

PODZESPOŁY I UKŁADY SCALONE MOCY

Ćwiczenie A3

Charakterystyka ładunku bramki

Opracowanie ćwiczenia i instrukcji: Łukasz Starzak

Łódź 2012

Spis treści

1.	Cel i	Cel i przebieg ćwiczenia		
С	Dośw	viadczenie		7
2.	Pom	iary		7
	21	Onis układu pomiarowego	-	7
	2.1.	Budowa i zasada działania	7	
		Połaczenia i pomiary		
	2.2.	Przygotowanie do pomiarów		1
		Układ laboratoryjny		
		Zasilanie		
		Sprzęt pomiarowy		
		Pomiar próbny		
	2.3.	Wykonanie pomiarów	14	ł
		Obciążenie znamionowe	14	
		Zmiana warunków obciążenia		
		Zmiana prądu pomiarowego	15	
		Zakończenie pomiarów		
D	Wyni	iki		7
3.	Opra	acowanie wyników	17	7
	3.1.	Atak pradowy dla obciażenia znamionowego		7
	0.11	Działanie układu		
		Porównanie z parametrami katalogowymi		
		Składniki całkowitego ładunku bramki		
		Pojemności tranzystora		
		Wpływ prądu pomiarowego		
	3.2.	Składniki ładunku bramki dla zmiennych warunków obciążenia		l
		Prąd przewodzenia		
		Napięcie blokowania		
ΕI	Infori	nacje		3
	. .			-
4.	. Literatura		23	5

B

Wprowadzenie

do ćwiczenia

1. Cel i przebieg ćwiczenia

Celem niniejszego ćwiczenia jest pomiar charakterystyki ładunku bramki tranzystora MOSFET mocy i wyznaczenie poszczególnych jej parametrów. Przeanalizowany również zostanie wpływ prądu przewodzenia i napięcia blokowania na te parametry.

Przebieg charakterystyki ładunku bramki i jego geneza fizyczna oraz praktyczne znaczenie tej charakterystyki zostały dokładnie przeanalizowane w instrukcji [2]. Ogólna metoda jej wyznaczania została natomiast zaprezentowana w literaturze [1].

Doświadczenie

2. Pomiary

2.1. Opis układu pomiarowego

Budowa i zasada działania

Schemat układu laboratoryjnego przedstawiony jest na rys. 1. Ogólna zasada jego działania została opisana w literaturze [1]. Przyrządem badanym jest tranzystor dolny Q_T.

Tranzystor górny Q_H pełni rolę źródła prądowego, ustalającego prąd drenu badanego tranzystora I_D . Prąd ten zmienia się proporcjonalnie do stałego napięcia sterującego U_{GSH} , którego wartość wynika z nastawy potencjometru R_{PGH} wyprowadzonego na panel układu (pokrętło podpisane " U_{GSH}/I_D "). Ponieważ tranzystor Q_H jest tego samego typu co Q_T , można przyjąć, że w całym zakresie zmian napięcia dren-źródło u_{DSH} pracuje on w zakresie nasycenia. Tym samym prąd i_D ma stałą wartość I_D wynikającą wyłącznie z wartości U_{GSH} i transkonduktancji $g_{fs,H}$ tranzystora Q_H zgodnie ze znaną zależnością

$$i_{\rm D} = I_{\rm D} = g_{\rm fs,H} (U_{\rm GSH} - U_{\rm GS(th)H}) \tag{1}$$

gdzie U_{GS(th)H} – napięcie progowe tranzystora Q_H.

Dla uzyskania stałego prądu i_D istotna jest więc stałość napięcia U_{GSH} . Należy z kolei zauważyć, że potencjał źródła tranzystora Q_H jest zmienny w czasie wskutek przełączania się tranzystora Q_T , które pociąga za sobą zmianę napięcia u_{DS} . Aby uniknąć związanych z tym problemów, obwód bramki tranzystora górnego zasilany jest z dwóch baterii 9 V przez stabilizator napięcia U_{GGH} = 12 V.

Cały obwód mocy zasilany jest ze źródła napięcia, które stanowi kondensator elektrolityczny C_{DD} o dużej wartości, ładowany z zewnętrznego zasilacza do napięcia U_{DD} . Znajduje się w nim jeszcze opornik R_L . Jego zadaniem jest minimalizacja oscylacji, które pojawiają się wskutek współdziałania pasożytniczych indukcyjności połączeń z pojemnościami pasożytniczymi C_{DS} obu tranzystorów. Niekorzystnym skutkiem jego obecności jest płynący przezeń prąd, dodający się do wynikającego ze wzoru (1). Wartość R_L została jednak tak dobrana, by dla wartości I_D i U_{DD} występujących w niniejszym ćwiczeniu, wpływ ten był nie większy niż rzędu 1%. Tym samym można go zaniedbać.

Rys. 1. Schemat układu laboratoryjnego do pomiaru ładunku bramki metodą ataku prądowego

Obwód bramki tranzystora badanego Q_T zasilany jest napięciem U_{GG} z kondensatora C_{GG} ładowanego z zewnętrznego zasilacza. Zasadniczym elementem tego obwodu jest źródło prądowe, którego rolę pełni tranzystor PMOS Q_G . Tranzystor ten jest tak dobrany, aby w szerokim zakresie napięcia u_{DSG} prąd $i_{G(s)}$ można było uznać za stały, równy

$$i_{G(s)} = I_G = -g_{fs,G} (U_{GSG} - U_{GS(th)G})$$
(2)

gdzie $g_{fs,G}$ i $U_{GS(th)G}$ – transkonduktancja i napięcie progowe tranzystora Q_G . Wartość I_G zależy od napięcia U_{GSG} , wynikającego z kolei z nastawy potencjometru R_{PGG} , wyprowadzonego na panel układu (pokrętło podpisane " I_G "). Aby zwiększyć dokładność regulacji, a jednocześnie nie dopuścić do przeciążenia elementów, odbywa się ona w zakresie ograniczonym do ok. 0,5...20 mA.

Prąd $i_{G(s)}$ płynie przez większość czasu przez tranzystor Q_Z , który jest załączony wówczas, gdy wyjście generatora impulsu znajduje się w stanie niskim (0). Jednocześnie, ponieważ spadek napięcia na tranzystorze Q_Z i oporniku R_Z (o odpowiednio małej wartości) jest niewielki, bramka badanego tranzystora Q_T zwierana jest z jego źródłem, a więc $u_{GS} \approx 0$.

Kiedy wciśnięty zostanie przycisk na panelu układu (klucz S_P), generator wytwarza impuls prostokątny, powodujący wyłączenie tranzystora Q_Z na pewien czas. Długość impulsu t_p zależy od nastawy potencjometru R_{PT} wyprowadzonego również na panel układu (pokrętło podpisane "t_p"). Regulacja możliwa jest w zakresie ok. 25...250 µs.

Wyłączenie tranzystora Q_Z powoduje, że prąd źródła $i_{G(s)}$ (o wartości ciągle równej I_G) zamyka się przez obwód bramki (G-S) tranzystora badanego Q_T , a więc $i_G = i_{G(s)}$. Następuje ładowanie jego pojemności wejściowej C_{in} . Ponieważ odbywa się ono prądem stałym o wartości I_G , napięcie u_{GS} narasta liniowo (patrz rys. 2), zgodnie z równaniem pojemności

$$i_{\rm G} = C_{\rm in} \, \frac{{\rm d}u_{\rm GS}}{{\rm d}t} \tag{3}$$

skąd przy $i_{\rm G} = i_{\rm G(s)} = I_{\rm G}$

$$\Delta u_{\rm GS} = \frac{I_{\rm G}}{C_{\rm in}} \cdot \Delta t \tag{4}$$

Należy przy tym pamiętać, że pojemność bramkowa C_{in} przyjmuje różne wartości w różnych fazach załączania [1,2]. Jednocześnie ładunek ΔQ_G dostarczany do bramki w przedziale czasu Δt wyraża się wzorem

$$\Delta Q_{\rm G} = \int_{\Delta t} i_{\rm G} dt = I_{\rm G} \cdot \Delta t \tag{5}$$

Jeżeli przed zakończeniem impulsu sterującego napięcie u_{GS} osiągnie wartość napięcia zasilania źródła prądowego U_{GG} , to nie jest możliwe dalsze ładowanie bramki, gdyż osiągnięte zostało maksymalne napięcie dostępne w obwodzie. W takim wypadku prąd bramki spada do zera.

Po zakończeniu impulsu sterującego, tranzystor Q_Z zostaje na powrót załączony. Bramka tranzystora badanego rozładowuje się wówczas przez ten tranzystor i opornik R_Z , którego zadaniem jest ograniczenie prądu rozładowania do wartości bezpiecznej dla tranzystora Q_Z . Ładunek bramki Q_G zostaje w ten sposób sprowadzony do zera.

Jak wynika z analizy ataku prądowego [1] (por. rys. 2), prąd źródła I_D określa prąd przewodzenia badanego tranzystora $I_{D(on)}$, zaś napięcie zasilania obwodu mocy U_{DD} określa napięcie blokowania $U_{DS(off)}$. Poprzez nastawę parametrów I_D i U_{DD} możliwa jest więc obserwacja przełączania tranzystora w różnych warunkach obciążenia (rozumianego zarówno prądowo, jak i napięciowo).

Rys. 2. Przebiegi prądów i napięć tranzystora badanego Q_T podczas testu ataku prądowego

Połączenia i pomiary

Tranzystory Q_T i Q_H , tego samego typu, mocowane są w niebieskich listwach zaciskowych, zgodnie z opisem na panelu układu laboratoryjnego.

Zasilanie obwodu mocy i obwodu sterowania tranzystora badanego przyłączane jest za pośrednictwem gniazd bananowych, odpowiednio U_{DD} i U_{GG} .

Zasilanie obwodu sterowania tranzystora górnego realizowane jest z baterii mocowanych wewnątrz układu. W razie konieczności ich wymiany, należy poprosić o pomoc prowadzącego. Aby uniknąć ich rozładowania, zasilanie jest załączane w odpowiednim momencie kluczem S_H (przełącznik U_{GGH} na panelu). W czasie, kiedy pomiary nie są wykonywane, powinien on znajdować się w pozycji wyłączonej ("O").

Aby umożliwić jednoczesny pomiar wszystkich niezbędnych napięć i prądu bramki, **masy sond napięciowych** muszą być przyłączone do źródła tranzystora badanego Q_T (na rys. 1 punkt oznaczony symbolem uziemienia). Jego potencjał v_S jest wyprowadzony do gniazda bananowego na panelu układu, zgodnie ze schematem na panelu.

Dla ataku prądowego najistotniejsza jest **rejestracja przebiegu napięcia** u_{GS} badanego tranzystora Q_T . Końcówkę gorącą sondy napięciowej należy w tym celu przyłączyć bezpośrednio do wyprowadzenia bramki tego tranzystora. Analogicznie, w celu pomiaru **napięcia** u_{DS} , końcówkę gorącą sondy napięciowej należy przyłączyć bezpośrednio do wyprowadzenia drenu tego tranzystora.

Prąd bramki *i*_G posiada stosunkowo niewielką amplitudę. Nie są jej w stanie dokładnie przetworzyć sondy prądowe dostępne w laboratorium, przeznaczone do obwodów silnoprądowych. W związku z tym pomiar tego prądu odbywa się pośrednio, poprzez pomiar napięcia *u*_B na boczniku R_B o rezystancji *R*_B = 100 Ω. Biorąc pod uwagę zwrot mierzonego napięcia *u*_B, będący konsekwencją przyłączenia masy sondy do źródła tranzystora Q_T,

$$i_{\rm G} = -\frac{u_{\rm B}}{R_{\rm B}} \tag{6}$$

Dokładny przebieg prądu i_G w gałęzi bramki i w gałęzi źródła tranzystora Q_T (bocznika R_B) może się nieco różnić w stanach przejściowych – szczególnie na zboczach impulsu prądu i_G . Niemniej amplituda impulsu I_G jest odwzorowywana poprawnie.

Prąd drenu i_D ma wartość odpowiednią do pomiaru sondą prądową. Dokonuje się tego przez zaciśnięcie sondy wokół fragmentu przewodu wyprowadzonego nad panel układu. Jego lokalizację w obwodzie pokazuje strzałka na rys. 1.

Wciśnięcie przycisku *S_P* powoduje powstanie wyłącznie jednego impulsu prądu bramki *i*_G. W związku z tym po każdej zmianie nastaw w układzie pomiarowym bądź na sprzęcie pomiarowym (oscyloskopie, wzmacniaczu sondy prądowej), <u>należy ponownie wygenerować impuls</u> wciskając przycisk. W przeciwnym razie pamięć oscyloskopu nie zostanie odświeżona, a jego ekran nadal będzie zawierać przebiegi zarejestrowane przy poprzednim wciśnięciu przycisku.

Rejestracji danych z oscyloskopu dokonuje się za pomocą programu WaveStar for Oscilloscopes dostępnego z menu Start, zakładka *Pomiary*, w sposób opisany w dalszym ciągu niniejszej instrukcji.

2.2. Przygotowanie do pomiarów

Układ laboratoryjny

Aby nie tracić czasu, równolegle z pkt. 1 należy wykonywać kolejne punkty.

- 1. Włączyć komputer. Po zakończeniu logowania, włączyć oscyloskop i skonfigurować połączenie z komputerem <u>postępując ściśle według instrukcji</u> dostępnej na stanowisku. (Jeżeli zespół korzysta z oscyloskopu TDS224 po raz kolejny, to powtórna konfiguracja nie powinna być potrzebna. Należy ją przeprowadzić w razie problemów z komunikacją.)
- 2. Upewnić się, że zasilanie obwodu sterowania tranzystora Q_H jest wyłączone (przełącznik U_{GGH} w pozycji otwartej "O").
- 3. W niebieskich listwach zaciskowych na panelu układu laboratoryjnego zamontować 2 tranzystory IRFP350 firmy International Rectifier.
- 4. Pokrętła I_D i I_G na panelu układu skręcić do minimum (skrajne położenie przeciwnie do kierunku ruchu wskazówek zegara), zaś t_p do maksimum.

Zasilanie

- 5. Doprowadzić zasilanie do obwodu mocy, wykorzystując zasilacz o 2 sekcjach regulowanych:
 - a) wszystkie pokrętła <u>obu</u> sekcji zasilacza obwodu mocy skręcić do zera (skrajne położenie przeciwnie do kierunku ruchu wskazówek zegara);
 - b) ustawić zasilacz w tryb szeregowej pracy sekcji przyciskami pośrodku panelu wybrać Series;
 - c) za pomocą krótkiego przewodu połączyć zacisk "+" sekcji *Slave* z zaciskiem "-" sekcji *Master*;
 - d) wyjście zasilacza połączyć z gniazdami U_{DD} na panelu układu.
- 6. Doprowadzić zasilanie do obwodu sterowania tranzystora badanego, wykorzystując osobny zasilacz:
 - a) upewnić się, że zasilacz obwodu sterowania jest wyłączony;
 - b) włączyć zasilacz <u>nie podłączony</u> do układu;
 - c) wcisnąć przycisk *Napięcie* i pokrętłem *Regulacja napięcia* ustawić napięcie U_{GG} = 12 V;
 - d) wcisnąć przycisk *x0,1*, a pokrętło *Regulacja prądu* ustawić w pozycji 2 (licząc położenie minimum jako 1);
 - e) wyłączyć zasilacz;
 - f) wyjście zasilacza połączyć (zwracając uwagę na polaryzację) z gniazdami $\rm U_{GG}$ na panelu układu.

Sprzęt pomiarowy

7. Sondy napięciowe z tłumieniem 10:1 przyłączyć do układu w taki sposób, by na kanale 1 mierzyć napięcie na boczniku $u_{\rm B}$, na kanale 2 – napięcie bramka-źródło (tranzystora $Q_{\rm T}$) $u_{\rm GS}$, a na kanale 3 – napięcie dren-źródło $u_{\rm DS}$. Masy <u>wszystkich</u> sond napięciowych należy przyłączyć do wyprowadzenia z gniazda $v_{\rm S}$ (patrz rys. 1 i schemat na panelu układu).

Masy sond napięciowych (końcówki krokodylkowe) są na oscyloskopie zwarte ze sobą i połączone z przewodem ochronnym sieci; w związku z tym <u>muszą być zawsze przyłączone</u> <u>do tego samego potencjału</u>. Inne połączenie grozi przepływem prądu przez oscyloskop i uszkodzeniem jego obwodów wejściowych!

8. Skonfigurować wzmacniacz sondy prądowej i jego połączenie z oscyloskopem postępując według dostępnej na stanowisku instrukcji do sondy. <u>Obowiązkowo przeczytać i zastosować się</u> do podanych w instrukcji do sondy wskazówek dotyczących konfiguracji oscyloskopu.

W odpowiednim momencie:

- wyjście wzmacniacza przyłączyć do kanału 4;
- ustawić wstępnie współczynnik przetwarzania prąd-napięcie na wartość umożliwiającą pomiar i wyświetlenie na oscyloskopie przebiegu prądu o amplitudzie podanej w pkt.
 2.3/1 (patrz informacje o działaniu wzmacniacza sondy i jego współpracy z oscyloskopem podane w instrukcji do sondy).
- 9. Na wzmacniaczu sondy ustawić sprzężenie z przenoszeniem składowej stałej Coupling: DC.
- Zamknąć sondę wokół wyprowadzonego nad panel fragmentu przewodu tak, by mierzyć prąd drenu (tranzystora Q_T) i_D i aby mierzony kierunek tego prądu był zgodny z rzeczywistym (rys. 1).
- 11. Skonfigurować oscyloskop:
 - a) kanały 1–3 (*CH1/2/3 Menu*):
 - sprzężenie ze składową stałą *Coupling*: DC,
 - uwzględnianie tłumienia sondy 10:1 Probe: 10X,
 - odwracanie przebiegu z kanału 1 *Invert*: On, brak na pozostałych *Invert*: Off;
 - b) kanał 4 (*CH4 Menu*):
 - sprzężenie ze składową stałą *Coupling*: DC,
 - brak odwracania przebiegu *Invert*: Off;
 - c) poziomy zera kanałów 1–2 (pokrętła *CH1/2 Position*; wskazanie przez strzałkę na lewo od podziałki) na ekranie (tj. nie na żadnym z krańców ekranu), zaś wzmocnienia (*CH1/2 Volts/Div*):
 - kanału 1 dostosowane do prądu *i*_G o amplitudzie *I*_G podanej w pkt. 14 (patrz informacje o układzie pomiarowym podane w par. 2.1),
 - kanału 2 dostosowane do przebiegu o amplitudzie U_{GG} [patrz pkt 6.c)];
 - d) wyzwalanie (*Trigger Menu*):
 - tryb wyzwalania zboczem *Edge*,
 - zbocze wyzwalające narastające Slope: Rising,
 - wyzwalanie przebiegiem *u*_{GS} *Source*: numer odpowiedniego kanału,
 - tryb zwykły *Mode*: Normal,
 - sprzężenie ze składową stałą Coupling: DC,
 - poziom (pokrętło *Trigger Level*, wskazanie w prawym dolnym rogu ekranu) ok. 1 V i <u>nie zmieniać tej nastawy</u> w dalszym ciągu ćwiczenia;
 - e) oś czasu:
 - położenie chwili wyzwalania (*Horizontal Position*, wskazanie przez strzałkę nad podziałką) na ekranie (tj. nie na żadnym z krańców ekranu),
 - podstawa czasu (*Sec/Div*) dostosowana do obserwacji przebiegu o najdłuższym możliwym czasie trwania impulsu t_p (patrz informacje o układzie pomiarowym podane w par. 2.1).

Przed wykonaniem kolejnego punktu poprawność połączeń i nastaw <u>musi</u> sprawdzić prowadzący!

Pomiar próbny

12. Włączyć zasilacz obwodu sterowania. Wcisnąć przycisk *Prąd* i stwierdzić, czy miernik zasilacza nie wykazuje poboru prądu większego niż 0,05 A (ponieważ wciśnięty został przycisk *x0,1*,

wskazanie miernika należy mnożyć przez 0,1). W przeciwnym razie należy wyłączyć zasilacz i poprosić prowadzącego o ponowne sprawdzenie układu.

13. Ukryć przebiegi z kanałów 1, 3 i 4 (*CH1/3/4 Menu*). Wcisnąć czerwony przycisk S_P na panelu układu. Powinno to spowodować wygenerowanie impulsu wyłączającego tranzystor Q_Z i tym samym ładowanie pojemności wejściowej tranzystora Q_T prądem bramki I_G . Na ekranie powinien na moment pojawić się komunikat "Trig'd" (*Triggered*) nad podziałką oraz zostać wyświetlony prostoliniowy odcinek przebiegu u_{GS} o czasie trwania t_p (w zależności od nastaw I_G i t_p , może się on nasycać na wartości U_{GG}). Jeżeli to nie nastąpi, należy stopniowo zwiększać amplitudę prądu bramki I_G (wciskając za każdym razem czerwony przycisk), jednak nie dalej niż do połowy zakresu regulacji. Jeżeli przebieg u_{GS} nie pojawi się na ekranie, należy sprawdzić poprawność nastaw oscyloskopu zgodnie z pkt. 11, a w razie ciągłego niepowodzenia – poprosić prowadzącego o ponowne sprawdzenie układu.

W razie potrzeby dostosować podstawę czasu (*Sec/Div*), położenie chwili wyzwalania (*Horizontal Position*), położenie poziomu zera (*Vertical Position*) i wzmocnienie kanału (*Volts/Div*).

14. Wyświetlić przebieg z kanału 1 – $u_{\rm B}$ (*CH1 Menu*). W oparciu o jego obraz na ekranie, pokrętłem I_G na panelu układu nastawić amplitudę prądu bramki $I_{\rm G} \approx 3$ mA.

W razie potrzeby dostosować podstawę czasu (*Sec/Div*), położenie chwili wyzwalania (*Horizontal Position*), położenie poziomu zera (*Vertical Position*) i wzmocnienie kanału (*Volts/Div*).

Przy poprawnej pracy układu zasilacz obwodu mocy nie powinien wykazywać poboru prądu poza stałym prądem diody sygnalizacyjnej (ok. 0,01 A) i przejściowym prądem ładowania kondensatora stabilizującego wewnątrz układu (nie więcej niż 0,05 A). Jeżeli <u>podczas</u> <u>nastawiania lub później</u> obserwowane jest co innego, należy natychmiast wyłączyć zasilacz i poprosić prowadzącego o ponowne sprawdzenie układu.

- 15. Włączyć zasilacz obwodu mocy. Prąd graniczny ograniczenia prądowego (pokrętło *Current*) <u>obu</u> sekcji ustawić na ok. 1/4 zakresu regulacji. Pokrętłem *Voltage* <u>sekcji</u> <u>Master</u> ustawić napięcie <u>sumaryczne</u> na 10 V (tj. 2×5 V). Na panelu układu powinna zapalić się czerwona dioda sygnalizacyjna.
- 16. Przełącznikiem U_{GGH} załączyć zasilanie obwodu sterowania tranzystora górnego, kontrolując, czy nie powoduje to zwiększenia poboru prądu z zasilacza obwodu mocy.
- 17. Wyświetlić przebieg z kanału 4 i_D (*CH4 Menu*). W oparciu o jego obraz na ekranie, pokrętłem I_D na panelu układu nastawić amplitudę prądu drenu I_D ≈ 1 A (bez dużej dokładności i <u>nie</u> <u>zmieniając</u> współczynnika przetwarzania wzmacniacza sondy, chyba że okaże się on niezgodny z pkt. 8). W razie potrzeby dostosować położenie poziomu zera (*Vertical Position*; nie zmieniać żadnych innych ustawień oscyloskopu).
- 18. Wyświetlić przebieg z kanału 3 u_{DS} (CH3 Menu). Dostosować położenie poziomu zera (Vertical Position) i wzmocnienie kanału (Volts/Div). Ocenić, czy wszystkie 4 obserwowane przebiegi są zgodne z zasadą ataku prądowego (rys. 2). W przeciwnym razie poprosić prowadzącego o ponowne sprawdzenie połączeń i nastaw.

2.3. Wykonanie pomiarów

Obciążenie znamionowe

- 1. Uzyskać podstawowe warunki obciążenia:
 - a) <u>najpierw</u> pokrętłem I_D na panelu układu ustawić prąd przewodzenia $I_{D(on)} = I_D = 16$ A;
 - b) <u>następnie</u> pokrętłem *Voltage* sekcji *Master* zasilacza obwodu mocy ustawić napięcie blokowania $U_{\text{DS(off)}} = U_{\text{DD}} = 80 \text{ V}$ (tj. 2×40 V);
 - c) w razie potrzeby skorygować prąd I_{D(on)}.
- 2. Dostosować ustawienia czasowe:
 - a) pokrętłem t_p na panelu układu dostosować czas trwania impulsu t_p do obserwowanego czasu trwania procesu załączania tak, aby był on widoczny od początku do chwili osiągnięcia przez napięcie $u_{\rm GS}$ wartości $U_{\rm GG}$ (patrz rys. 2), wraz z pewnym niedługim odcinkiem czasu po osiągnięciu tej wartości;
 - b) na oscyloskopie dostosować podstawę czasu (*Sec/Div*) i położenie chwili wyzwalania (*Horizontal Position*) tak, aby w maksymalnym powiększeniu poziomym obserwować załączanie tranzystora na odcinku wskazanym w ppkt. a), zaś początek załączania znajdował się <u>blisko lewej krawędzi</u> podziałki.
- 3. Zarejestrować komplet 4 przebiegów $i_G(u_B)$, u_{GS} , u_{DS} i i_D (razem):
 - a) w programie WaveStar utworzyć nowy arkusz typu YT Sheet;
 - b) z panelu bocznego (*Local* ▶ oznaczenie oscyloskopu ▶ *Data* ▶ *Waveforms* ▶ oznaczenie kanału) do utworzonego arkusza przeciągnąć 4 przebiegi wyświetlane na ekranie oscyloskopu;

Raz przeciągnięte przebiegi wystarczy później tylko odświeżać wciskając przycisk *Refresh Sheet* lub z menu *View, Refresh Datasheet.*

Przed ukończeniem wszystkich pomiarów opisanych w niniejszej instrukcji, w programie WaveStar nie należy zmieniać żadnych parametrów przebiegów. Jedyne wyjątki to:

- zmiana koloru <u>z paska narzędzi</u> na górze okna arkusza;
- przesunięcie poziomu zera za pomocą strzałki z lewej strony od podziałki.

Wszelkie inne zmiany spowodują niemożność skorzystania z funkcji odświeżania arkuszy, co znacząco wydłuży czas wykonywania ćwiczenia.

Przebieg można usunąć z arkusza klikając na jego numerze z lewej strony podziałki i wciskając klawisz Delete.

c) arkusz, zawierający wszystkie 4 przebiegi jednocześnie, zapisać w formacie programu WaveStar (SHT) – przycisk *Save Datasheet* (Ctrl+S);

Nie używać funkcji *Save Worksheet*, która nie powoduje zapisania żadnych danych pomiarowych, a jedynie nazwy otwartych arkuszy.

d) zanotować (można do tego celu wykorzystać arkusz typu *Notes Sheet*) bieżące ustawienie wzmocnienia sondy prądowej (patrz instrukcja do sondy prądowej).

Zmiana warunków obciążenia

- 4. Powtórzyć pomiar dla $U_{\text{DS(off)}} = 80 \text{ V}$ i różnych wartości prądu przewodzenia $I_{\text{D(on)}} = \{8; 4; 2\} \text{ A}$:
 - a) pokrętłem *I*_D ustawić wartość *I*_{D(on)};
 - b) w razie <u>wyraźnej konieczności</u>, tj. utraty odpowiedniego odcinka czasu, powtórzyć pkt 2.a); podstawa czasu i położenie chwili wyzwalania powinny natomiast <u>pozostać niezmienione</u>, w przeciwnym razie przetwarzanie wyników zostanie niepotrzebnie utrudnione;

- c) w programie WaveStar odświeżyć arkusz YT Sheet przyciskiem Refresh Sheet lub z menu View, Refresh Datasheet;
- d) zapisać arkusz w formacie programu WaveStar (SHT).
- 5. Powrócić do podstawowych warunków obciążenia powtórzyć pkt 1.
- 6. Powtórzyć pomiar dla $I_{\rm D(on)}=16$ A i różnych wartości napięcia blokowania $U_{\rm DS(off)}=\{120;\,40;\,20\}$ V:
 - a) pokrętłem Voltage sekcji Master zasilacza obwodu mocy ustawić wartość sumaryczną U_{DS(off)};
 - b) w razie <u>wyraźnej konieczności</u>, tj. utraty odpowiedniego odcinka czasu, powtórzyć pkt 2.a); podstawa czasu i położenie chwili wyzwalania powinny natomiast <u>pozostać niezmienione</u>, w przeciwnym razie przetwarzanie wyników zostanie niepotrzebnie utrudnione;
 - c) w razie potrzeby skorygować prąd *I*_{D(on)} pokrętłem *I*_D;
 - d) w programie WaveStar odświeżyć arkusz YT Sheet przyciskiem Refresh Sheet lub z menu View, Refresh Datasheet;
 - e) zapisać arkusz w formacie programu WaveStar (SHT).

Zmiana prądu pomiarowego

- 7. Powrócić do podstawowych warunków obciążenia powtórzyć pkt 1.
- 8. Pokrętłem I_G , w oparciu o przebieg u_B na ekranie oscyloskopu, nastawić amplitudę prądu bramki $I_G \approx 1$ mA. Powtórzyć pkt 2.
- 9. Zarejestrować przebiegi:
 - a) w programie WaveStar odświeżyć arkusz YT Sheet przyciskiem Refresh Sheet lub z menu View, Refresh Datasheet;
 - b) zapisać arkusz w formacie programu WaveStar (SHT).
- 10. Powtórzyć pkt. 8–9 dla $I_G \approx 10$ mA.

Zakończenie pomiarów

- 11. Sprowadzić do zera napięcie zasilacza obwodu mocy. <u>Zaczekać</u> na zgaśnięcie czerwonej diody sygnalizacyjnej na płycie układu.
- 12. Wyłączyć:
 - a) zasilacz obwodu mocy;
 - b) zasilanie obwodu sterowania tranzystora górnego przełączni
k U_{GGH} na panelu układu przestawić w pozycję "O";
 - c) zasilacz obwodu sterowania.
- 13. Zasilacz obwodu mocy przestawić w tryb pracy niezależnej (Independent).
- 14. Na oscyloskopie wyłączyć odwracanie przebiegu z kanału 1 (CH1 Menu, Invert: Off).
- 15. Rozłączyć układ.

Wyniki

3. Opracowanie wyników

3.1. Atak prądowy dla obciążenia znamionowego

Działanie układu

- 1. Uruchomić program WaveStar.
- 2. Otworzyć zestaw przebiegów { $i_G(u_B)$; u_{GS} ; u_{DS} ; i_D } dla podstawowych warunków obciążenia $U_{DS(off)} = 80 \text{ V}$, $I_{D(on)} = 16 \text{ A}$, oraz $I_G = 1 \text{ mA} \text{zarejestrowany w pkt. 2.3/9.}$
- Na oscylogramie zidentyfikować i zaznaczyć wszystkie poszczególne odcinki czasu zgodnie z rys. 2.
- 4. Stwierdzić i uzasadnić, czy układ spełnia założenia ataku prądowego:
 - prąd ładowania bramki można uznać za stały (można przyjąć, że zmiana mniejsza niż 10% jest nieznacząca);
 - można wyróżnić przedział ładowania pojemności C_{GS}, przedział ładowania pojemności C_{GD} oraz przedział dostarczania ładunku nadmiarowego t_{exc}.

Porównanie z parametrami katalogowymi

- 5. Otworzyć zestaw przebiegów $\{i_G (u_B); u_{GS}; u_{DS}; i_D\}$ dla podstawowych warunków obciążenia i wartości I_G najbliższej tej, której użył producent badanego tranzystora do wyznaczenia parametrów katalogowych (patrz karta katalogowa tranzystora <u>firmy International Rectifier</u>) zarejestrowany w pkt. 2.3/3, 8 lub 10.
- 6. Wyznaczyć składniki ładunku bramki podane przez producenta w karcie katalogowej badanego tranzystora:
 - a) z oscylogramu, w oparciu o przebiegi u_{GS} (przede wszystkim) oraz (pomocniczo) i_D i u_{DS} , odczytać długości odcinków czasu (patrz rys. 2 oraz [2]), w <u>następującej kolejności</u> (zapewniającej minimalizację błędu odczytu):
 - *t*_{GD} kursorami pionowymi,

- t_{GS} kursorami pionowymi, pozostawiając jeden z nich w położeniu <u>niezmienionym</u> względem pomiaru t_{GD} ,
- $t_{G(tot)}$ dla nominalnej wartości $U_{GS(on)nom}$ identycznej, jak użyta przez producenta (podana w karcie katalogowej) kursorami pionowymi (jest to możliwe, jeżeli poziom zera przebiegu u_{GS} znajduje się na pełnej działce) lub pionowo-poziomymi (*paired*), pozostawiając wcześniejszy z nich w położeniu <u>niezmienionym</u> względem pomiaru t_{GS} ;

Uwagi dotyczące korzystania z kursorów w programie WaveStar:

1. Aby włączyć kursory, należy wybrać z menu View ▶ Properties ▶ Cursor i wybrać typ kursora odpowiedni dla wykonywanego pomiaru (poziomy, pionowy, krzyżowy, punktowy). W aktywnym arkuszu YT Sheet pojawią się wartości odpowiadające aktywnemu przebiegowi, w zależności od rodzaju kursora:

- X, Y współrzędne aktywnego (linia ciągła) kursora;
- X1, Y1 i X2, Y2 współrzędne pierwszego i drugiego kursora;
- dX, dY różnica współrzędnych kursorów.

2. Aktywny przebieg wybierany jest przez kliknięcie na jego numerze z lewej strony podziałki. Numer aktywnego przebiegu jest stale podświetlony.

3. Po przełączeniu na inny przebieg, kursor poziomy pozostaje na tej samej wysokości w woltach (nie działkach). Oznacza to, że przy dużej różnicy wzmocnień (V/dz) kursor może znaleźć się poza ekranem. Należy wówczas chwilowo zwiększyć przelicznik V/dz, sprowadzić kursor na poziom bliski zera i wówczas przywrócić poprzedni przelicznik.

4. W rozróżnieniu poszczególnych przebiegów może pomóc włączenie kolorów w legendzie: menu View ▶ Properties ▶ Plot, zaznaczyć Waveform notes color match waveform color.

5. Jeżeli znacznik chwili wyzwalania "T" przesłania załamanie na analizowanym przebiegu, można go ukryć: menu View ▶ Properties ▶ Plot, odznaczyć Trigger T on graticule.

- b) z przebiegu i_{G} odczytać w miarę dokładną wartość I_{G} , przy czym z powodu niedokładności występujących na zboczach prądów, odczytu należy dokonać <u>na odcinku t_{GD} (patrz rys. 2);</u>
- c) ze wzoru (5) obliczyć ładunki Q_{GS} , Q_{GD} i całkowity $Q_{G(tot)}$;
- d) odczytać ładunki Q_{GS} , Q_{GD} i $Q_{G(tot)}$ z <u>charakterystyki ładunku bramki</u> zamieszczonej w karcie katalogowej dla tych samych warunków obciążenia ($I_{D(on)}$, $U_{DS(off)}$);
- e) porównać wartości otrzymane doświadczalnie z katalogowymi.
- 7. Przeanalizować wartości napięć:
 - a) z oscylogramu, za pomocą kursora pionowo-poziomego (*Paired*), odczytać napięcie progowe $U_{GS(th)}$ i porównać z podanym w karcie katalogowej;
 - b) z oscylogramu, za pomocą kursora poziomego, odczytać poziom płaskiego odcinka $U_{GS(plt)}$ i porównać z odczytanym z katalogowej charakterystyki ładunku bramki.
- 8. W oparciu o otrzymany w drodze pomiaru oscylogram napięcia u_{GS} , sporządzić własną wersję charakterystyki ładunku bramki badanego tranzystora, w formie typowej dla kart katalogowych. Zamieścić wykonany rysunek w zestawieniu z charakterystyką katalogową i wraz z oscylogramem źródłowym z pkt. 5; podać wartości I_G , $I_{D(on)}$, $U_{DS(off)}$.

Składniki całkowitego ładunku bramki

- 9. Analogicznie do pkt. 6.a), c), wyznaczyć ładunek Q_{GS2} [2].
- 10. Na podstawie wyników pomiaru otrzymanych w pkt. 6 i 9, obliczyć ładunki:
 - *Q*_{GS1},
 - załączający Q_{G(on)},
 - nadmiarowy Q_{G(exc)}.
- 11. Przeanalizować wyniki:
 - a) który ze składników $Q_{\rm GS}$ czy $Q_{\rm GD}$ ma większy udział (jaki procentowo) w ładunku załączającym $Q_{\rm G(on)}?$

- b) jak ma się ładunek Q_{GS2} , odpowiadający rzeczywistemu czasowi załączania prądu drenu, do ładunku ogólnego Q_{GS} ? czy proponowane przez niektórych producentów wyodrębnienie tego ładunku można w związku z tym uznać za uzasadnione?
- c) czy w badanym przypadku większą część ładunku całkowitego $Q_{G(tot)}$ stanowi ładunek załączający $Q_{G(on)}$ czy nadmiarowy $Q_{G(exc)}$? czy mogłoby się to zmienić przy innych warunkach przełączania (wziąć pod uwagę maksymalne dopuszczalne napięcie U_{GS} badanego tranzystora)?

Pojemności tranzystora

- 12. Korzystając z uzyskanych wyników i dokonując dodatkowych pomiarów odpowiednich zmian napięć za pomocą kursorów, metodą przedstawioną w [1] wyznaczyć pojemności tranzystora:
 - a) C_{GS} w oparciu o odcinek t_{GS} , jako

$$C_{\rm GS} = \frac{I_{\rm G} \cdot t_{\rm GS}}{\Delta u_{\rm GS}(t_{\rm GS})} = \frac{Q_{\rm GS}}{U_{\rm GS(plt)}} \tag{7}$$

b) C_{GD} – w oparciu o końcowy fragment t_{GD} ' odcinka t_{GD} , na którym napięcie u_{DS} ma już niską wartość (patrz przykład [1]), jako

$$C_{\rm GD} \approx \frac{I_{\rm G} \cdot t_{\rm GD}'}{\Delta u_{\rm GD}(t_{\rm GD}')} = \frac{I_{\rm G} \cdot t_{\rm GD}'}{\Delta u_{\rm GS}(t_{\rm GD}') - \Delta u_{\rm DS}(t_{\rm GD}')}$$
(8)

Ponieważ szum przebiegu u_{DS} może być znaczący w porównaniu z samą zmianą Δu_{DS} na odcinku t_{GD}' , przy odczycie należy zwrócić uwagę na jego konsekwentne dokonanie po górnej lub po dolnej obwiedni (wynikającej z szumu) przebiegu u_{DS} .

- 13. Odnieść wyniki uzyskane doświadczalnie do parametrów katalogowych:
 - a) z <u>charakterystyki</u> w karcie katalogowej odczytać wartość pojemności sprzężenia zwrotnego C_{rss} dla napięcia u_{DS} występującego na badanym tranzystorze w układzie pomiarowym pośrodku odcinka t_{GD} (podać wartość tego napięcia);
 - b) porównać wartości C_{rss} i C_{GD} ;
 - c) z <u>charakterystyki</u> w karcie katalogowej odczytać wartość pojemności wejściowej C_{iss} dla napięcia u_{DS} występującego na badanym tranzystorze w układzie pomiarowym na odcinku t_{GS} (podać wartość tego napięcia; jeżeli nie występuje na skali, należy dokonać prognozy na podstawie przebiegu charakterystyki);
 - d) porównać wartości C_{iss} i C_{GS}.

Wprawdzie ogólnie $C_{\rm iss} = C_{\rm GS} + C_{\rm GD}$, ale ponieważ dla $U_{\rm DS} \rightarrow \infty$ pojemność $C_{\rm GD} \rightarrow 0$, więc $C_{\rm iss} \approx C_{\rm GS}$. Do tego samego wniosku prowadzi analiza charakterystyk pojemności: ponieważ $C_{\rm iss} = C_{\rm rss} + C_{\rm GS}$, zaś widać, że dla dużych $U_{\rm DS}$ pojemność $C_{\rm rss} \rightarrow 0$, mamy wówczas $C_{\rm iss} \approx C_{\rm GS}$.

e) obliczone i odczytane z karty katalogowej wartości pojemności zestawić w osobnej tabeli.

Wpływ układu sterowania

- 14. Powtórzyć pkt. 6.a)–c) oraz 7 (tylko odczyt wartości) dla $U_{DS(off)} = 80$ V, $I_{D(on)} = 16$ A, dla dwóch pozostałych wartości prądu bramki I_G w oparciu o oscylogramy zarejestrowane odpowiednio w pkt. 2.3/3, 8 lub 10.
- 15. Wyniki, wraz z otrzymanymi w pkt. 6–7, zebrać w tabeli 1. W pierwszej kolumnie umieścić wartości $I_{\rm G}$.
- 16. Stwierdzić, jaki jest wpływ wartości prądu bramki $I_{\rm G}$ na wartości ładunków $Q_{\rm GS}$, $Q_{\rm GD}$, $Q_{\rm G(on)}$ i $Q_{\rm G(tot)}$. Jakiego rzędu są różnice procentowe między wynikami dla nominalnej (katalogowej) wartości $I_{\rm G}$ a wynikami dla pozostałych dwóch? Porównać te różnice z szacunkową niepewnością odczytu, tj. dokładnością ustawienia kursora. Czy ładunek bramki można wobec

powyższego uznać za niezależny od obwodu sterowania tranzystora (tj. od prądu ładowania)? Czy jest to wobec tego parametr uniwersalny, pozwalający przewidywać zachowanie tranzystora w różnych układach?

17. Czy daje się zaobserwować wyraźny wpływ wartości prądu bramki I_G na odczytane wartości napięć $U_{GS(th)}$ i $U_{GS(plt)}$ (w porównaniu z szacunkową niepewnością odczytu)?

3.2. Składniki ładunku bramki dla zmiennych warunków obciążenia

Prąd przewodzenia

- 1. Utworzyć wykres porównawczy charakterystyk ładunku bramki przy różnych wartościach prądu przewodzenia $I_{\rm D(on)}$:
 - a) otworzyć zestaw przebiegów {
 $i_{\rm G}$ ($u_{\rm B}$); $u_{\rm GS}$; $u_{\rm DS}$;
 $i_{\rm D}$ } dla $I_{\rm G}$ = 3 mA, $U_{\rm DS(off)}$ = 80 V,
 $I_{\rm D(on)}$ = 16 A zarejestrowany w pkt. 2.3/3;
 - b) usunąć wszystkie przebiegi poza u_{GS} ;
 - c) dodać przebieg u_{GS} dla $I_{D(on)} = 8$ A:
 - nie zamykając obecnego arkusza, otworzyć zestaw przebiegów { $i_G (u_B); u_{GS}; u_{DS}; i_D$ } dla $I_G = 3 \text{ mA}, U_{DS(off)} = 80 \text{ V}, I_{D(on)} = 8 \text{ A} - \text{zarejestrowany w pkt. } 2.3/4;$
 - przeciągnąć przebieg u_{GS} z nowo otwartego arkusza do poprzednio otwartego arkusza;
 - zamknąć nowo otwarty arkusz;
 - jeżeli w trakcie pomiarów nastąpiła zmiana podstawy czasu (co nie powinno mieć miejsca), należy zmienić skalę czasu poprzez rozwijaną listę nad podziałką tak, by była ona jednakowa dla obu przebiegów;
 - jeżeli w trakcie pomiarów nastąpiła zmiana położenia chwili wyzwalania, należy przeciągnięty przebieg przesunąć za pomocą kolorowego suwaka nad podziałką w taki sposób, aby narastanie obu przebiegów rozpoczynało się w tym samym momencie;
 - jeżeli w trakcie pomiarów nastąpiła zmiana położenia poziomu zera, należy przeciągnięty przebieg przesunąć za pomocą kolorowego suwaka z lewej strony podziałki w taki sposób, aby narastanie obu przebiegów rozpoczynało się od tego samego poziomu;
 - d) powtórzyć ppkt c) dla $I_{D(on)}$ = 4 A i 2 A.
- 2. Zamieścić uzyskany wykres podpisując poszczególne gałęzie wartością prądu przewodzenia $I_{\rm D(on).}$
- 3. Powtórzyć pkt. 6.a), c), 7 (tylko odczyt wartości) i 9–10 dla $I_{D(on)} = 2$ A. Wyniki, wraz z otrzymanymi w pkt. 6–7 i 9–10, zebrać w tabeli 2. W pierwszych kolumnach tabeli umieścić wartości I_G , $I_{D(on)}$, $U_{\underline{DS(off)}}$.
- 4. W oparciu o uzyskany wykres <u>oraz</u> wyniki z tabeli 2, dokonać analizy wpływu prądu przewodzenia $I_{D(on)}$ na przebieg charakterystyki ładunku bramki, całkowity ładunek bramki $Q_{G(tot)}$ i jego składniki: Q_{GS} , Q_{GD} , $Q_{G(on)}$, $Q_{G(exc)}$. Wyjaśnić ten wpływ [2].

Napięcie blokowania

- 5. Utworzyć wykres porównawczy charakterystyk ładunku bramki przy różnych wartościach napięcia blokowania $U_{\rm DS(off)}$:
 - a) otworzyć zestaw przebiegów {
 $i_{\rm G}$ ($u_{\rm B}$); $u_{\rm GS}$; $u_{\rm DS}$;
 $i_{\rm D}$ } dla $I_{\rm G}$ = 3 mA,
 $I_{\rm D(on)}$ = 16 A, $U_{\rm DS(off)}$ = 120 V zarejestrowany w pkt. 2.3/6;
 - b) usunąć wszystkie przebiegi poza u_{GS} ;
 - c) dodać przebieg u_{GS} dla $U_{\text{DS(off)}}$ = 80 V:
 - nie zamykając obecnego arkusza, otworzyć zestaw przebiegów { $i_G (u_B)$; u_{GS} ; u_{DS} ; i_D } dla $I_G = 3 \text{ mA}$, $I_{D(on)} = 8 \text{ A}$, $U_{DS(off)} = 80 \text{ V} \text{zarejestrowany w pkt. } 2.3/3$;
 - przeciągnąć przebieg u_{GS} z nowo otwartego arkusza do poprzednio otwartego arkusza;
 - zamknąć nowo otwarty arkusz;
 - jeżeli w trakcie pomiarów nastąpiła zmiana podstawy czasu (co nie powinno mieć miejsca), należy zmienić skalę czasu poprzez rozwijaną listę nad podziałką tak, by była ona jednakowa dla obu przebiegów;

- jeżeli w trakcie pomiarów nastąpiła zmiana położenia chwili wyzwalania, należy przeciągnięty przebieg przesunąć za pomocą kolorowego suwaka nad podziałką w taki sposób, aby narastanie obu przebiegów rozpoczynało się w tym samym momencie;
- jeżeli w trakcie pomiarów nastąpiła zmiana położenia poziomu zera, należy przeciągnięty przebieg przesunąć za pomocą kolorowego suwaka z lewej strony podziałki w taki sposób, aby narastanie obu przebiegów rozpoczynało się od tego samego poziomu;
- d) powtórzyć ppkt 1.c) dla $U_{\rm DS(off)}=40$ V i 20 V (pozostałe przebiegi zarejestrowane w pkt. 2.3/6).
- 6. Zamieścić uzyskany wykres podpisując poszczególne gałęzie wartością napięcia blokowania $U_{\rm DS(off)}.$
- 7. Powtórzyć pkt. 6.a), c), 7 (tylko odczyt wartości) i 9–10 dla $U_{\rm DS(off)}=120$ V i 40 V. Wyniki dodać do tabeli 2.
- 8. W oparciu o uzyskany wykres i wyniki z tabeli 2, dokonać analizy wpływu napięcia blokowania $U_{\text{DS(off)}}$ na przebieg charakterystyki ładunku bramki, całkowity ładunek bramki $Q_{\text{G(tot)}}$ i jego składniki: Q_{GS} , Q_{GD} , $Q_{\text{G(on)}}$, $Q_{\text{G(exc)}}$. Wyjaśnić ten wpływ [2].

Informacje

4. Literatura

- [1] Napieralski A., Napieralska M.: *Polowe półprzewodnikowe przyrządy dużej mocy.* Warszawa: Wydawnictwa Naukowo-Techniczne, 1995.
- [2] Starzak Ł.: Podzespoły i układy scalone mocy. Ćwiczenie B1^P. Sterowanie tranzystorów polowych projekt. Łódź: Politechnika Łódzka, 2012.