

Figure 7-8 Step-down converter characteristics keeping V_d constant.

It should be noted that the operation corresponding to D=0 and a finite V_o is, of course, hypothetical because it would require V_d to be infinite.

From Eqs. 7-18 and 7-19

$$I_{LR} = (1 - D)I_{LR \text{ max}} (7-20)$$

For the converter operation where V_o is kept constant, it will be useful to obtain the required duty ratio D as a function of $I_o/I_{LB,\max}$. Using Eqs. 7-10 and 7-13 (which are valid in the discontinuous-conduction mode whether V_o or V_d is kept constant) along with Eq. 7-19 for the case where V_o is kept constant yields

$$D = \frac{V_o}{V_d} \left(\frac{I_o / I_{LB, \text{max}}}{1 - V_o / V_d} \right)^{1/2}$$
 (7-21)

The duty ratio D as a function of $I_o/I_{LB,\rm max}$ is plotted in Fig. 7-9 for various values of V_d/V_o , keeping V_o constant. The boundary between the continuous and the discontinuous mode of operation is obtained by using Eq. 7-20.

7-3-4 OUTPUT VOLTAGE RIPPLE

In the previous analysis, the output capacitor is assumed to be so large as to yield $v_o(t) = V_o$. However, the ripple in the output voltage with a practical value of capacitance can be calculated by considering the waveforms shown in Fig. 7-10 for a continuous-conduction mode of operation. Assuming that all of the ripple component in i_L flows through the capacitor and its average component flows through the load resistor, the shaded area in Fig. 7-10 represents an additional charge ΔQ . Therefore, the peak-to-peak voltage ripple ΔV_o can be written as

$$\Delta V_o = \frac{\Delta Q}{C} = \frac{1}{C} \frac{1}{2} \frac{\Delta I_L}{2} \frac{T_s}{2} \stackrel{\sim}{=}$$

From Fig. 7-5 during $t_{\rm off}$

$$\Delta I_L = \frac{V_o}{L} (1 - D) T_s \tag{7-22}$$



Figure 7-9 Step-down converter characteristics keeping V_o constant.

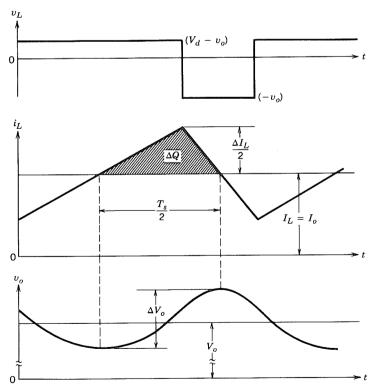


Figure 7-10 Output voltage ripple in a step-down converter.

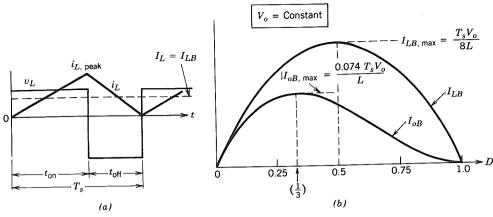


Figure 7-13 Step-up dc-dc converter at the boundary of continuous-discontinuous conduction.

Recognizing that in a step-up converter the inductor current and the input current are the same $(i_d = i_L)$ and using Eq. 7-27 and 7-28, we find that the average output current at the edge of continuous conduction is

$$I_{oB} = \frac{T_s V_o}{2L} D(1 - D)^2 (7-29)$$

Most applications in which a step-up converter is used require that V_o be kept constant. Therefore, with V_o constant, I_{oB} are plotted in Fig. 7-13b as a function of duty ratio D. Keeping V_o constant and varying the duty ratio imply that the input voltage is varying.

Figure 7-13b shows that I_{LB} reaches a maximum value at D = 0.5:

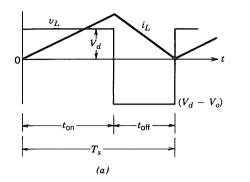
$$I_{LB,\text{max}} = \frac{T_s V_o}{8L} \tag{7-30}$$

Also, I_{oB} has its maximum at $D = \frac{1}{3} = 0.333$:

$$I_{oB,\text{max}} = \frac{2}{27} \frac{T_s V_o}{L} = 0.074 \frac{T_s V_o}{L}$$
 (7-31)

In terms of their maximum values, I_{LB} and I_{oB} can be expressed as

$$I_{LB} = 4D(1-D)I_{LB,\text{max}} (7-32)$$


and

$$I_{oB} = \frac{27}{4} D(1 - D)^2 I_{oB,\text{max}}$$
 (7-33)

Figure 7-13b shows that for a given D, with constant V_o , if the average load current drops below I_{oB} (and, hence, the average inductor current below I_{LB}), the current conduction will become discontinuous.

7-4-3 DISCONTINUOUS-CONDUCTION MODE

To understand the discontinuous-current-conduction mode, we would assume that as the output load power decreases, V_d and D remain constant (even though, in practice, D

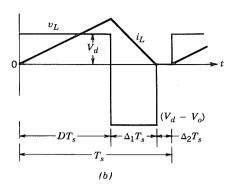


Figure 7-14 Step-up converter waveforms: (a) at the boundary of continuous—discontinuous conduction; (b) at discontinuous conduction.

would vary in order to keep V_o constant). Figure 7-14 compares the waveforms at the boundary of continuous conduction and discontinuous conduction, assuming that V_d and D are constant.

In Fig. 7-14b, the discontinuous current conduction occurs due to decreased P_o (= P_d) and, hence, a lower I_L (= I_d), since V_d is constant. Since $i_{L,\mathrm{peak}}$ is the same in both modes in Fig. 7-14, a lower value of I_L (and, hence a discontinuous i_L) is possible only if V_o goes up in Fig. 7-14b.

If we equate the integral of the inductor voltage over one time period to zero,

$$V_d D T_s + (V_d - V_o) \Delta_1 T_s = 0$$

$$\therefore \frac{V_o}{V_d} = \frac{\Delta_1 + D}{\Delta_1}$$
(7-34)

and

$$\frac{I_o}{I_d} = \frac{\Delta_1}{\Delta_1 + D} \quad \text{(since } P_d = P_o) \tag{7-35}$$

From Fig. 7-14b, the average input current, which is also equal to the inductor current, is

$$I_d = \frac{V_d}{2L} DT_s(D + \Delta_1) \tag{7-36}$$

Using Eq. 7-35 in the foregoing equation yields

$$I_o = \left(\frac{T_s V_d}{2L}\right) D\Delta_1 \tag{7-37}$$

In practice, since V_o is held constant and D varies in response to the variation in V_d , it is more useful to obtain the required duty ratio D as a function of load current for various values of V_o/V_d . By using Eqs. 7-34, 7-37, and 7-31, we determine that

$$D = \left[\frac{4}{27} \frac{V_o}{V_d} \left(\frac{V_o}{V_d} - 1 \right) \frac{I_o}{I_{oB,\text{max}}} \right]^{1/2}$$
 (7-38)

In Fig. 7-15, D is plotted as a function of $I_o/I_{oB,\max}$ for various values of V_d/V_o . The boundary between continuous and discontinuous conduction is shown by the dashed curve.

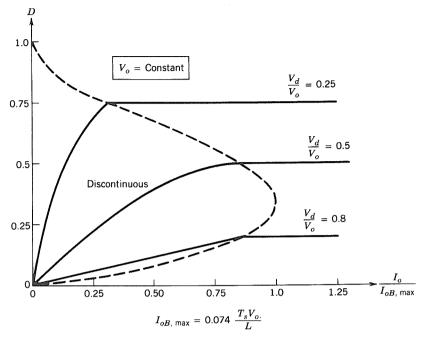


Figure 7-15 Step-up converter characteristics keeping V_o constant.

In the discontinuous mode, if V_o is not controlled during each switching time period, at least

$$\frac{L}{2}i_{L,\text{peak}}^2 = \frac{(V_d D T_s)^2}{2L} \qquad \text{W-s}$$

are transferred from the input to the output capacitor and to the load. If the load is not able to absorb this energy, the capacitor voltage V_o would increase until an energy balance is established. If the load becomes very light, the increase in V_o may cause a capacitor breakdown or a dangerously high voltage to occur.

Example 7-1 In a step-up converter, the duty ratio is adjusted to regulate the output voltage V_o at 48 V. The input voltage varies in a wide range from 12 to 36 V. The maximum power output is 120 W. For stability reasons, it is required that the converter always operate in a discontinuous-current-conduction mode. The switching frequency is 50 kHz.

Assuming ideal components and C as very large, calculate the maximum value of L that can be used.

Solution In this converter, $V_o = 48 \text{ V}$, $T_s = 20 \text{ }\mu\text{s}$, and $I_{o,\text{max}} = 120 \text{ W}/48 \text{ V} = 2.5 \text{ A}$. To find the maximum value of L that keeps the current conduction discontinuous, we will assume that at the extreme operating condition, the inductor current is at the edge of continuous conduction.

For the given range of V_d (12-36 V), D is in a range of 0.75-0.25 (corresponding to the current conduction bordering on being continuous). For this range of D, from Fig. 7-13b, I_{oB} has the smallest value at D=0.75.

Therefore, by substituting D=0.75 in Eq. 7-29 for I_{oB} and equating it to $I_{o,\max}$ of 2.5 A, we can calculate

$$L = \frac{20 \times 10^{-6} \times 48}{2 \times 2.5} \, 0.75(1 - 0.75)^2$$
$$= 9 \, \mu H$$

Therefore, if $L=9~\mu\mathrm{H}$ is used, the converter operation will be at the edge of continuous conduction with $V_d=12~\mathrm{V}$ and $P_o=120~\mathrm{W}$. Otherwise, the conduction will be discontinuous. To further ensure a discontinuous-conduction mode, a smaller than 9 $\mu\mathrm{H}$ inductance may be used.

7-4-4" EFFECT OF PARASITIC ELEMENTS

The parasitic elements in a step-up converter are due to the losses associated with the inductor, the capacitor, the switch, and the diode. Figure 7-16 qualitatively shows the effect of these parasitics on the voltage transfer ratio. Unlike the ideal characteristic, in practice, V_o/V_d declines as the duty ratio approaches unity. Because of very poor switch utilization at high values of duty ratio (as discussed in Section 7-8), the curves in this range are shown as dashed. These parasitic elements have been ignored in the simplified analysis presented here; however, these can be incorporated into circuit simulation programs on computers for designing such converters.

7-4-5 OUTPUT VOLTAGE RIPPLE

The peak-to-peak ripple in the output voltage can be calculated by considering the waveforms shown in Fig. 7-17 for a continuous mode of operation. Assuming that all the ripple current component of the diode current i_D flows through the capacitor and its average value flows through the load resistor, the shaded area in Fig. 7-17 represents charge ΔQ . Therefore, the peak-peak voltage ripple is given by

$$\Delta V_o = \frac{\Delta Q}{C} = \frac{I_o D T_s}{C}$$
 (assuming a constant output current)
= $\frac{V_o}{R} \frac{D T_s}{C}$ (7-39)

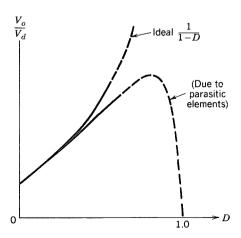


Figure 7-16 Effect of parasitic elements on voltage conversion ratio (step-up converter).