instrukcji: Łukasz Starzak, Sebastian Simiński

Łódź 2011

Spis treści

B	Wpro	wadzenie do ćwiczenia	5
1.	Cel i	przebieg ćwiczenia	5
С	Dośw	iadczenie	7
2.	Pom	iary	7
	2.1.	Układ laboratoryjny	7
	2.2.	Przygotowanie układu	9
	2.3.	Wykonanie pomiarów	12
		Wpływ współczynnika modulacji częstotliwości12	
		Charakterystyka sterowania12	
		Wpływ obciążenia13	
		Zakończenie pomiarów13	
D 3.	Wyni Opra	ki acowanie i analiza wyników	15 15
	3.1.	Dane liczbowe	15
		Uruchomienie programu Scilab15	
		Wyznaczenie wartości i widma napięcia wyjściowego	
	0.0	Parametry dla zmiennego współczynnika modulacji amplitudy i obciążenia	10
	3.2.	Analiza wynikow	18
		Działanie układu	
		Wpływ współczymika modulacji częstoliwości na znieksztatemia napięcia	
		Charakterystyki falownika	
		Wpływ pozostałych parametrów pracy na zniekształcenia harmoniczne	
E	Inforr	nacje	21
4.	Liter	atura	21

B

Wprowadzenie

do ćwiczenia

1. Cel i przebieg ćwiczenia

Celem ćwiczenia jest poznanie zasady działania niezależnego falownika impulsowego (tj. pracującego na zasadzie modulacji współczynnika wypełnienia – PWM). Podstawowe wiadomości o układzie podano w literaturze [1]. Szczegóły działania obwodu sterowania nie zawierają się w programie przedmiotu. Ćwiczenie jest również okazją do zbadania pracy typowego filtru wyjściowego.

Doświadczenie

2. Pomiary

2.1. Układ laboratoryjny

W ćwiczeniu badany jest układ jednofazowego impulsowego falownika napięcia o budowie mostkowej z 4 tranzystorami MOSFET, przedstawiony na rys. 1. Przebieg wyjściowy jest w nim uzyskiwany na podstawie zadanej funkcji modulującej, na zasadzie modulacji jedno- lub dwubiegunowej (uni- lub bipolarnej); w ćwiczeniu wykorzystana zostanie wyłącznie modulacja dwubiegunowa. Układ przeznaczony jest do pracy ze stałą częstotliwością wyjściową 50 Hz; nominalne napięcie wyjściowe (skuteczne) wynosi 24 V, moc czynna znamionowa 25 W.

Rozmieszczenie przełączników, potencjometrów oraz gniazd wejściowych, wyjściowych i pomiarowych na górnej płycie układu laboratoryjnego przedstawia rys. 2.

Układ laboratoryjny umożliwia zmianę, w szerokim zakresie, dwóch podstawowych parametrów, za pośrednictwem których możliwe jest sterowanie pracą falownika:

– pokrętłami Regulacja częstotliwości, Zgrubna i Dokładna (za pomocą śrubokręta) – współczynnika modulacji częstotliwości m_f

$$m_f = \frac{f_{\rm tri}}{f_{\rm mod}} \tag{1}$$

poprzez zmianę częstotliwości sygnału nośnego $f_{\rm tri}$;

 <u>pokrętłem</u> Amplituda (w dolnej części panelu) – współczynnika modulacji amplitudy m_a

$$m_a = \frac{A_{\rm mod}}{A_{\rm tri}} \tag{2}$$

poprzez zmianę amplitudy sygnału modulującego Amod;

 oprócz tego <u>przełącznikiem</u> *Amplituda* (w górnej części panelu) możliwy jest wybór amplitudy sygnału nośnego A_{tri}: 2 V lub 3 V (wartości przybliżone). Układ zawiera 3 moduły: obwód sterowania, obwód mocy oraz osobny obwód dolnoprzepustowego filtru wyjściowego typu LC o najprostszej topologii Γ. Wartości elementów filtru to $L_{\rm s}$ = 15,9 mH (dławik mocy na rdzeniu ferrytowym), $C_{\rm p}$ = 19,4 μF (szeregowe połączenie bipolarnych kondensatorów elektrolitycznych o wartościach 33 μF i 47 μF). Odbiornik może być włączony bezpośrednio na wyjście mostka (praca bez filtracji) lub też na wyjście filtru po uprzednim połączeniu jego wejścia z wyjściem mostka.

W ćwiczeniu napięcie wyjściowe na wyjściu mostka (tj. na jego przekątnej) będziemy oznaczać u_{oi} , natomiast napięcie wyjściowe na wyjściu filtru będziemy oznaczać u_o . Nie będziemy używać pojęcia "napięcie wyjściowe falownika", gdyż w badanym układzie określenie to nie jest jednoznaczne.

Rys. 1. Schemat badanego układu falownika (budowę obwodu sterowania uproszczono)

Rys. 2. Rozmieszczenie elementów na górnej płycie badanego układu

2.2. Przygotowanie układu

Aby nie tracić czasu, równolegle z pkt. 1 należy wykonywać kolejne punkty.

- 1. Włączyć komputer. Po zakończeniu logowania, włączyć oscyloskop i skonfigurować połączenie z komputerem <u>postępując ściśle według instrukcji</u> dostępnej na stanowisku.
- Do zasilenia obwodu sterowania (gniazda Zasilanie –3/0/+3 V) wykorzystać jeden zasilacz o dwóch sekcjach regulowanych ustawiony w tryb szeregowej pracy sekcji (Series – dwa przyciski pośrodku panelu czołowego). Wszystkie pokrętła skręcić do zera (skrajne położenie przeciwne do ruchu wskazówek zegara). Masę, tj. zacisk "–" sekcji Master, uziemić przez połączenie z sąsiednim zaciskiem GND.
- 3. Do zasilenia obwodu mocy (gniazda *Zasilanie U_d* +/-) wykorzystać drugi zasilacz. Jeżeli jest to zasilacz o dwóch sekcjach regulowanych, ustawić tryb niezależnej pracy sekcji (*Independent*). Pokrętło regulacji napięcia skręcić do zera, pokrętło ograniczenia prądowego do maksimum (zgodnie z kierunkiem wskazówek zegara). Masę, tj. zacisk "-", uziemić przez połączenie z uziemionym już zaciskiem zasilacza obwodu sterowania.
- 4. Do wyjścia mostka, tj. w jego przekątną gniazda VSL i VSR (u_{oi} na rys. 1), dołączyć wejście filtru LC (lewa para gniazd) w taki sposób, aby zwroty napięć były zgodne według rys. 1. Do wyjścia filtru (prawa para gniazd, u_o na rys. 1) przyłączyć odbiornik żarówkę o parametrach znamionowych 24 V, 21 W. Równolegle do żarówki włączyć multimetr ustawiony w tryb pomiaru wartości skutecznej składowej przemiennej napięcia, na zakresie dostosowanym do napięcia znamionowego odbiornika.
- 5. Ustawić parametry sygnału modulującego:
 - a) wyjście generatora funkcyjnego (*Func Out*) przyłączyć kablem BNC bezpośrednio do wejścia kanału 1 oscyloskopu;
 - b) wyłączyć na tym kanale uwzględnianie sondy napięciowej (CH1 Menu, ustawić Probe: 1X);
 - c) ustawić synchronizację (*Trigger Menu*) zboczem (*Edge*) narastającym (*Slope*: Rising), sygnałem z kanału 1 (*Source*: CH1), w trybie automatycznym (*Mode*: Auto), ze sprzężeniem niskiej częstotliwości (*Coupling*: HF Reject); poziom wyzwalania (*Level*) ustawić na ok. 0 V;
 - d) włączyć generator;
 - e) na generatorze wcisnąć przycisk *Range/Attn* i przyciskami strzałek wybrać zakres zawierający częstotliwość 50 Hz; następnie ustawić tę częstotliwość pokrętłem *Frequency*;
 - f) dostosować nastawy oscyloskopu (podstawę czasu *Sec/Div*, wzmocnienie *Volts/Div*, położenie poziomu zera *Vertical Position*) do obserwowanego przebiegu;
 - g) obserwując przebieg na oscyloskopie, pokrętłem *Amplitude* ustawić amplitudę 2 V (tj. międzyszczytową 4 V);
 - h) kabel BNC z wyjścia generatora funkcyjnego przełączyć na wejście MOD na panelu układu falownika.
- 6. Na panelu układu falownika ustawić:
 - przełącznik Synchronizacja w pozycję Wył,
 - przełącznik *Amplituda* (na górze panelu) w pozycję 3V w wyniku tego $A_{tri} \approx 3$ V,
 - przełącznik *Modulacja* w pozycję *Bipolarna*.
- 7. Skonfigurować oscyloskop:
 - a) na kanałach 1 i 2 ustawić:
 - sprzężenie ze składową stałą *Coupling*: DC,
 - brak sondy tłumiącej *Probe*: 1X,
 - odwracanie przebiegu wyłączone Invert: Off,
 - wzmocnienie 1 V/div,

- położenie poziomu zera (wskazywane przez strzałkę na lewo od podziałki) na środku ekranu;
- b) na kanałach 3 i 4 ustawić:
 - sprzężenie ze składową stałą *Coupling*: DC,
 - tłumienie sondy 10:1 *Probe*: 10X,
 - odwracanie przebiegu wyłączone *Invert*: Off,
 - wzmocnienie 20 V/div,
 - położenie poziomu zera na środku ekranu;
- c) wyświetlić przebiegi z kanałów 1 i 2, ukryć z kanałów 3 i 4 (przyciski *CHx MENU*).

Powyższych ustawień nie należy w żadnym razie zmieniać w trakcie wykonywania ćwiczenia; jedynym wyjątkiem może być położenie poziomów zera.

8. Do wejść oscyloskopu doprowadzić napięcia z badanego układu:

Masy kanałów (końcówki krokodylkowe sond, czarne końcówki przewodów BNC) są na oscyloskopie zwarte ze sobą i połączone z przewodem ochronnym sieci; w związku z tym <u>muszą być zawsze przyłączone do tego samego potencjału</u>. Inne połączenie grozi przepływem prądu przez oscyloskop i uszkodzeniem jego obwodów wejściowych! Do przyłączania mas sond służą na panelu układu badanego czarne gniazda <u>oznaczone symbolem masy</u>. Nie wszystkie gniazda koloru czarnego są oznaczone symbolem masy!

- do kanału 1 za pośrednictwem kabla BNC z końcówkami bananowymi przebieg modulujący u_{mod} przeskalowany, na rys. 1 oznaczony u_{mod}';
- do kanału 2 za pośrednictwem kabla BNC z końcówkami bananowymi przebieg nośny u_{tri};
- do kanału 3 za pośrednictwem sondy 10:1 potencjał umownego bieguna dodatniego (zgodnie z rys. 1, gniazdo czerwone) napięcia wyjściowego mostka u_{0i};
- do kanału 4 za pośrednictwem sondy 10:1 potencjał umownego bieguna ujemnego (zgodnie z rys. 1, gniazdo czarne) napięcia wyjściowego mostka u_{oi}.

Masy kanałów 1 i 2 należy przyłączyć do jednego z gniazd w lewej części panelu (w obwodzie sterowania), natomiast masy kanałów 3 i 4 – w prawej części panelu (w obwodzie mocy).

Przed wykonaniem kolejnych punktów poprawność połączeń musi sprawdzić prowadzący.

- 9. Włączyć zasilacz obwodu sterowania. Nieznacznie zwiększyć próg ograniczenia prądowego <u>obu</u> sekcji. Pokrętłem *Voltage* sekcji *Master* ustawić napięcie 3 V. Amperomierz zasilacza nie powinien wykazywać poboru prądu większego niż kilkadziesiąt miliamperów i nie powinien pracować w trybie ograniczenia prądowego (wskazywanego przez czerwoną kontrolkę sekcji *Master*) w przeciwnym razie należy wyłączyć zasilacz i poprosić prowadzącego o ponowne sprawdzenie układu.
- 10. Na oscyloskopie uaktywnić funkcje pomiaru (*Measure*) i przyciskami obok ekranu wybrać pomiar częstotliwości (*Freq*) przebiegów z kanałów 1 i 2. Na panelu układu ustawić:
 - pokrętłem *Regulacja częstotliwości zgrubna* częstotliwość przebiegu nośnego f_{tri} około 1 kHz;
 - pokrętłem *Amplituda* amplitudę przebiegu modulującego A_{mod} na w przybliżeniu równą (ale nie większą) amplitudzie przebiegu nośnego A_{tri} tj. $m_a \approx 1$ (obserwując przebiegi u_{mod} i u_{tri} na ekranie; z powodu występujących zakłóceń nie będzie możliwe użycie do tego celu funkcji pomiaru na oscyloskopie).
- 11. Wyłączyć wyświetlanie przebiegów z kanałów 1 i 2. Włączyć funkcję arytmetyczną *Math* na ekranie powinien pojawić się przebieg oznaczony literą M. Wybrać funkcję różnicy (*Operation:* –) przebiegów z kanałów 3 i 4 (CH3–CH4). W ten sposób na sztucznym kanale M będzie możliwa obserwacja przebiegu będącego różnicą przebiegów z kanałów 3 i 4, tj. napięcia u_{oi} na wejściu filtru LC.

Jak wynika ze schematu układu, wyjście falownika (ani mostka, ani filtru) nie posiada połączenia z masą; dokonanie pomiaru napięcia u_{0i} (jak również u_0) nie jest więc możliwe z użyciem pojedynczej sondy.

- 12. Włączyć zasilacz obwodu mocy. Obserwując, czy wskazanie amperomierza nie przekracza 1,5 A, ustawić napięcie zasilania (pokrętło sekcji *Master*) 30 V (układ startuje dopiero przy odpowiednio wysokim napięciu zasilania). Żarówka powinna zacząć świecić. Jeżeli wskazanie amperomierza przekracza wskazaną wartość, należy natychmiast wyłączyć zasilacz i poprosić o pomoc prowadzącego. Zanotować ustawione napięcie zasilania *U*_d i nie zmieniać go w dalszym ciągu ćwiczenia <u>niezależnie</u> od wskazania woltomierza na wyjściu.
- 13. Przywrócić wyświetlanie przebiegów z kanałów 1 i 2. Podstawę czasu oscyloskopu ustawić tak, by obserwować 2–4 okresy przebiegu modulującego u_{mod} .

2.3. Wykonanie pomiarów

Wpływ współczynnika modulacji częstotliwości

- 1. Zmieniając współczynnik m_f od 5 do maksymalnej wartości, przy której układ pracuje stabilnie (brak migotania żarówki i słyszalnych anomalii), dla 5–8 punktów:
 - a) obserwując wskazania f_{mod} (na generatorze) i f_{tri} (na oscyloskopie funkcja pomiaru *Measure*), ustawić daną wartość m_{f_2}

w przypadku niskich wartości m_f , dla których widzialne i słyszalne są okresowe zmiany w pracy układu (potocznie można je określić jako pulsowanie), należy zadbać o dokładną synchronizację częstotliwości f_{mod} i f_{tri} za pomocą potencjometru regulacji dokładnej, w wyniku czego pulsowanie ustąpi, zaś przebiegi u_{mod} i u_{tri} nie będą się przesuwać względem siebie na ekranie (a przynajmniej będą się przesuwać bardzo powoli);

- b) obserwując amplitudy przebiegów widoczne na oscyloskopie upewnić się, że nadal współczynnik $m_a \approx 1 w$ razie potrzeby wyregulować A_{mod} pokrętłem *Amplituda*;
- c) przyciskiem *Run/Stop* zamrozić przebiegi na ekranie w takim momencie, w którym występuje synchronizacja nie tylko częstotliwości, ale również fazy przebiegów u_{mod} i u_{tri} tzn. zbocza narastające obu przebiegów u_{mod} i u_{tri} przekraczają poziom zera jednocześnie, co przedstawiono na rys. 3 (założono tu, że cały czas nieznacznie przesuwają się one względem siebie w przeciwnym razie należy użyć potencjometru regulacji dokładnej chwilowo wprawiając je w nieznaczny ruch i doprowadzając do odpowiedniego przesunięcia);
- d) w programie WaveStar utworzyć arkusz *YT Sheet* i pobrać do niego przebiegi (<u>dokładnie te</u>, nie należy pobierać innych): *u*_{mod}, *u*_{tri}, *u*_{oi} przez ich przeciągnięcie z panelu bocznego (*Local*, *oznaczenie oscyloskopu*, *Data*, *Waveforms*; kanał M widoczny jest jako *Math 1*);
- e) przełączyć sondy z kanałów 3 i 4 tak, by mierzyć napięcie na wyjściu filtru u_0 (zachowując przypisanie kanałów do umownych zacisków "+" i "–" kolor czerwony i czarny);
- f) dodatkowo pobrać przebieg u_0 do tego samego arkusza *YT Sheet*, nie usuwając poprzednich;

Zaleca się zawsze pobieranie przebiegów w kolejności: najpierw u_{0i} [pkt d)], potem u_0 [pkt e)], gdyż ułatwi to późniejsze przetwarzanie wyników.

Ponieważ przebieg z kanału M jest pobierany dwa razy do tego samego arkusza, nie jest do końca możliwe wykorzystanie funkcji odświeżania arkusza (*Refresh Datasheet*). Aby nie przeciągać wszystkich przebiegów ponownie, należy (po zapisaniu danego zestawu przebiegów i ustawieniu nowej wartości m_f) usunąć ostatni dodany przebieg z kanału M przez wciśnięcie klawisza *Delete* i dopiero wówczas odświeżyć arkusz przyciskiem *Refresh Datasheet*, a następnie jeszcze raz pobrać przebieg z kanału M po przełożeniu sond na wyjście filtru.

- g) zapisać komplet 4 przebiegów u_{mod} , u_{tri} , u_{oi} , u_{o} <u>w postaci numerycznej</u>, tj. w formacie programu WaveStar (SHT, funkcja *Save Datasheet*, nie *Save Worksheet*);
- h) zanotować wskazania f_{mod} z generatora i f_{tri} z oscyloskopu oraz wartość m_{f_r}
- i) w toku pomiarów zanotować:
 - obserwacje dotyczące pracy falownika przy małych wartościach m_f w przypadku braku wzajemnej synchronizacji częstotliwości przebiegów u_{mod} i u_{tri} ;
 - przy jakiej (mniej więcej) wartości m_f wzajemna synchronizacja częstotliwości przebiegów u_{mod} i u_{tri} przestaje mieć znaczenie tj. przestają być widoczne i słyszane dudnienia w przypadku braku tej synchronizacji.

Charakterystyka sterowania

2. Przełącznikiem Amplituda wybrać $A_{\text{tri}} \approx 2$ V. Ustawić $m_f = 21$.

Rys. 3. Obraz obserwowany na oscyloskopie przy pełnej synchronizacji częstotliwości i fazy przebiegów u_{mod} i u_{tri}

- 3. Zmieniając współczynnik m_a od wartości minimalnej, przy której napięcie na wyjściu filtru u_o (nie mostka u_{oi}) ma widoczną amplitudę (nie zmieniać wzmocnień kanałów na oscyloskopie), do wartości ok. 2, dla 8–10 punktów:
 - a) obserwując amplitudy A_{mod} i A_{tri} na oscyloskopie, ustawić ich stosunek m_a (określenie dokładnej wartości m_a w tej chwili nie jest istotne i nie należy tego robić, aby nie wydłużać wykonania ćwiczenia do tego celu posłużą później zarejestrowane oscylogramy);
 - b) w programie WaveStar do arkusza *YT Sheet* pobrać przebiegi: u_{mod} , u_{tri} , u_{oi} (ewentualnie odświeżyć w sposób opisany w pkt. 1);
 - c) przełączyć sondy z kanałów 3 i 4 tak, by mierzyć napięcie u_0 i pobrać ten przebieg do tego samego arkusza, nie usuwając poprzednich;
 - d) zapisać komplet 4 przebiegów u_{mod} , u_{tri} , u_{oi} , u_{o} w formacie programu WaveStar (SHT).

Wpływ obciążenia

- 4. Przełącznikiem Amplituda wybrać na powrót $A_{tri} \approx 3$ V. Przywrócić $m_a \approx 1$ (nie więcej). Utrzymać $m_f = 21$.
- 5. Wyłączyć zasilacz obwodu mocy. Zmienić odbiornik na opornik regulowany 170 Ω , w szereg włączając multimetr pracujący w trybie amperomierza wartości skutecznej przebiegu przemiennego, na zakresie umożliwiającym pomiar prądów do 3 A.
- 6. Włączyć zasilacz obwodu mocy. Zmieniając wartość opornika i poprzez to obciążenie *I*_o (wartość skuteczna odczyt wartości z multimetru) w zakresie ok. 0,2...2 A, dla 3–5 punktów:
 - a) w programie WaveStar do arkusza *YT Sheet* pobrać przebiegi: u_{mod} , u_{tri} , u_{oi} (ewentualnie odświeżyć w sposób opisany w pkt. 1);
 - b) przełączyć sondy z kanałów 3 i 4 tak, by mierzyć napięcie u_0 i pobrać ten przebieg do tego samego arkusza, nie usuwając poprzednich;
 - c) zapisać komplet 4 przebiegów u_{mod} , u_{tri} , u_{oi} , u_{o} w formacie programu WaveStar (SHT);
 - d) zanotować wskazanie amperomierza *I*₀.

Zakończenie pomiarów

- 7. Wyłączyć aparaturę (w poniższej kolejności):
 - skręcić do zera napięcie zasilania obwodu mocy i wyłączyć zasilacz,

- wyłączyć generator funkcyjny,
- skręcić do zera napięcie zasilania obwodu sterowania i wyłączyć zasilacz;
- przywrócić tryb niezależnej pracy sekcji (*Independent*).
- 8. Na oscyloskopie wyłączyć funkcję *Math* tak, aby z ekranu zniknął przebieg M.

3. Opracowanie i analiza wyników

3.1. Dane liczbowe

Uruchomienie programu Scilab

- 1. Uruchomić pakiet do obliczeń numerycznych Scilab.
- 2. Wczytać skrypt zawierający funkcje potrzebne do obliczenia energii wydzielanej w tranzystorze, wpisując polecenia

exec('ścieżka_dostępu_do_skryptu\wavestar_calka.sce'); exec('ścieżka_dostępu_do_skryptu\falownik_c41.sce');

gdzie *ścieżka_dostępu_do_skryptu* jest ścieżką dostępu (w laboratorium: y:\ELEMS\skrypty; skrypt jest również dostępny na stronie internetowej).

3. Aby w dalszym ciągu pracy nie wpisywać za każdym razem pełnej ścieżki dostępu do plików z danymi pomiarowymi (pliki programu WaveStar), można zmienić katalog roboczy na katalog zawierający te pliki, wpisując polecenie

cd('ścieżka_dostępu_do_pomiarów');

Wyznaczenie wartości i widma napięcia wyjściowego

- 4. Dla każdego z oscylogramów zapisanych w p
kt. 2.3/1 dla różnych wartości współczynnika modulacji częstotliwości
 $m_{\rm f}$:
 - a) w programie Wavestar otworzyć plik SHT;
 - b) wyeksportować dane do pliku tekstowego typu CSV (*comma-separated values*) przez menu *File* ▶ *Export Datasheet* ▶ *CSV*;
 - c) wczytać wyeksportowany plik w programie Scilab wpisując polecenie

[naglowek,dane]=wczytaj_ws(nazwa_pliku);

d) w programie Scilab spróbować dokonać automatycznego wyznaczenia parametrów wpisując polecenie

[Uoi,Uo]=oblicz(dane,nr_mod,nr_tri,nr_uoi,nr_uo,fmod,ftri);

gdzie: nr_mod , nr_tri , nr_uoi , $nr_uo -$ numery kolejne przebiegów u_{mod} , u_{tri} , u_{oi} i u_o zgodnie z rosnącą numeracją w programie WaveStar, natomiast zamiast *fmod* i *ftri* należy w tej chwili podać 0.

Np. jeżeli w programie WaveStar wyświetlane są: 2) u_{mod} , 3) u_{tri} , 4) u_o , 6) u_{oi} , to należy podać kolejno: 1, 2, 4, 3; jeżeli zaś numeracja zaczyna się od 1 i nie ma "dziur", to numery są identyczne jak w programie WaveStar.

- e) funkcja *oblicz* wyświetli wartości parametrów:
 - częstotliwości f_{mod} i f_{tri} oraz współczynnik modulacji m_{β}
 - amplitudy A_{mod} i A_{tri} ,
 - współczynnik zniekształceń harmonicznych d_h napięcia u_{oi} i napięcia u_o (wartość obliczana jest z definicji zawierającej składową podstawową X₁, nie całą składową przemienną X_a, może więc być większa od 1 [2])
 - wartości skuteczne napięć U_{oi} i U_o;
- f) sprawdzić, czy automatyczna detekcja częstotliwości dała prawidłowy wynik porównać z wartościami zanotowanymi w pkt. 2.3/1.h); jeżeli nie – należy wyznaczyć daną częstotliwość ręcznie, mierząc okres przebiegu kursorami pionowymi w programie WaveStar, a następnie uruchomić funkcję *oblicz* ponownie, wpisując wyznaczoną częstotliwość w odpowiednie miejsce zamiast zera (*fmod* lub *ftri*);
- g) sprawdzić, czy automatyczna detekcja amplitudy dała prawidłowy wynik porównać na oko z amplitudami przebiegów widocznymi w programie WaveStar; jeżeli nie – należy wyznaczyć daną częstotliwość ręcznie, mierząc okres przebiegu kursorami poziomymi w programie WaveStar;
- h) funkcja *oblicz* powoduje jednocześnie skopiowanie powyższych parametrów do schowka (w takiej samej kolejności, w jakiej są wyświetlane w oknie programu Scilab, oprócz współczynnika m_j); należy je wkleić do arkusza kalkulacyjnego, a jeżeli niektóre automatycznie wyznaczone wartości były niepoprawne zamienić je na wyznaczone ręcznie;
- i) wykreślić widmo amplitudowe napięć u_{oi} i u_o wpisując polecenie

wykres_widma(Uoi,Uo, fmax)

gdzie f_{max} jest zakresem częstotliwości, który należy wybrać rozsądnie tak, aby widoczne były wszystkie składowe o znaczącej amplitudzie; widmo napięcia u_{oi} zostanie wykreślone kolorem niebieskim, natomiast u_{o} – czerwonym; w celu zwiększenia czytelności wykresu, prążki o wartości mniejszej niż 5% maksymalnej są pomijane;

- j) zapisać obraz widma do pliku graficznego (w oknie wykresu menu File, Export to).
- 5. Uzyskane wyniki zebrać w tabeli 1.
- 6. Dla każdego przypadku obliczyć i dodać do tabeli:
 - współczynnik modulacji częstotliwości m_β
 - współczynnik modulacji amplitudy m_a.

Skontrolować, czy wszystkie pomiary w tej serii zostały wykonane dla $m_a \approx 1$.

Parametry dla zmiennego współczynnika modulacji amplitudy i obciążenia

- 7. Powtórzyć pkt 4.a)–h) dla oscylogramów zarejestrowanych w pkt. 2.3/0 (dla różnych wartości współczynnika modulacji amplitudy m_a). Wyniki zebrać w tabeli 2.
- 8. Dla każdego przypadku obliczyć i dodać do tabeli:
 - współczynnik modulacji amplitudy m_a,
 - współczynnik modulacji częstotliwości m_f.

Skontrolować, czy wszystkie pomiary w tej serii zostały wykonane dla $m_f\approx$ 21.

9. Powtórzyć pkt 4.a)–h) dla oscylogramów zarejestrowanych w pkt. 2.3/6 (dla różnych wartości obciążenia I_0). Wyniki zebrać w tabeli 3.

3.2. Analiza wyników

Działanie układu

- 1. Prze
analizować oscylogramy napięć zarejestrowane przy zmiennym współczynniku modulacji częstotliwośc
i $m_{f^{\star}}$
 - a) czy współczynnik wypełnienia przebiegu u_{oi} jest zgodnie z zasadą działania falownika impulsowego [1] proporcjonalny do przebiegu modulującego u_{mod} ?
 - b) jak przebieg na wyjściu filtru u_0 ma się do przebiegu na wyjściu mostka u_{0i} ? jaki wpływ ma na to współczynnik modulacji częstotliwości m_f ?
- 2. Jak zmienia się przebieg na wyjściu mostka u_{oi} przy zmianie współczynnika modulacji amplitudy m_a , szczególnie powyżej 1 (nadmodulacja)? Skrótowo wyjaśnić obserwację odwołując się do zasady modulacji dwubiegunowej [1] (nie wnikając w szczegóły).

Wpływ współczynnika modulacji częstotliwości na zniekształcenia napięcia

- 3. Przeanalizować zapisane wykresy widma amplitudowego napięcia na wyjściu mostka u_{oi} . Dla jakich częstotliwości obserwowane są prążki o stosunkowo dużej (w porównaniu z prążkiem dla częstotliwości f_{mod}) amplitudzie? Czy częstotliwości te mają jakiś związek z częstotliwością f_{mod} lub f_{tri} [3]?
- 4. Na podstawie danych z tabeli 1, wykreślić na jednym wykresie zależność współczynnika zniekształceń harmonicznych d_h [2] napięcia na wyjściu mostka u_{oi} i napięcia na wyjściu filtru u_o od współczynnika modulacji częstotliwości m_f .
- 5. Przeanalizować wykres dla napięcia na wyjściu mostka u_{0i} :
 - a) jaki przebieg ma zależność $d_h(u_{oi})=f(m_f)?$
 - b) biorąc pod uwagę definicję współczynnika zniekształceń $d_{\rm h}$, powiązać obserwację z widmem amplitudowym; jak zmienia się amplituda prążka odpowiadającego częstotliwości $f_{\rm mod}$, a jak amplitudy prążków odpowiadających jej harmonicznym?
- 6. Przeanalizować wykres dla napięcia na wyjściu filtru u_0 :
 - a) jaki przebieg ma zależność $d_{\rm h}(u_{\rm o})=f(m_f)$?
 - b) biorąc pod uwagę definicję współczynnika zniekształce
ń $d_{\rm h},$ powiązać obserwację z widmem amplitudowym;
 - c) jak skuteczna jest filtracja harmonicznych w przypadku małych i dużych wartości m_f?
 - d) w dowolny sposób wyznaczyć charakterystykę częstotliwościową użytego filtru LC uwzględniając wartości elementów podane w podrozdziale 2.1;
 - e) wyjaśnić obserwację z podpunktu c) w oparciu o:
 - widmo przebiegu u_{oi} (dla różnych m_f),
 - charakterystykę filtru;
 - f) biorąc pod uwagę wnioski z podpunktów a)–e), uzasadnić, że praca z wysokim współczynnikiem modulacji częstotliwości m_f jest korzystna (ogólnie abstrahując od konkretnych wartości elementów);
 - g) odnosząc charakterystykę filtru do widma napięcia na wyjściu mostka u_{oi} , jakich wartości nie powinna przyjmować częstotliwość rezonansowa filtru?
- 7. Czy z obserwacji zanotowanych w pkt. 2.3/1.i) wynikają inne korzyści z pracy z wysokim współczynnikiem modulacji częstotliwości? Podać przybliżoną wartość graniczną m_f w przypadku badanego układu.

Wpływ współczynnika modulacji częstotliwości na napięcie skuteczne

- 8. Na podstawie danych z tabeli 1, wykreślić na jednym wykresie zależność wartości skutecznej napięcia na wyjściu mostka U_{0i} i napięcia na wyjściu filtru U_0 od współczynnika modulacji częstotliwości m_{f} .
- 9. Przeanalizować uzyskany wykres:
 - a) w oparciu o <u>definicję</u> wartości skutecznej [2] oraz zanotowaną w pkt. 2.2/12 wartość napięcia zasilania U_d , wyjaśnić wartość i przebieg zależności $U_{oi} = f(m_f)$;
 - b) jaki przebieg ma zależność $U_0 = f(m_f)$ i jak mają się zmierzone wartości U_0 do wartości skutecznej idealnej sinusoidy o amplitudzie U_d ?
 - c) wyjaśnić obserwację z podpunktu b) biorąc pod uwagę:
 - zmianę amplitudy składowej podstawowej zaobserwowaną w pkt. 5.b),
 - charakterystykę częstotliwościową filtru wyjściowego wyznaczoną w pkt. 6.d);
 - d) biorąc pod uwagę wnioski z podpunktów a)–c), jaka jest negatywna konsekwencja pracy z wysokim współczynnikiem modulacji amplitudy m_{f} ?

Charakterystyki falownika

- 10. Na podstawie danych z tabeli 2, wykreślić charakterystykę sterowania napięcia wyjściowego falownika $U_0 = f(m_a)$.
- 11. Przeanalizować uzyskany wykres:
 - a) odnieść przebieg otrzymanej zależności do teoretycznej charakterystyki składowej podstawowej napięcia U_{oi1m} wyjściowego mostka u_{oi} [1];
 - b) czym objawia się wejście w zakres nadmodulacji?
 - c) jaką wartość maksymalną powinno osiągnąć skuteczne napięcie wyjściowe $U_{\rm o}$ gdyby falownik i filtr wyjściowy były idealne (tj. brak spadków napięcia na elementach oraz idealna filtracja wyłącznie składowej $f_{\rm mod}$)? jaką osiągnęło w rzeczywistym układzie w danych warunkach obciążenia?
- 12. Na podstawie danych z tabeli 3, wykreślić charakterystykę wyjściową falownika bez filtru i z filtrem, tj. $U_{0i} = f(I_0)$ i $U_0 = f(I_0)$.
- 13. Przeanalizować uzyskany wykres:
 - a) jaki jest wpływ obciążenia na skuteczne napięcie wejściowe?
 - b) aproksymować liniowo obie zależności np. wyświetlając linię trendu wraz z jej równaniem na wykresie w arkuszu kalkulacyjnym;
 - c) porównać wartości rezystancji wyjściowej falownika *R*_{oi} i *R*_o, tj. wartość bezwzględną współczynnika kierunkowego prostych; czy filtr znacząco pogarsza (zwiększa) ten parametr?
 - d) jak obserwacja z podpunktu c) świadczy o relacji stratności rzeczywistych elementów biernych do stratności rzeczywistych kluczy półprzewodnikowych (w badanym układzie)?

Wpływ pozostałych parametrów pracy na zniekształcenia harmoniczne

14. Na podstawie danych z tabel 2 i 3, wykreślić charakterystyki współczynników zniekształceń harmonicznych $d_h(u_{oi})$ i $d_h(u_o)$ w funkcji współczynnika modulacji amplitudy m_a oraz w funkcji obciążenia I_0 . Opisać obserwacje.

Informacje

4. Literatura

- [1] Nowak M., Barlik R.: *Poradnik inżyniera energoelektronika.* Warszawa: Wydawnictwa Naukowo-Techniczne, 1998.
- [2] Starzak Ł.: *Laboratorium przyrządów i układów mocy. Instrukcja 0. Wprowadzenie do elektroniki mocy.* Łódź: Politechnika Łódzka, 2009.
- [3] Mohan N., Undeland T.M., Robbins W.P.: *Power electronics: Converters, applications and design.* Wiley, 2003.